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Abstract

If every directed cut of a graph has k or more edges then the graph has k or more
pairwise disjoint dijoins. This is Woodall’s conjecture [Sch03]. Here, a dijoin is any set
of edges that intersects every directed cut; a directed cut is the set of the edges that leave
some source; and a source is a set of vertices that no edge enters. This talk presents the
basics of the conjecture, its “capacitated” version, the counterexample of Schrijver, the
counterexamples of Cornuéjols and Guenin, and some results by Williams [Wil04].

1 Introduction

A directed graph, or simply graph, is a pair (V,E) where V is a finite set and E is a set
of ordered pairs of elements of V . The elements of V are called vertices and those of E
are called edges. For each edge vw , the vertex v is the positive end of the edge and w is
the negative end. The sets of vertices and edges of a graph G are denoted by V (G) and
E(G) respectively. The transpose, or directional dual, of a graph G is the graph obtained
by replacing each edge vw by the pair wv .

Cuts. For any set X of vertices, we denote by ∂+(X) the set of edges that leave X (i.e., have
positive end in X and negative end out of X ) and by ∂−(X) the set of edges that enter X .
A source is any X of vertices such that ∂−(X) = ∅ . A sink is a source in the transpose of G .
The sources ∅ and V (G) are trivial. A source vertex is any vertex s such that {s} is a source
and a sink vertex is a source vertex in the transpose of G .

A directed cut, or simply cut, is any set of the form ∂+(X) such that X is a nontrivial source.
We say that X is a positive shore of the cut and V (G) ∖ X is the corresponding negative
shore. A graph is connected if ∅ is not a cut. In a connected graph, every cut has a unique
positive shore and a unique negative shore.

* Revised version of a 2005 talk at IME–USP.
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Joins. A dijoin, or simply join, is any set of edges that intersects all the cuts, i.e., any subset
J of E(G) such that J ∩ C ̸= ∅ for every cut C . A graph has a join if and only if ∅ is not a
cut. Moreover, ∅ is a join if and only if the graph has no cut.

The following characterization is useful: a set J of edges is a join if and only if for every
pair (s, t) of vertices there is a path from s to t whose forward edges1 belong to J . This
characterization can also be formulated as follows: a set J of edges is a join if and only if the
contraction of all the edge in the set makes the graph strongly connected.2
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Figure 1: On the left, the set of edges {a, b, d, f, g} is a cut. On the right, the set of edges
{b, f} is a join.

Cuts versus packings of joins. A set P of joins is disjoint if the elements of P are pairwise
disjoint. In other words, P is disjoint if each edge of the graph belongs to at most one
element of P . A packing of joins is a disjoint set of joins. There is no harm in assuming that
each join in the packing is minimal.3
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Figure 2: The colored line indicates a cut of size 3 . The labels 1 , 2 and 3 indicate a packing
of three joins.

There is an obvious relation between the size of a cut and the size of a packing of joins:

Lemma 1.1 The inequality |P| ≤ |C| holds for any packing P of joins and any
cut C .

The following conjecture by Woodall [Woo78a, Woo78b, Sch03] remains open:

1 An edge vw of a path is forward if the path traverses the edge from v to w and reverse if the path
traverses the edge from w to v .

2 A graph is strongly connected if for each pair (s, t) of its vertices there exists a path from s to t without
forward edges.

3 A join is minimal if none of its proper subsets is a join.
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Conjecture 1 (Woodall) Every graph has a packing P of joins and a cut C such
that |P| = |C| .

This conjecture is dual to the Lucchesi–Younger theorem [LY78], according to which every
connected graph has a packing C of cuts and a join J such that |C| = |J | .

Dags. Every edge of a graph belongs to a cut or to a directed circuit,4 but not both. In
particular, C ∩ E(Z) = ∅ for every cut C and every directed circuit Z , where E(Z) is the
set of edges of Z . As a consequence, we can restrict our attention to the joins that do not use
edges of directed circuits. Hence, conjecture 1 can be restricted to graphs that do not have
directed circuits, i.e., to dags (directed acyclic graphs).

2 Minimum cuts and maximum packings of joins

A cut C is minimum if there is no cut C ′ such that |C ′| < |C| . A packing P of joins is
maximum if there is no packing P ′ such that |P ′| > |P| . Woodall’s conjecture invites the
consideration of the following pair of optimization problems:

Problem 2.1 Find a minimum cut in a graph.

Problem 2.2 Find a maximum packing of joins in a graph.

There is a polynomial algorithm for problem 2.1 (it is a variant of the Max-flow Min-cut
algorithm). No polynomial algorithm is known for problem 2.2, but there is no evidence to
suggest that the problem is NP-hard.

It is convenient to have a notation for the size of the objects that the two problems deal with.
Given a graph G , let

ν(G)

denote the size of a maximum packing of joins of G and let

τ(G)

denote the size of a minimum cut of G . If G is disconnected then τ(G) = 0 (since ∅ is a cut)
and ν(G) = 0 (since there are no joins). If G has a cut then τ(G) and ν(G) are finite. If G
has no cut then τ(G) = ∞ and ν(G) = ∞ (since any number of copies of ∅ is a packing of
joins).

An immediately consequence of lemma 1.1 is that ν(G) ≤ τ(G) for every graph G . Conjec-
ture 1 can then be formulated as follows:

Conjecture 2 (Woodall) For every graph G one has ν(G) = τ(G) .

We say that a graph G satisfies Woodall’s conjecture if ν(G) = τ(G) . It is obvious that every
graph G with τ(G) ≤ 1 satisfies Woodall’s conjecture. It is less obvious that every graph

4 A circuit is directed if it has no reverse edges.
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G with τ(G) = 2 satisfies the conjecture [Sch03, p.968]. It is also known [FY87, Sch82] that
every dag with a single source vertex (or a single sink vertex) satisfies the conjecture.
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Figure 3: This graph has ν = 4 and τ = 4 and therefore satisfies Woodall’s conjecture.
The colors (and the numerical labels) indicate a packing of 4 joins. The graph is a dag. The
source vertices are indicated by circles and the sink vertices by squares.

3 Linear programs

Let J be the set of all the joins of a graph G = (V,E) and M the matrix indexed by J × E
whose rows are the characteristic vectors of the elements of J . Now consider the following
dual pair of linear programs:

maximize y1 subject to y ∈ RJ
+ and yM ≤ 1 , (1)

minimize 1x subject to x ∈ RE
+ and Mx ≥ 1 . (2)

(The “1” represents a vector whose elements are all equal to 1 . The vector is indexed by J
or by E , depending on the context.)

c
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a b c d e f g

1 − − − − 1 −
1 − − − − − 1
− 1 − − − 1 −
− 1 − − − − 1
− − 1 1 1 − −
1 − − − 1 − −
− 1 − − 1 − −
− − 1 − − 1 −
− − 1 − − − 1

a b c d e f g

1 1 1 − − − −
1 1 − 1 − 1 1
− − − − 1 1 1

Figure 4: The rows of the first matrix are the characteristic vectors of all the minimal joins
of the graph. The graph is a dag and has only one source and one sink. The rows of the
second matrix are the characteristic vectors of all the minimal cuts.

If “y ∈ {0, 1}J ” is substituted for “y ∈ RJ
+ ” in linear program (1), we have an integer

program that represents problem 2.2. Every feasible vector y in this program represents
a packing of joins and y1 is the size of the packing. The optimum value of this program
is ν(G) .
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If “x ∈ {0, 1}E ” is substituted for “x ∈ RE
+” in linear program (2), we have an integer

program that represents problem 2.1. Every x in this program is the characteristic vector of
a cut (since a cut is, precisely, a set of edges that intersects all the joins) and 1x is the size of
the cut. The optimum value of this program is τ(G) .

It follows from the Lucchesi–Younger theorem [LY78] that all the vertices of the polyhedron
{x : x ∈ RE

+ and Mx ≥ 1} are integer and therefore every solution of the linear program (2)
belongs to {0, 1}E . Hence, τ(G) = ν∗(G) , where ν∗(G) is the optimum value of linear
program (1).

4 Analogy with maximum flow

Woodall’s conjecture is similar to the Max-flow Min-cut theorem [Sch03, cap.10]. That the-
orem holds for any graph and any pair (s, t) of its vertices, and states that the size of a
maximum flow from s to t is equal to the size of a minimum semi-cut separating s from t .
Here, a flow is a set of directed5 paths from s to t with no edges in common. And a semi-cut
is any set of the form ∂+(X) such that s ∈ X ⊆ V (G)∖ {t} (the set X is not required to be a
source).
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Figure 5: A maximum flow (labels 1 and 2) and a minimum semi-cut (colored line).

The similarity between Woodall’s conjecture and the Max-flow Min-cut theorem is not per-
fect. In the theorem, the paths are directed and there are two fixed vertices. In the conjecture,
there are no fixed vertices, the paths (that represent joins) are not necessarily directed, and
only the forward edges of the paths are taken into account.

The Max-flow Min-cut theorem has a generalization in which each edge a has a capacity ca
in N , where N is the set {0, 1, 2, 3, . . .} of natural numbers. An edge a cannot be used more
than ca times by the flow and contributes ca to the size of each semi-cut that contains a . It
is hard to imagine that the Max-flow Min-cut theorem could be true without its capacitated
generalization being also true.

The similarity between the Max-flow Min-cut theorem and Woodall’s conjecture suggests
that one should study the capacitated generalization of the conjecture.

5 Capacitated generalization of Woodall’s conjecture

A capacitated graph is a pair (G, c) where G is a graph and c is a vector indexed by E(G)
with values in N ∪ {∞} . This vector attributes a capacity ca to each edge a of G . The edge

5 A path is directed if it has no reverse edges.
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a is null if ca = 0 and infinite if ca = ∞ . Attributing infinite capacity to an edge has the
same effect as contracting the edge to a single vertex.

The presence of infinite edges requires a redefinition of the terms “source”, “cut” and “join”.
A source of (G, c) is a source X of G such that ∂+(X) has no infinite edges. A cut of (G, c)
is any set of the form ∂+(X) such that X is a nontrivial source of (G, c) . In other words, a
cut of (G, c) is any cut of G having no infinite edges. A join of (G, c) is a set of edges that
intersects all the cuts of (G, c) and has no infinite edges.

The capacity of a cut C of (G, c) is the number c(C) :=
∑

a∈C ca . A cut C is minimum if
there is no cut C ′ of (G, c) such that c(C ′) < c(C) .

Since the capacity of an edge can be greater than 1 , it is natural to consider multisets of
joins, i.e., sets that may contain several copies of one and the same join, with each copy
contributing 1 to the size of the multiset. A multiset P of joins is disjoint in (G, c) if

|P(a)| ≤ ca

for each edge a , where P(a) is the multiset {J ∈ P : J ∋ a} . In other words, P is disjoint if
each edge a belongs to at most ca elements of P . (In particular, if ca = 0 then no element of
P contains a .)

A packing of joins in (G, c) is a disjoint multiset of joins in (G, c) . The following relation
between cuts and packings of joins generalizes lemma 1.1:

Lemma 5.1 In any capacitated graph (G, c) , for any packing P of joins and any
cut C ,

|P| ≤ c(C).

If |P| = c(C) then |J ∩ C| = 1 for each J in P and |P(a)| = ca for each a in C .

PROOF: Let P a packing of joins and C be a cut of (G, c) . For each element J of P there is
an edge a of C such that P(a) ∋ J . Hence,

|P| ≤
∑

a∈C |P(a)| ≤
∑

a∈C ca = c(C).

Suppose now that |P| = c(C) . Then the first “≤” holds as “=” and therefore |J ∩ C| = 1
for each J in P . The second “≤” also holds as “=”, whence |P(a)| = ca for each a in C .

The definition of parameters τ and ν must be adjusted to take into account the capacities of
the edges. We denote by

ν(G, c) and τ(G, c)

the size of a maximum packing of joins of (G, c) and the capacity of a minimum cut of (G, c)
respectively. Lemma 5.1 has the following immediate consequence: every capacitated graph
(G, c) satisfies the inequality

ν(G, c) ≤ τ(G, c). (3)

The corresponding generalization of Woodall’s conjecture (conjecture 2) is known as Ed-
monds–Giles’s conjecture [EG77]:

Conjecture 3 (Edmonds–Giles) Every capacitated graph (G, c) satisfies the
equality ν(G, c) = τ(G, c) .
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If τ(G, c) = 0 then ν(G, c) = 0 and therefore ν(G, c) = τ(G, c) . If τ(G, c) = 1 then {a ∈
E(G) : 0 < ca < ∞} is a join, hence ν(G, c) ≥ 1 , and so ν(G, c) = τ(G, c) by virtue of (3).
Therefore, the conjecture is true when restricted to the instances where τ(G, c) ≤ 1 .

Null edges. The capacitated generalization of the Max-flow Min-cut theorem (see sec-
tion 4) can be reduced to the original, uncapacitated, version. The reduction consists of
deleting the edges of capacity 0 and replacing each edge of capacity k ≥ 2 with k edges in
parallel. At first sight, it would seem that the same construction could reduce Edmonds–
Giles’s conjecture to Woodall’s conjecture. It is true that an edge a of capacity k ≥ 2 can to
be emulated by k copies of a in parallel. But the deletion of an edge can create new cuts6

and thereby change the instance of the problem. Hence, Edmonds–Giles’s conjecture does
not reduce to Woodall’s conjecture.

6 Counterexamples

The conjecture of Edmonds–Giles is false. A counterexample to the conjecture is any capac-
itated graph (G, c) such that ν(G, c) < τ(G, c) . The next sections will show several coun-
terexamples. They all have null edges and therefore do not affect conjecture 2.

We shall say that a capacitated graph (G, c) is good if there is no c such that (G, c) is a
counterexample. Conjecture 3 could be formulated by saying “every graph is good”. It is
known, for example, that

1. every dag with a single source vertex is good and
2. every source-sink connected7 dag is good.

The proof of 1 is analogous to the proof of the Max-flow Min-cut theorem mentioned in
section 4. This proof leads to a polynomial algorithm to compute τ(G, c) . The proof of 2 was
found by Schrijver [Sch82] and, independently, by Feofiloff and Younger [FY87].

7 The counterexample of Schrijver

Schrijver [Sch80] found the first counterexample to conjecture 3. The counterexample is
represented in figure 6 and will be denoted by (G1, c1) .

Fact 7.1 ν(G1, c1) = 1 and τ(G1, c1) = 2 .

PROOF: It is easy to check that τ(G1, c1) = 2 and that one of the two shores of each minimum
cut has only one vertex.

Let A1 be the set of active edges, i.e., edges whose capacity is 1 . Notice that the subgraph
induced by A1 consists of three paths, each of length 3 . These are the active paths of the
graph. We shall say that a cut is critical if it intersects each active path only once. Figure 7
shows that there are four critical cuts.

6 The deletion of an edge creates new cuts if and only if the edge is not transitive. An edge vw is transitive
if there exists a directed path from v to w in G− vw .

7 A dag is source sink connected if each source vertex is connected to each sink vertex by a directed path.
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Suppose, for a moment, that ν(G1, c1) ≥ 2 . Then A1 contains two mutually disjoint joins,
say J and K . The edges of each active path alternate between J and K , since each internal
vertex of each active path is the shore of a cut with exactly 2 active edges. In other words,
each active path follows the pattern (J,K, J) or the pattern (K, J,K) . In the aggregate of the
three active paths, these two patterns can be combined in only 4 different ways, as indicated
in figure 7. But, for each of the 4 combinations, either J or K does not intersect one of
the critical cuts. Hence, J or K is not a join, contrary to what we were assuming. This
contradiction shows that ν(G1, c1) < 2 . Since A1 is a join, ν(G1, c1) = 1 .

h
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Figure 6: Schrijver’s counterexample (G1, c1) to conjecture 3. The capacity vector c1 has
values in {0, 1} . The zero capacity edges are indicated by dashed lines; the remaining edges
are indicated by solid lines. The graph is a dag; the source vertices are indicated by circles
and the sink vertices by squares.

a b c d e f g h i

J K J J K J J K J
J K J J K J K J K
J K J K J K J K J
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Figure 7: Each row of the table shows a possible arrangement of two potential mutually
disjoint joins, J and K , in the capacitated graph (G1, c1) of figure 6. In each row of the table,
one of J and K does not intersects one of the four critical cuts indicated in the drawing.

Schrijver’s capacitated graph has the shape of a ring of length 2i , with i = 3 . The analo-
gous capacitated graphs with i = 5, 7, 9, . . . (see figure 8) are also counterexamples. But the
analogous capacitated graphs with i = 2, 4, 6, 8, . . . are not counterexamples.

7.1 Fractional packing of joins

The capacitated graph (G1, c1) in figure 6 has no packing of size 2 . Curiously, (G1, c1) has a
“fractional packing” of size 2 , as we show next.
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Figure 8: Generalization of (G1, c1) based on a ring of length 2 × 5 . (Figure copied from
Williams [Wil04].) This graph is a counterexample.

Let’s say that the four joins {a, c, d, f, h} , {d, f, g, i, b} , {g, i, a, c, e} and {b, h, e} are special.
Give weight 1

2
to each special join and weight 0 to all the other joins of G1 . Each edge of

capacity 1 in (G1, c1) belongs to exactly two of the special joins and each edge of capacity 0
belongs to no special join. Thus, the sum of the weights of all the joins that contain a given
edge a is no greater that the capacity of a . One can say then that the weighted set of special
joins is disjoint in (G1, c1) . The size of this weighted set is the sum of the weights of all the
joins, that is, 1

2
+ 1

2
+ 1

2
+ 1

2
= 2 . Summarizing: (G1, c1) has a “fractional packing” of size 2 .

This example illustrates a general phenomenon. For any capacitated graph (G, c) , consider
the dual pair of linear programs

maximize y1 subject to y ∈ RJ
+ and yM ≤ c (4)

minimize cx subject to x ∈ RE
+ and Mx ≥ 1 (5)

that generalize the programs (2) and (1) in section 3. It can be shown that ν∗(G, c) = τ(G, c) ,
where ν∗(G, c) is the optimal value of program (4) and τ(G, c) is the optimal value of pro-
gram (5).

8 The counterexamples of Cornuéjols and Guenin

For two decades, (G1, c1) was the only known counterexample for conjecture 3. In 2002,
Cornuéjols and his student Guenin [CG02] found two new counterexample, that we shall
denote by (G2, c2) and (G3, c3) . These counterexamples are represented in figures 9 and 10
respectively.

Fact 8.1 ν(G2, c2) = 1 and τ(G2, c2) = 2 .

Fact 8.2 ν(G3, c3) = 1 and τ(G3, c3) = 2 .

The proofs of these facts are similar to the proof of fact 7.1. Figure 11 shows the critical cuts
used in the proofs. (These are the cuts that intersect each active path only once.)

Some simple variations of (G2, c2) and (G3, c3) are also counterexamples. Williams [Wil04]
discusses several variations. For example, if u and x are the vertices 14 and 8 in figure 9
then (G2 − ux, c′2) is a counterexample, where c′2 is the restriction of c2 to the set of edges
of G2 − ux .
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Figure 9: Two drawings of the counterexample (G2, c2) by Cornuéjols and Guenin. Vec-
tor c2 has values in {0, 1} . The edges of null capacity are indicated by dashed lines; the
remaining ones, by solid lines. The graph is a dag.

Figure 10: The counterexample (G3, c3) of Cornuéjols and Guenin. The vector c3 has
values in {0, 1} . The edges of null capacity are indicated by dashed lines; the remaining
ones, by solid lines. The graph is a dag.

Figure 11: The first drawing indicates the four critical cuts of (G2, c2) . The second drawing
indicates the vertices of the positive shore of one of the critical cuts of (G3, c3) ; the other
three critical cuts are defined by symmetry.
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9 Minimal counterexamples

To make a catalog of counterexamples of Edmonds–Giles’s conjecture (conjecture 3), we can
limit ourselves to the counterexamples that, in some sense, do not “contain” other coun-
terexamples. We say that such counterexamples are ”minimal”.

To specify the conditions for a counterexample to “contain” another, we must introduce an
order relation between capacity vectors. Given capacity vectors c and c′ for a graph G , we
say that c′ < c if c′a ≤ ca for every edge a but c′a < ca for some edge a . The relation < is,
of course, transitive (i.e., if c′′ < c′ and c′ < c then c′′ < c) and anti-symmetric (i.e., if c′ < c
then c ̸< c′ ).

We must also introduce some auxiliary notation. For any capacitated graph (G, c) , denote
by I(G, c) and N(G, c) respectively the sets of all infinite and all null edges.

We can now define an inclusion relation between capacitated graphs. We say that a capaci-
tated graph (G′, c′) is contained in (G, c) if

i. V ′ = V and E ′ ⊂ E or
ii. V ′ = V and E ′ = E and I ′ ⊃ I or

iii. V ′ = V and E ′ = E e I ′ = I and N ′ ⊃ N or
iv. V ′ = V and E ′ = E and I ′ = I and N ′ = N and c′ < c ,

where V ′ , E ′ , I ′ and N ′ are abbreviations for V (G′) , E(G′) , I(G′, c′) and N(G′, c′) respec-
tively and where the abbreviations V , E , I and N are defined likewise for (G, c) . The
is-contained-in relation between capacitated graphs is transitive and anti-symmetric.

We can finally define the concept of minimal counterexample. We say that a counterexample
(G, c) is minimal if no counterexample (G′, c′) is contained in (G, c) .

If E(G) = ∅ or I(G, c) ∪N(G, c) = E(G) then (G, c) is not a counterexample. From this and
from the transitivity and anti-symmetry of the is-contained-in relation, every non minimal
counterexample contains a minimal counterexample.

We show next some examples to illustrate the concept:

1. The counterexample (G2, c2) of Cornuéjols–Guenin (figure 9) is not minimal, as
Williams [Wil04] observed. Indeed, if we denote by u e x the vertices 14 and 8 in fig-
ure 9 and denote by c′2 the restriction of c2 to the set of edges of G2−ux then (G2−ux, c′2)
is a counterexample, since ν(G2 − ux, c′2) = ν(G2, c2) < τ(G2, c2) = τ(G2 − ux, c′2) .
Moreover, (G2 − ux, c′2) is contained in (G2, c2) .

2. The counterexample (G′
1, c

′
1) in figure 8 contains the capacitated graph (G′′

1, c
′′
1) in fig-

ure 12. The latter is a counterexample because it is “equivalent” to (G1, c1) in figure 6.
Therefore, the counterexample (G′

1, c
′
1) is not minimal.

3. The counterexample (G1, c1) of Schrijver (see figure 6) is minimal, even if this is not
obvious.

10 Some properties of minimal counterexamples

Williams [Wil04, WG05] has shown that every minimal counterexample (G, c) has the fol-
lowing properties:

1. no null edge is transitive,
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Figure 12: Capacitated graph (G′′
1, c

′′
1) . (Compare with (G′

1, c
′
1) in figure 8.) The

gray bands indicate edges of infinite capacity. The orientation of these edges was
omitted since they can be traversed in any direction.

2. every active edge belongs to a minimum cut,
3. the edges of every directed circuit are infinite,
4. every minimum cut is peripheral,
5. every circuit has some null or infinite edge.

The technical terms in this list of properties have the following definitions: An edge vw is
transitive in (G, c) if there is a directed path from v to w in (G − vw, c′) , where c′ is the
restriction of c to the set of edges of G− vw . An edge a is active in (G, c) if it is neither null
nor infinite. A cut C is peripheral in (G, c) if, for one of the two shores of C , all the edges
that have both ends in that shore are infinite. (For example, C is peripheral if the positive
shore or the negative shore of C has only one vertex.)

The counterexamples (G1, c1) , (G2, c2) e (G3, c3) in figures 6, 9 and 10 have the properties
1 to 5, even though not all of them are minimal. The counterexample (G′′

1, c
′′
1) in figure 12

has several null transitive edges and is therefore not minimal.

Next, we give the proof of each property listed above.

10.1 Elimination of null transitive edges

The deletion of null transitive edges does not create new cuts and does not change the values
of the parameters ν and τ .

Proposition 10.1 Minimal counterexamples do not have null transitive edges.

PROOF: Let (G, c) be a capacitated graph and b a transitive null edge. Let G′ be the graph
G − b and c′ the restriction of c to the set of edges of G − b . Let v be the positive end and
w the negative end of b . Let B be the set of edges of a directed path from v to w in (G′, c′) .
(Keep in mind that, by definition, all the reverse edges of the path are infinite.)

Note that a cut of G intersects B if and only if it contains b . Moreover, every cut contains at
most one edge of B . Hence, G and G′ have the same set of sources and therefore (G, c) and
(G′, c′) also have the same set of sources. Moreover, for each source F , we have c′(C ′) =
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c(C) , where C ′ e C are the cuts associated with F in G′ and G respectively. So,

τ(G′, c′) = τ(G, c). (6)

Now let P be a packing of joins of (G, c) and P ′ a packing of joins of (G′, c′) . Since (G, c)
and (G′, c′) have the same set of sources, every join of (G′, c′) is also a join of (G, c) , and
therefore P ′ is a packing of joins of (G, c) . On the other hand, every join of (G, c) that does
not contain b is a join of (G′, c′) . Since cb = 0 , no join in P contains b , and therefore P is a
packing of joins of (G′, c′) . Hence,

ν(G′, c′) = ν(G, c). (7)

By virtue of (6) and (7), if (G, c) is a counterexample then (G′, c′) is also a counterexample.
Since V (G′) = V (G) and E(G′) ⊂ E(G) , the counterexample (G, c) is not minimal.

10.2 Active edges versus minimum cuts

We can reduce the capacity of an active edge that does not belong to a minimum cut. And
this operation does not invalidate a counterexample.

Proposition 10.2 In a minimal counterexample, every active edge belongs to a
minimum cut.

PROOF: Let (G, c) be a counterexample and a a active edge that belongs to no minimum
cut. Let c′ be the capacity vector defined by

c′a := ca − 1 and c′e := ce for each e ̸= a .

Of course I(G, c′) = I(G, c) and therefore (G, c′) and (G, c) have the same set of cuts. Of
course c′(C) = c(C)−1 for every cut C that contains a and c′(C) = c(C) for all the remaining
cuts. Since no minimum cut of (G, c) contains a , we have

τ(G, c′) = τ(G, c).

Now consider the joins. Let P ′ be a maximum packing of joins of (G, c′) . Since P ′ is also a
packing in (G, c) , we have

ν(G, c′) = |P ′| ≤ ν(G, c).

But (G, c) is a counterexample, and therefore ν(G, c′) ≤ ν(G, c) < τ(G, c) = τ(G, c′) , whence
(G, c′) is also a counterexample. Since N(G′, c′) ⊇ N(G, c) and c′ < c , the counterexample
(G, c) is not minimal.

10.3 Elimination of directed circuits

Contraction of the edges of directed circuits does no change the set of cuts. Hence, we can
attribute ∞ to the capacities of these edges.

Proposition 10.3 In any minimal counterexample, the edges of every directed
circuit are infinite.
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PROOF: Let (G, c) be a capacitated graph and O a directed circuit in (G, c) . (Reminder: by
definition, all the reverse edges of O are infinite.) Suppose ca < ∞ for some forward edge
a of O . Define a new capacity vector c′ as follows:

c′a := ∞ and c′e := ce for each e ̸= a .

Since O is directed in (G, c) , no cut of (G, c) contains an edge of O . Hence the set of cuts of
(G, c′) is identical to the set of cuts of (G, c) . Therefore

τ(G, c′) = τ(G, c).

No minimal join of (G, c) contains a , since no cut of (G, c) contains a . Hence (G, c′) and
(G, c) have the same minimal joins. Therefore, every packing of minimal joins in (G, c) is
also a packing in (G, c′) , and conversely. This shows that

ν(G, c′) = ν(G, c).

Suppose now that (G, c) is a counterexample. Then ν(G, c) < τ(G, c) , hence ν(G, c′) <
τ(G, c′) , and therefore (G, c′) is a counterexample. But I(c′) ⊃ I(c) , and therefore the coun-
terexample (G, c) is not minimal.

This proposition shows that every minimal counterexample is essentially a dag.

10.4 Elimination of nonperipheral minimum cuts

Any capacitated graph can be divided into two “independent” capacitated graphs along a
minimum nonperipheral cut.

Proposition 10.4 In any minimal counterexample, every minimum cut is pe-
ripheral.

PROOF: Let C be a minimum cut of a capacitated graph (G, c) . Let c′ be a capacity vector
defined as follows:

c′a :=
∞ if a has both ends in the negative shore of C,
ca otherwise.

(Informally, c′ describes the contraction of the negative shore of C to a vertex.) Define the
capacity vector c′′ similarly:

c′′a :=
∞ if a has both ends in the positive shore of C,
ca otherwise.

According to lemma 10.1 below, if (G, c) is a counterexample then (G, c′) or (G, c′′) is a
counterexample. On the other hand, if C is non peripheral then I(c′) ⊃ I(c) (since some
non infinite edge has both ends in the negative shore of C ) and, similarly, I(c′′) ⊃ I(c) .
Hence, if the counterexample (G, c) is minimal, the cut C must be peripheral.

To finish the proof of the proposition we must establish the following lemma:
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Lemma 10.1 Let C be a minimum cut of a capacitated graph (G, c) and let c′

and c′′ be the capacity vectors defined at the beginning of the proof of propo-
sition 10.4. If (G, c′) and (G, c′′) are not counterexamples then (G, c) is not a
counterexample.

PROOF: On one hand, C is a cut of (G, c′) (since C has no infinite edges) and c′(C) = c(C) ,
whence τ(G, c′) ≤ c′(C) = c(C) = τ(G, c) . On the other hand, τ(G, c′) ≥ τ(G, c) since the set
of cuts of (G, c′) is part of the set of cuts of (G, c) and the capacity of a cut in (G, c′) is equal
to capacity of that cut in (G, c) . Hence

τ(G, c′) = τ(G, c)

and therefore C is a minimum cut of (G, c′) . An analogous reasoning shows that τ(G, c′′) =
τ(G, c) and C is a minimum cut of (G, c′′) .

1. Suppose that (G, c′) is not a counterexample, i.e., that ν(G, c′) = τ(G, c′) . Let P ′ be a
maximum packing of joins of (G, c′) . Of course |P ′| = ν(G, c′) = τ(G, c′) . Since τ(G, c′) =
c′(C) , we have |P ′| = c′(C) . Now lemma 5.1 (see section 5) implies that

|P ′(a)| = ca for each a in C and (8)
|J ′ ∩ C| = 1 for each J ′ in P ′. (9)

Suppose next that (G, c′′) is not a counterexample and let P ′′ be a maximum packing of joins
of (G, c′′) . A reasoning analogous to that of the previous paragraph shows that

|P ′′(a)| = ca for each a in C and (10)
|J ′′ ∩ C| = 1 for each J ′′ in P ′′. (11)

2. By virtue of (8) and (9), for each nonnull edge a of C , there are elements J ′
a,1, . . . , J

′
a,ca of

P ′ such that
J ′
a,i ∩ C = {a} (12)

for i = 1, . . . , ca . By virtue of (10) and (11), there are elements J ′′
a,1, . . . , J

′′
a,ca of P ′′ such that

J ′′
a,i ∩ C = {a} for i = 1, . . . , ca . Let

Ja,i := J ′
a,i ∪ J ′′

a,i (13)

for each a in C and each i in {1, . . . , ca} . Given any pair (a, i) , let J ′ , J ′′ and J be abbre-
viations of J ′

a,i , J ′′
a,i and Ja,i respectively. Our next task is to show that J is a join of (G, c) ,

i.e., that J ∩B ̸= ∅ for every cut B of (G, c) .

3. Let B be a cut of (G, c) and X the positive shore of B . Let Y be the positive shore of C . If
X ∩Y = ∅ or X ⊇ Y then B is a cut of (G, c′′) , hence J ′′∩B ̸= ∅ , and therefore J ∩B ̸= ∅ . If
X ∪Y = V or X ⊆ Y then B is a cut of (G, c′) , hence J ′∩B ̸= ∅ , and therefore J ∩B ̸= ∅ . In
the remaining cases, due to (9), (11), (12) and (13), lemma 10.2 below shows that J ∩ B ̸= ∅ .
So, J is a join of (G, c) .

4. Let P be the multiset of all the joins Ja,i such that a is a nonnull edge of C and i belongs
to {1, . . . , ca} . For each edge e of G , if the positive end of e is in the positive shore of C then

|P(e)| ≤ ce

since P ′ is a packing in (G, c′) and c′e = ce . Similarly, if the negative end of e is in the
negative shore of C then |P(e)| ≤ ce . Hence, P is a packing in (G, c) .
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5. It follows from the previous paragraph that ν(G, c) ≥ |P| . But |P| = |P ′| = |P ′′| = τ(G, c) ,
and therefore ν(G, c) ≥ τ(G, c) . Hence, (G, c) is not a counterexample.

To finish the proof of the lemma, we must establish the following consequence of the sub-
modularity of ∂+ :

Lemma 10.2 (submodularity) Let ∂+(Y ) be a cut of a capacitated graph (G, c) .
Let J be a set of edges that intersects all the cuts ∂+(X) of (G, c) for which

X ∪ Y = V or X ∩ Y = ∅ or X ⊇ Y or X ⊆ Y .

If |J ∩ ∂+(Y )| = 1 then J is a join of (G, c) .

PROOF: Let X be a nontrivial source of (G, c) such that X ∪ Y ̸= V and X ∩ Y ̸= ∅ . To
prove that J is a join of (G, c) , it is enough to show that J ∩ ∂+(X) ̸= ∅ .

Clearly X ∪Y and X ∩Y are nontrivial sources of G . Hence, ∂+(X ∪Y ) and ∂+(X ∩Y ) are
cuts of G . These cuts do not have infinite edges, and are therefore cuts of (G, c) .

Notice now that the union of ∂+(X ∪Y ) with ∂+(X ∩Y ) is equal to the union of ∂+(X) with
∂+(Y ) and that the intersection of ∂+(X ∪ Y ) with ∂+(X ∩ Y ) is equal to the intersection of
∂+(X) with ∂+(Y ) . Hence, the sum |∂+(X ∪ Y )|+ |∂+(X ∩ Y )| is equal to the sum |∂+(X)|+
|∂+(Y )| . It follows then that

|J ∩ ∂+(X ∪ Y )|+ |J ∩ ∂+(X ∩ Y )| = |J ∩ ∂+(X)|+ |J ∩ ∂+(Y )| . (14)

Since X ∪Y ⊇ Y and X ∩Y ⊆ Y , the hypotheses of the lemma ensure that the value of each
term on the left of (14) is at least 1 . Since the value of the second term on the right of (14) is
exactly 1 , the value of the first term on the right must be at least 1 . Hence, J ∩ ∂+(X) ̸= ∅ .

10.5 Elimination of active circuits

Williams [Wil04] has shown that in any minimal counterexample the subgraph induced by
the set of active edges is a forest:

Proposition 10.5 No minimal counterexample has a circuit of active edges.

PROOF: Let (G, c) be a counterexample and O a circuit whose edges are active. We show
next that (G, c) is not minimal.

Let e be a minimum capacity edge in O and let k := ce . Adjust the notation so that e is a
forward edge of O . Let c′ be the following capacity vector:

c′a :=
ca − k if a is forward in O,
ca + k if a is reverse in O,
ca otherwise.

Of course c′e = 0 and therefore N(c′) ⊃ N(c) . Hence, if (G, c′) is a counterexample then
(G, c) is not a minimal counterexample, as we promised to show. In what follows, we deal
with the case where (G, c′) is not a counterexample.
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The sets of cuts of (G, c′) and (G, c) are of course identical. Therefore, the sets of joins of
(G, c′) and (G, c) are identical. So, we may simply say “cut” and “join”, without specifying
“of (G, c′)” or “of (G, c)”. Notice that every cut has the same number of forward edges and
reverse edges of O . Hence,

c′(C) = c(C) (15)

for every cut C . Therefore,
τ(G, c′) = τ(G, c). (16)

Let P ′ be a maximum packing of joins of (G, c′) . Since (G, c′) is not a counterexample, |P ′| =
τ(G, c′) . Let J0 be an element of P ′ . Lemma 10.3 below shows that c′(C)−|J0 ∩ C| ≥ |P ′|−1
for every cut C . So,

c′(C)− |J0 ∩ C| ≥ τ(G, c′)− 1

for every cut C . By virtue of (15) and (16), this inequality holds with c in place of c′ , i.e.,

c(C)− |J0 ∩ C| ≥ τ(G, c)− 1 (17)

for every cut C . Of course J0 has no null edges of (G, c′) and therefore no null edges of
(G, c) .

Now that we have a join J0 satisfying (17), we can discard c′ and P ′ . Define vector c′′ as
follows: for each edge a ,

c′′a :=
ca − 1 if a ∈ J0 and
ca otherwise. (18)

Since J0 has no null edges, c′′ is a capacity vector. The sets of cuts of (G, c′′) and (G, c) are
identical and therefore the sets of joins of (G, c′′) and (G, c) are also identical. So, we may
drop the specifications “of (G, c′′)” and “of (G, c)” and say simply “cut” and “join”. For
every cut C , we have c′′(C) = c(C) − |J0 ∩ C| , whence c′′(C) ≥ τ(G, c) − 1 due to (17).
Therefore,

τ(G, c′′) ≥ τ(G, c)− 1.

Let P ′′ be a maximum packing of joins of (G, c′′) . Suppose for a moment that (G, c′′) is not a
counterexample. Then |P ′′| = ν(G, c′′) = τ(G, c′′) . Now consider the multiset P := P ′′∪{J0}
and observe that

|P| = |P ′′|+ 1 = τ(G, c′′) + 1 ≥ τ(G, c)− 1 + 1 = τ(G, c).

Notice also that P is a packing of (G, c) , since |P(a)| = |P ′′(a)| + 1 ≤ c′′a + 1 = ca for each
a in J0 and |P(a)| = |P ′′(a)| ≤ c′′a = ca for each a not in J0 . Hence, ν(G, c) ≥ |P| ≥
τ(G, c) and therefore (G, c) is not a counterexample. This contradicts our choice of (G, c)
at the start of the proof. Therefore, contrary to what we assumed for a moment, (G, c′′)
is a counterexample. Since I(G′′, c′′) = I(G, c) and N(G′′, c′′) ⊇ N(G, c) and c′′ < c , the
counterexample (G, c) is not minimal.

To finish the proof of the proposition, we must establish the following lemma:

Lemma 10.3 For any packing P of joins of (G, c) , any element J0 of P , and any
cut C , the inequality c(C)− |J0 ∩ C| ≥ |P| − 1 holds.
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PROOF: Since P is a packing in (G, c) , we have |{J ∈ P : J ∋ a}| ≤ ca for each a in C .
Hence,

c(C) =
∑

a∈C ca

≥
∑

a∈C |{J ∈ P : J ∋ a}|
=

∑
J∈P |{a ∈ C : a ∈ J}|

=
∑

J∈P |J ∩ C| .

Therefore, c(C) ≥ |J0 ∩ C|+
∑

J∈P∖{J0} |J ∩ C| ≥ |J0 ∩ C|+ |P ∖ {J0}| , since |J ∩ C| ≥ 1

for each J . It follows that c(C)− |J0 ∩ C| ≥ |P| − 1 .
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