
REALIZATIONS OF AFFINE LIE ALGEBRAS

1. Verma type modules

Let a be a Lie algebra with a Cartan subalgebra H and root system ∆. A closed
subset P ⊂ ∆ is called a partition if P ∩ (−P ) = ∅ and P ∪ (−P ) = ∆. If a is
finite-dimensional then every partition corresponds to a choice of positive roots in
∆ and all partitions are conjugate by the Weyl group. The situation is different
in the infinite-dimensional case. If a is an affine Lie algebra then partitions are
divided into a finite number of Weyl group orbits (cf. [JK], [F2]).

Given a partition P of ∆ we define a Borel subalgebra bP ⊂ a generated by
H and the root spaces aα with α ∈ P . All Borel subalgebras are conjugate in
the finite-dimensional case. A parabolic subalgebra is a subalgebra that contains
a Borel subalgebra. If p is a parabolic subalgebra of a finite-dimensional a then
p = p0 ⊕ p+ where p0 is a reductive Levi factor and p+ is a nilpotent subalgebra.
Parabolic subalgebras correspond to a choice of a basis π of the root system ∆
and a subset S ⊂ π. A classification of all Borel subalgebras in the affine case
was obtained in [F2]. In this case not all of them are conjugate but there exists
a finite number of conjugacy classes. These conjugacy classes are parametrized by
parabolic subalgebras of the underlined finite-dimensional Lie algebra. Namely, let
p = p0 ⊕ p+ a parabolic subalgebra of G containing a fixed Borel subalgebra b of
G. Define

Bp = p+ ⊗ C[t, t−1]⊕ p0 ⊗ tC[t]⊕ b⊕ Cc⊕ Cd.
For any Borel subalgebra B of G̃ there exists a parabolic subalgebra p of G such
that B is conjugate to Bp.

When p coincides with G, i.e. p+ = 0, the corresponding Borel subalgebra BG is

the standard Borel subalgebra defined by the choice of positive roots in G̃. Another
extreme case is when p0 = H. This corresponds to the natural Borel subalgebra
Bnat of G̃ considered in [JK].

Given a parabolic subalgebra p of G let λ : Bp → C be a 1-dimensional repre-

sentation of Bp. Then one defines an induced Verma type G̃-module

Mp(λ) = U(G̃)⊗U(Bp) C.

The module MG(λ) is the classical Verma module with highest weight λ [K]. In
the case of natural Borel subalgebra we obtain imaginary Verma modules studied
in [F1]. Note that the module Mp(λ) is U(p−)-free, where p− is the opposite
subalgebra to p+. The theory of Verma type modules was developed in [F2]. It
follows immediately from the definition that, unless it is a classical Verma module,
Verma type module with highest weight λ has a unique maximal submodule, it
has both finite and infinite-dimensional weight spaces and it can be obtained using
the parabolic induction from a standard Verma module M with highest weight λ
over a certain affine Lie subalgebra. Moreover, if the central element c acts non-
trivially on such Verma type module then the structure of this module is completely
determined by the structure of module M , which is well-known ([F2], [C1]).
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2. Boson type realizations of Verma modules

2.1. Finite-dimensional case. Consider first a finite-dimensional case. Let G =
LieG be a simple finite-dimensional Lie algebra with a Cartan decomposition G =
n− ⊕H ⊕ n+. Take a Borel subalgebra b = n− ⊕H. Let b = LieB, n± = LieN±.
Consider the flag variety X = G/B. Then X has a decomposition into open
Schubert cells: X = ∪w∈WC(w), where C(w) = B+wB−/B−, W = N(T )/T is
the Weyl group and T = B+/N+. The codimension of C(w) equals the length of
w. The subgroup N+ acts on X, and the largest orbit U of this action can be
identified with proper N+. From Section 3 we know that the Lie algebra G can be
mapped into vector fields on X and hence on U . Thus G can be embedded into the
differential operators on U of degree ≤ 1. Since N+ ' n+ via the exponential map,
we conclude that N+ can be identified with an affine space A|∆+|. Therefore, the
ring of regular functions OU on U is just a polynomial ring in m = |∆+| variables
and G has an embedding into the Weyl algebra Am. In particular, OU is a G-
module. In fact, a G-module OU is isomorphic to a contragradient module M∗(0)
with trivial highest weight.

Example 2.1. Let G = sl(2) with a standard basis e, f, h, [e, f ] = h, [h, e] = 2e,
[h, f ] = −2f . Let b− = span{f, h}. Then G = SL2(C) and the variety X = G/B−
can be identified with the projective line P1 which has a big cell U = A1. Denote
OU = C[x]. Then one computes

e 7→ d/dx, h 7→ −2xd/dx, f 7→ −x2d/dx.

Hence, M∗(0) ' C[x] as a G-module (see Example 10.2.1 in [FZ]).

In order to obtain a geometrical realization of Verma modules one needs to
consider the minimal 1-point orbit of N+ on X.

Choosing another orbit of N+ will give us a twisted Verma module. Twisted
Verma modules are parametrized by the elements of the Weyl group and have the
same character as corresponding Verma modules.

Remark 2.2. Consider again example of sl(2). Another way to get a realization
of Verma module M(0) on Fock space C[x] is the following. Apply to sl(2) an
automorphism which is a composition of two anti-involutions: e ↔ f , h is fixed,
and x ↔ d/dx. Then it gives the following realization in second order differential
operators: f 7→ x, h 7→ −2xd/dx, e 7→ −x(d/dx)2.

2.2. Affine case. Consider now the loop algebra Ĝ = G⊗C[t, t−1]. Sometimes it is

more convenient to consider a completion of Ĝ substituting the Laurent polynomials
by the Laurent power series (for a geometric interpretation, but it is irrelevant to
us. So jusy ignore the series). We will denote this Lie algebra by G((t)). The
corresponding loop group will be denoted by G((t)). Fix a Cartan decomposition
G = n− ⊕H⊕ n+ and consider a Borel subalgebra b± = n± ⊕H. Denote

n̂± = (n± ⊗ 1)⊕ (G⊗ t±C[[t±]]),

b̂± = n̂± ⊕ H ⊗ C[[t]]. Let N̂± and B̂± be Lie groups corresponding to n̂± and

b̂± respectively. Consider a flag variety X = G((t))/B̂− which has a structure

of a scheme of infinite type. As in the finite-dimensional case X splits into N̂+-
orbits of finite codimension, parametrized by the affine Weyl group. There is an
analogue of a big cell Û in X which is a projective limit of affine spaces, and
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hence, the ring of regular functions OU on U is a polynomial ring in infinitely many
variables. Thus G((t)) acts on it by differential operators providing a realization
for the contragradient Verma module with zero highest weight. Global sections
of more general N̂+-equivariant sheaves on X will produce an arbitrary highest

weight. Other N̂+-orbits inX correspond to twisted contragradient Verma modules.
A striking difference with the finite-dimensional case is that we can not obtain
standard Verma modules this way. They can be obtained considering N̂+-orbits on

G((t))/B̂+.

3. First free field realization

In the previous section we considered the case of classical Verma modules for
affine Lie algebras. Consider the completion bnat in G((t)) of the natural Borel
subalgebra n− ⊗ C[t, t−1] ⊕ H ⊗ C[t−1]. If N− is the Lie group corresponding to
n− then Bnat = N−((t))H[[t−1]] is the Borel subgroup corresponding to bnat. Let
X = G((t))/Bnat. The difference with the classical case is that X is not a scheme.
This structure is called the semi-infinite manifold [FZ], [V1]. It can be viewed as
the space of maps from SpecC((t)) to the finite-dimensional flag variety G/B−. We

can consider the N̂+-orbits on the semi-infinite manifold and, in particular, N+((t))
can be viewed as an analogue of the big cell U in G/B−.

Example 3.1. ([FZ], 10.3.6). For simplicity we will only consider the case G =
sl(2). The corresponding semi-infinite manifold can be thought as P1((t)). The big

cell A1 ⊂ P1 can be lifted to a big cell A1((t)) = {
(
x(t) −1

)t
}, which coincides with

the space of functions F ' C((t)) on the punctured disc with the chosen coordinate
t on the disc. Denote

en = e⊗ tn, hn = h⊗ tn, fn = f ⊗ tn, n ∈ Z.

Then the corresponding representation by vector fields on F is the following

en 7→ ∂xn, hn 7→ −2
∑
m∈Z

xm∂xn+m, fn 7→ −
∑
m,k∈Z

xmxk∂xn+m+k.

Let V = C[xm,m ∈ Z]. It is clear that the differential operators corresponding
to fn are not well-defined on V (they take values in some formal completion of V ).
One way to deal with this problem is to apply the anti-involutions:

en ↔ fn, hn ↔ hn; xn ↔ ∂xn, n ∈ Z

which gives the following formulas:

fn 7→ ∂xn, hn 7→ −2
∑
m∈Z

xn+m∂xm, en 7→ −
∑
m,k∈Z

xn+m+k∂xm∂xk.

These formulas define the first free field realization of ŝl(2) in the polynomial ring
C[xm,m ∈ Z]. This module is, in fact, a quotient M(0) of the imaginary Verma
module with trivial highest weight by a submodule generated by the elements hn⊗1,
n < 0.

A boson type realization of the imaginary Verma module for ŝl(2) with a non-
trivial central action was obtained by Bernard and Felder in the Fock space C[xm,m ∈
Z]⊗ C[yn, n > 0]:
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fn 7→ xn, hn 7→ −2
∑
m∈Z

xm+n∂xm + δn<0y−n + δn>02nK∂yn + δn,0J,

en 7→ −
∑
m,k∈Z

xk+m+n∂xk∂xm+
∑
k>0

yk∂x−k−n+2K
∑
m>0

m∂ym∂xm−n+(Kn+J)∂x−n.

This module is irreducible if and only if K 6= 0. If we let K = 0 and quotient
out the submodule generated by ym,m > 0 then the factormodule is irreducible if
and only if J 6= 0 (cf. [F1]). This construction has been generalized for all affine
Lie algebras in [C2] providing a realization of imaginary Verma modules.

4. Second free field realization

There is another way to correct the formulas obtained in Example 6.1, which
leads to the construction of Wakimoto modules [W].

Denote an = ∂xn, a∗n = x−n and consider formal power series

a(z) =
∑
n∈Z

anz
−n−1, a∗(z) =

∑
n∈Z

a∗nz
−n.

Series a(z) and a∗(z) are called formal distributions. It is easy to see that [an, a
∗
m] =

δn+m,0 and all other products are zero. The formulas in Example 6.1 can be rewrit-
ten as follows:

e(z) 7→ a(z), h(z) 7→ −2a∗(z)a(z), f(z) 7→ −a∗(z)2a(z),

where g(z) =
∑
n∈Z gnz

−n−1 for g ∈ {e, f, h}. This realization is not well-defined
since the annihilation and creation operators are in a wrong order. It becomes
well-defined after the application of two anti-involutions described above. Then the
formulas read:

f(z) 7→ a(z), h(z) 7→ 2a(z)a∗(z), f(z) 7→ −a(z)a∗(z)2,

where an and a∗n have the following meaning now an = xn, a∗n = −∂x−n. This is
our quotient of the imaginary Verma module.

A different approach was suggested by Wakimoto ([W]) who introduced the
normal ordering. Denote

a(z)− =
∑
n<0

anz
−n−1, a(z)+ =

∑
n≥0

anz
−n−1

and define the normal ordering as follows

: a(z)b(z) := a(z)−b(z) + b(z)a+(z).

Let now

an = { xn, n < 0
∂xn, n ≥ 0,

a∗n = { x−n, n ≤ 0
−∂x−n, n > 0,

bm = { m∂ym, m ≥ 0
y−m, m < 0.

Here [an, a
∗
m] = [bn, bm] = δn+m,0.

Theorem 4.1. ([W]). The formulas

c 7→ K, e(z) 7→ a(z), h(z) 7→ −2 : a∗(z)a(z) : +b(z),

f(z) 7→ − : a∗(z)2a(z) : +K∂za
∗(z) + a∗(z)b(z)
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define the second free field realization of the affine sl(2) acting on the space
C[xn, n ∈ Z]⊗ C[ym,m > 0].

These modules are celebrated Wakimoto modules. They were defined for an ar-
bitrary affine Lie algebra by Feigin and Frenkel [FF1], [FF2]. Generically Wkimoto
modules are isomorphic to Verma modules.

5. Intermediate Wakimoto modules

So far we considered two extreme cases of Borel subalgebras in the affine Lie
algebras: standard and natural. But if the rank of G is more than 1 then the corre-
sponding affine algebra has other conjugacy classes of Borel subalgebras. It should
be possible to associate to each such Borel subalgebra a boson type realization by
rearranging the annihilation and creation operators as it was done in the first and

the second free field realizations. For affine Lie algebras of type A
(1)
n associated

with sl(n + 1) this has been accomplished in [CF], where a series of boson type
realizations was constructed depending on the parameter 0 ≤ r ≤ n. If r = n
this construction coincides with the construction of Wakimoto modules. On the
other hand when r = 0 the obtained representation gives a Fock space realization
described in [C2].

Let 0 ≤ r ≤ n, γ ∈ C∗, k = γ2 − (r + 1). Let Hi, Ei, Fi, i = 1, . . . , n be
the standard basis for G = sl(n + 1). Denote Xm = tm ⊗ X for X,Y ∈ G and
m ∈ Z. Let {α1, . . . , αn} be a basis for ∆+, the positive set of roots for G, such
that Hi = α̌i and let ∆r be the root system with basis {α1, . . . , αr} (∆r = ∅, if
r = 0) of the Lie subalgebra Gr = sl(r + 1). Denote by Hr a Cartan subalgebra of

Gr spanned by Hi, i = 1, . . . , r. Set H0 = 0, H̃r = Hr ⊕ Cc⊕ Cd.
Denote by Eim, Fim, Him, i = 1, . . . , n, m ∈ Z, the generators of the loop algebra

corresponding to G.
Let â be the infinite dimensional Heisenberg algebra with generators aij,m, a∗ij,m,

and 1, 1 ≤ i ≤ j ≤ n and m ∈ Z, subject to the relations

[aij,m, akl,n] = [a∗ij,m, a
∗
kl,n] = 0,

[aij,m, a
∗
kl,n] = δikδjlδm+n,01,

[aij,m,1] = [a∗ij,m,1] = 0.

This algebra acts on C[xij,m|i, j,m ∈ Z, 1 ≤ i ≤ j ≤ n] by

aij,m 7→

{
∂/∂xij,m if m ≥ 0, and j ≤ r
xij,m otherwise,

a∗ij,m 7→

{
xij,−m if m ≤ 0, and j ≤ r
−∂/∂xij,−m otherwise.

and 1 acts as an identity. Hence we have an â-module generated by v such that

aij,mv = 0, m ≥ 0 and j ≤ r, a∗ij,mv = 0, m > 0 or j > r.

Let âr denote the subalgebra generated by aij,m and a∗ij,m and 1, where 1 ≤ i ≤
j ≤ r and m ∈ Z. If r = 0, we set âr = 0.

Let ((αi|αj)) be the Cartan matrix for sl(n+ 1) and let

Bij := (αi|αj)(γ2 − δi>rδj>r(r + 1) +
r

2
δi,r+1δj,r+1).
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Let b̂ be the Heisenberg Lie algebra with generators bim, 1 ≤ i ≤ n, m ∈ Z, 1,
and relations [bim, bjp] = mBijδm+p,01 and [bim,1] = 0.

For each 1 ≤ i ≤ n fix λi ∈ C and let λ = (λ1, . . . , λn). Then the algebra b̂ acts
on the space C[yi,m|i,m ∈ N∗, 1 ≤ i ≤ n] by

bi0 7→ λi, bi,−m 7→ ei · ym, bim 7→ mei ·
∂

∂ym
for m > 0

and 1 7→ 1. Here

ym = (y1m, · · · , ynm),
∂

∂ym
=

(
∂

∂y1m
, · · · , ∂

∂ynm

)
and ei are vectors in Cn such that ei ·ej = Bij where · means the usual dot product.

For any 1 ≤ i ≤ j ≤ n, we define

a∗ij(z) =
∑
n∈Z

a∗ij,nz
−n, aij(z) =

∑
n∈Z

aij,nz
−n−1

and

bi(z) =
∑
n∈Z

binz
−n−1.

Then

[bi(z), bj(w)] = Bij∂wδ(z − w), [aij(z), a
∗
kl(w)] = δikδjl1δ(z − w),

where

δ(z − w) = z−1
∑
n∈Z

( z
w

)n
.

is the formal delta function.
Set

aij(z)+ = aij(z), aij(z)− = 0

a∗ij(z)+ = 0, a∗ij(z)− = a∗ij(z),

if j > r.
Denote C[x] = C[xij,m|i, j,m ∈ Z, 1 ≤ i ≤ j ≤ n] and C[y] = C[yi,m|i,m ∈

N∗, 1 ≤ i ≤ n].

Remark 5.1. Note that

: aij(z)a
∗
kl(z) :=

∑
m∈Z

(∑
n∈Z

: aij,na
∗
kl,m−n :

)
z−m−1

is well defined on C[x]⊗ C[y])[[z, z−1]] for all l > r or if l ≤ r and j ≤ r.

Let br be the Borel subalgebra of G̃ corresponding to a parabolic subalgebra of
G whose semisimple part of the Levi factor is Gr.

Fix λ̃ ∈ H̃∗ and let Mr(λ̃) be the Verma type module associated with br and λ̃.
When r = n this module is a standard Verma module while in the case r = 0 we
get an imaginary Verma module. Denote by vλ̃ the generator of Mr(λ̃).

Let λ̃r = λ̃|H̃r
. The moduleMr(λ̃) contains a G̃r-submoduleM(λ̃r) = U(G̃r)(vλ̃)

which is isomorphic to the standard Verma module for G̃r. If λ̃(c) 6= 0 then the sub-

module structure of Mr(λ̃) is completely determined by the submodule structure

of M(λ̃r) [C1], [FS].
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Define

Ei(z) =
∑
n∈Z

Einz
−n−1, Fi(z) =

∑
n∈Z

Finz
−n−1, Hi(z) =

∑
n∈Z

Hinz
−n−1,

1 ≤ i ≤ n.

Theorem 5.2. ([CF]). Let λ ∈ H∗ and set λi = λ(Hi). The generating functions

Fi(z) 7→ aii +
∑n
j=i+1 aija

∗
i+1,j ,

Hi(z) 7→ 2 : aiia
∗
ii : +

∑i−1
j=1

(
: ajia

∗
ji : − : aj,i−1a

∗
j,i−1 :

)
+
∑n
j=i+1

(
: aija

∗
ij : − : ai+1,ja

∗
i+1,j :

)
+ bi,

Ei(z) 7→: a∗ii

(∑i−1
k=1 ak,i−1a

∗
k,i−1 −

∑i
k=1 akia

∗
ki

)
: +
∑n
k=i+1 ai+1,ka

∗
ik

−
∑i−1
k=1 ak,i−1a

∗
ki − a∗iibi −

(
δi>r(r + 1) + δi≤r(i+ 1)− γ2

)
∂a∗ii,

c 7→ γ2 − (r + 1)

define a representation on the Fock space C[x]⊗ C[y]. In the above aij, a
∗
ij and bi

denotes aij(z), a∗ij(z) and bi(z) respectively.

This boson type realization of s̃l(n+1) depends on the parameter 0 ≤ r ≤ n and
defines a module structure on the Fock space C[x]⊗ C[y] which is called an inter-

mediate Wakimoto module. Denote it by Wn,r(λ, γ) and consider a G̃r-submodule

W = U(G̃r)(vλ̃) ' Wr,r(λ, γ) of Wn,r(λ, γ). Then W is isomorphic to the Waki-
moto module Wλ(r),γ̃ ([FF2]), where λ(r) = λ|Hr

, γ̃ = γ2 − (r + 1). Since generi-
cally Wakimoto modules are isomorphic to Verma modules, intermediate Wakimoto
modules provide a realization for generic Verma type modules.
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