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Abstract. A new type of signature scheme is proposed. It consists of two phases.
The first phase is performed off-line, before the message to be signed is even known.
The second phase is performed on-line, once the message to be signed is known, and
is supposed to be very fast. A method for constructing such on-line/off-line signature
schemes is presented. The method uses one-time signature schemes, which are very
fast, for the on-line signing. An ordinary signature scheme is used for the off-line stage.

In a practical implementation of our scheme, we use a variant of Rabin’s signature
scheme (based on factoring) and DES. In the on-line phase all we use is a moderate
amount of DES computation and a single modular multiplication. We stress that the
costly modular exponentiation operation is performed off-line. This implementation is
ideally suited for electronic wallets or smart cards.

Key words. Digital signatures, Integer factorization, RSA, DES, One-time signature
schemes, Error-correcting codes, Chosen message attack.

1. Introduction

Informally, in a digital signature scheme, each userU publishes apublic keywhile
keeping secret asecret key. U ’s signature of a messagem is a valueσ , depending on

∗ A preliminary version appeared in theProceedings of Crypto89. Shimon Even was supported by the fund
for the Promotion of Research at the Technion.

35



36 S. Even, O. Goldreich, and S. Micali

m and his secret key, such thatU (using his secret key) can quickly generateσ and
anyone can quickly verify the validity ofσ , usingU ’s public key. However, it is hard
to forgeU ’s signatures without knowledge of his secret key. We stress that signing is a
noninteractive process involving only the signer, and that arbitrarily many messages can
be signed, with one pair of keys.

Many signature schemes are known. Based on various intractability assumptions, sev-
eral schemes have been proven secure even against chosen message attack [8], [7], [1],
[14], [21]. Unfortunately, in these schemes, the signing process is not sufficiently fast for
some practical purposes. Furthermore, even more efficient schemes like RSA [20] and
Rabin’s scheme of [17] (which achieve a “lower level” of security) are considered too
slow for many practical applications (e.g., electronic wallets [5], [4]). In particular, these
signature schemes require performing modular exponentiation with a large modulus as
part of the signing process, and this in turn requires many modular multiplications. Fur-
thermore, these costly operations can start only once the message to be signed becomes
known. Consequently, these signature schemes will become much more attractive if only
a few (say, two or three) modular multiplications need to be performed once the message
becomes known, while the more costly operations can be preprocessed. This leads to the
notion of an on-line/off-line signature scheme.

A New Notion

To summarize, in many applications signatures have to be produced very fast once the
message is presented. However, slower precomputations can be tolerated, provided that
they do not have to be performed on-line (i.e., once the message to be signed is handed to
the signer and while the verifier is waiting for the signature). This suggests the notion of
anon-line/off-linesignature scheme, in which the signing process can be broken into two
phases. The first phase, performedoff-line, is independent of the particular message to be
signed; while the second phase is performedon-line, once the message is presented. We
are interested in on-line/off-line signature schemes in which the off-line stage is feasible
(though relatively slow) and both on-line signing and verification are fast.

A General Construction

We present a general construction transforming an ordinary digital signature scheme to
an on-line/off-line one. This is done by properly combining three main ingredients:

1. An (ordinary) signature scheme.
2. A fastone-timesignature scheme (i.e., a signature scheme known to be unforgeable,

provided it is used to sign a single message).
3. A fast collision-free hashing scheme (i.e., a hashing scheme for which it is infeasible

to find two strings which hash to the same value).

The essence of the construction is to use the ordinary signature scheme to sign (off-line) a
randomly constructed instance of the information which enables one-time signature, and
later to sign (on-line) the message using the one-time signature scheme (which is typically
very fast). The hashing scheme is most likely to be used in practice for compressing long
messages into shortertags, but it is not essential for the basic construction.
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We present several practical implementations of the general scheme. In these imple-
mentations we use a modification of Rabin’s signature scheme [17] in the role of the
ordinary signature scheme, and DES [15] as a basis for a one-time signature scheme.
The security of these implementations is based on the intractability of factoring large
integers and the assumption that DES behaves like a random cipher. The only compu-
tations (possibly) required in the on-line phase of the signing process are applications
of DES. Verification requires some DES computations (but not too many) and a sin-
gle modular multiplication. The costly modular computation, of extracting square roots
modulo a large (e.g., 512-bit) composite integer with known factorization, is performed
off-line. A reasonable choice of parameters enables the signing of 100-bit tags1 using
only 200 on-line DES computations (which can be performed much faster than expo-
nentiation).

One-Time Signature Schemes

One-time signature schemes play a central role in our construction of on-line/off-line
signature schemes. This is due to the fact that they seem to offer a much faster sign-
ing process than ordinary signature schemes. The disadvantage of one-time signature
scheme, namely, the fact that the signing key can only be used once, turns out to be
irrelevant for our purposes.

A general method for constructing one-time signatures was proposed in the late 1970s
by Rabin [16] and several variants of it have appeared since (see [12]). The basic idea
is to use a one-way function to map blocks of the (uniformly chosen) private key into
corresponding blocks of the public key and sign a message (from a prefix-free code) by
revealing the corresponding blocks of the private key. A rigorous analysis of the security
of the basic scheme is implicit in [1], [14], and [21]. In this paper we present a compre-
hensive analysis of the security of several variants of the basic scheme. Furthermore, we
present new variants which improve over the known constructions in several respects. In
particular, we observe that signing error-corrected encodings of messages requires the
forger to come-up with signatures of strings which are very different from the strings for
which it has obtained signatures via a chosen message attack.2 This observation can be
used to enhance the security of any signature scheme, but its effect is most noticeable in
the context of the one-time signature schemes mentioned above.

Security

To discuss, even informally, the issue of security, we need some terminology. Achosen
message attackis an attempt by an adversary to forge a user’s signature of some mes-
sage, after obtaining from the user signatures of messages of the adversary’s choosing;
in this scenario the user behaves like an oracle which answers the adversary’s queries.
The adversary’s choice of (message) queries may depend on the user’s public key and
the previous signatures the adversary has received. Arandom message attackis an

1 Such a tag is the result of compressing the document to signed, using a collision-free hashing scheme. See
above.

2 We remark that error-correcting codes have been used in a somewhat related setting by Naor [13].



38 S. Even, O. Goldreich, and S. Micali

attempt of an adversary to forge a signature of a user after getting from him signatures to
messages which are randomly selected in the message space.3 (These messages are se-
lected independently of the adversary’s actions.) In both cases (chosen and random mes-
sage attacks), security means the infeasibility of forging a signature to any message for
which the user has not supplied the signature (i.e.,existential forgeryin the terminology
of [8]).

A sufficient condition for an on-line/off-line signature scheme, as described above, to
withstand chosen message attack is that both signature schemes used in the construction
(i.e., ingredients 1 and 2 above) withstand such attacks. However, in particular imple-
mentations it suffices to require that these underlying schemes only withstand random
message attack. This is demonstrated in the following theoretical result, where we use
a signature scheme secure against random message attack, both in the role of the ordi-
nary signature scheme and in order to implement a one-time signature scheme. One-way
hashing is not used at all. The resulting scheme is secure against chosen message attack.
Hence we get:

Theorem. Digital signature schemes that are secure against chosen message attack
exist if and only if signature schemes secure against random message attack exist.

We remark that the above theorem can be derived from Rompel’s work by observing
that the existence of a signature scheme secure against known message attack implies
the existence of one-way functions, while the latter implies the existence of signature
schemes which are secure against a chosen message attack [21]. However, this alternative
proof is much more complex and is obtained via a far more impractical construction.
We remark that the preliminary version of our work [6] (which includes a proof of the
above theorem), predates Rompel’s work [21].

Organization

Basic definitions concerning signature schemes are presented in Section 2. In Section 3
the general construction of an on-line/off-line signature scheme is presented. The con-
struction of a one-time signature scheme is addressed in Section 4. Concrete implemen-
tations of the general scheme, which utilize different constructions of one-time signature
schemes, are presented in Section 5. We conclude with a proof of the theorem stated
above (Section 6).

2. Some Basic Definitions

Following the informal presentation in the Introduction, we recall the following defini-
tions due to Goldwasseret al. [8].

3 Random message attack is a special case of the so-calledknown message attackin which the adversary is
given signatures to messages chosen arbitrarily by the user.
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Signature Schemes

Definition 1 (Signature Schemes). A signature scheme is a triplet,(G, S,V), of prob-
abilistic polynomial-time algorithms satisfying the following conventions:

• Algorithm G is called thekey generator. There is a polynomial,k(·), called thekey
length, so that on input 1n, algorithmG outputs a pair(sk, vk) so thatsk, vk ∈
{0, 1}k(n). The first element,sk, is called thesigning keyand the second element is
the (corresponding)verification key.
• Algorithm S is called thesigning algorithm. There is a polynomial,m(·), called

the message length, so that on input a pair(sk,M), wheresk ∈ {0, 1}k(n) and
M ∈ {0, 1}m(n), algorithmSoutputs a string called asignature(of messageM with
signing keysk). The random variableS(sk,M) is sometimes written asSsk(M).
• Algorithm V is called theverification algorithm. For everyn, every(sk, vk) in the

range ofG(1n), everyM ∈ {0, 1}m(n), and everyσ in the range ofSsk(M), it holds
that

V(M, vk, σ ) = 1.

(It may also be required thatV(M, vk, σ ) = 1 implies thatσ is in the range of
Ssk(M) for a signing keysk corresponding to the verification keyvk. However,
this intuitively appealing requirement is irrelevant to the real issues—in view of the
security definitions which follow.)

Note thatn is a parameter which determines the lengths of the keys and the messages
as well as the security of the scheme as defined below. We emphasize that the above
definition does not say anything about the security of the signature scheme, which is the
focus of the subsequent definitions. We remark that signature schemes are defined to
deal with messages of fixed and predetermined length (i.e.,m(n)). Messages of different
lengths are dealt with by one of the standard conventions. For example, shorter messages
can always be padded to the desired length, and longer messages can be broken into many
pieces each bearing an ID relating the piece to the original message (e.g., thei th piece
will contain a header reading that it is thei th piece out oft pieces of a message with a
specific (randomly chosen) ID number). Alternatively, longer messages can be “hashed
down” to the desired length using a collision-free hashing function. For more details see
Section 3.3.

Types of Attacks

Goldwasseret al. discuss several types of attacks ranging in severity from a totally
nonadaptive one (in which the attacker only has access to the verification key) up to the
so-called chosen message attack (in which the attacker gets the verification key and may
get signatures to many messages of its choice). We remark that a chosen message attack
is generally considered to be a satisfactory model of the most serious plausible attacks
to which a properly used real-life signature scheme may be subjected. In this paper we
discuss the chosen message attack as well as a special (and hence weak) form ofknown
messageattack (which we callrandom message attack).
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Definition 2 (Types of Attacks).

• A chosen message attackon a signature scheme(G, S,V) is a probabilistic oracle
machine that on input (a parameter) 1n and (a verification key)vk also gets oracle
access toSsk(·), where(sk, vk) is in the range ofG(1n). The (randomized) oracle
Ssk answers a queryq ∈ {0, 1}m(n) with the random variableSsk(q) = S(sk,q).
(For simplicity we assume that the same query is not asked twice.)
• A random message attackon a signature scheme(G, S,V) is a probabilistic oracle

machine that on input 1n andvk also gets independently selected samples from the
distribution(Rn, Ssk(Rn)), whereRn is a random variable uniformly distributed in
{0, 1}m(n) and(sk, vk) is in the range ofG(1n).

The above definition does not refer to the complexity of the attacking machines. In
our results we explicitly specify the running times of the attackers as well as the number
of queries that they make (resp. number of signatures that they receive).

Success of Attacks

Goldwasseret al. also discuss several levels of success of the (various) attacks, ranging
from total forgery/breaking (i.e., ability to forge a signature for every message) up to
existential forgery/breaking (i.e., ability to forge a signature for some message).

Definition 3 (Success of Attacks). Consider an attack on input parameter 1n and a ver-
ification keyvk.

• We say that an attack has resulted intotal forgery if it outputs a programπ for a
time-bounded4 universal machine,U , so thatV(M, vk,U (π,M)) = 1 holds, for
everyM ∈ {0, 1}m(n).
• We say that an attack has resulted inexistential forgeryif it outputs a pair(M, σ ), so

thatm ∈ {0, 1}m(n) andV(M, vk, σ ) = 1, andM is different from all messages for
which a signature has been handed over (by the signing oracle) during the attack.

The above definition does not refer to the success probability of the attacking ma-
chines. In our results we explicitly specify the success probability of the attackers. The
probability is taken over all possible(sk, vk) pairs according to the distribution defined
by G(1n), and over all internal coin flips of the attacking machines and the answering
oracles.

Security Definitions

Security definitions for signatures schemes are derived from the above by combining
a type of an attack with a type of forgery and requiring that such attacks, restricted to
specified time bounds, fail to produce the specified forgery, except for with a specified
probability. For example, consider the following standard definition.

4 The time bound can be fixed to a specific polynomial. Using padding arguments, it can be shown that the
choice of the polynomial, as long as it is greater than, say,n2, is immaterial (see [10]).
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Definition 4 (Standard Definition of Secure Signature Schemes). A signature scheme is
said to besecureif every probabilistic polynomial-time chosen message attack succeeds
in existential forgery with negligible probability.

(A function f : N 7→ N is called negligible if, for every polynomialp(·) and all
sufficiently largen’s, it holds that f (n) < 1/p(n).)

Notice that there is nothing sacred in the choice of polynomials as specification for the
time bound or success probability. This choice is justified and convenient for a theoretical
treatment of the various notions. Yet, for deriving results concerning real-life/practical
schemes the more cumbersome alternative of specifying feasible time bounds and no-
ticeable success probabilities should be preferred. Furthermore, to be meaningful for
real-life/practical systems, security assertions should be made with respect to a fixed
machine model which does not allow speeding-up the computation on fix input lengths
by making the program more complex. Thus, whenever we refer to running time, it is
with respect to the following model.

Definition 5 (Machine Model). All algorithms are considered as programs for a fixed
universal RAM. Therunning time of an algorithm(on a particular input) is the sum of
the actual running time and the length of the program. Therunning-time complexity of
a computational task(on inputs of lengthn) is the running time of the best algorithm
achieving the task for inputs of lengthn.

An alternative complexity bound that may be used is the size of boolean circuits.5

In contrast to any realistic model of computation, we ignore the small overhead created
when a program passes control to a subroutine and things of that sort.

Conditional Security

Since establishing the security of a signature scheme (as defined above) amounts to
proving lower bounds on some computational tasks, one can momentarily only hope
for conditional security assertions. Typically, such assertions relate the security of the
constructed scheme to the security of the underlying scheme or primitive. Such a relation
can be expressed (as done in the Introduction) by saying thatif the underlying scheme
is secure in some sense, then the constructed scheme is secure in some other sense.
An alternative formulation, adopted in most of this paper, is the contrapositive. That
is, if the construction can be broken within certain parameters(i.e., time bound and
success probability),then the underlying scheme can be broken within certain(related)
parameters. Actually, our results are stronger (which is indeed desirable): the latter
breaking algorithm (i.e., for the underlying scheme) consists of a fixed algorithm that
uses the former breaking algorithm as a subroutine. We stress that such assertions are to
be understood as relating to the machine model of Definition 5.

5 We prefer the above model since it is more appealing from a practical point of view. We stress that our
proofs do not take advantage of the nonuniformity of the model.
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3. The General Construction

We first define digital signature schemes with less-stringent security properties. Namely,

Definition 6. A one-time signature schemeis a digital signature scheme which can
be used to sign a single message legitimately. A one-time signature scheme issecure
against known (resp. chosen) message attack (of certain time complexity and success
probability) if it is secure against such attacks which are restricted to a single query.

Notice the analogy with a one-time pad, which allows private messages to be sent
securely as long as the secret pad is not used twice. An early version of a one-time
signature was suggested by Rabin [16]. It required an exchange of messages between the
signer and signee. Schemes which avoid such an exchange were suggested by Lamport,
Diffie, Winternitz, and Merkle; see [12]. In particular, a one-time signature scheme can
be easily constructed using any one-way function. For further details see Section 4.

We belive that the importance of one-time signature schemes stem from their simplicity
and the fact that they can be implemented very efficiently. Our construction demonstrates
that one-time signatures can play an important role in the design of very powerful and
useful signature schemes.

As our construction uses both a one-time signature scheme and an ordinary signature
scheme, we always attach the term “one-time” to terms such as “signing key” and
“verification key” associated with the one-time signature scheme. Hopefully, this will
help to avoid confusion.

3.1. The Basic Scheme

Let (G, S,V) denote an ordinary signature scheme and let(g, s, v) denote a one-time
signature scheme. Below we describe our general on-line/off-line signature scheme. In
our description we assume that the security parameter isn.

Key Generation

The key generation for our on-line/off-line scheme coincides with the one of the ordinary
scheme. Namely, the signer runsG on input 1n to generate a pair of matching verification
and signing keys(VK,SK). He announces his verification key,VK, while keeping in secret
the corresponding signing key,SK.

Off-Line Computation

The off-line phase consists of generating a pair of one-time signing/verifying keys, and
producing an ordinary signature of the one-time verification key. Both one-time keys
and the signature are stored for future use in the on-line phase. We stress that the off-line
phase is performed independently of the message (to be later signed). Furthermore, the
message may not even be determined at this stage. Following is a detailed description of
the off-line phase. The signer runs algorithmg on input 1n to select randomly a one-time
verification keyvk and its associated one-time signing keysk. (This pair of one-time keys
is unlikely to be used again.) He then computes the signature ofvk, using the ordinary
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signing algorithmSwith the keySK. Namely,

6
def= SSK(vk).

The signer stores the pair of one-time keys,(vk, sk), as well as the “precomputed sig-
nature,”6.

On-Line Signing

The on-line phase is performed once a message to be signed is presented. It consists of re-
trieving a precomputed unused pair of one-time keys, and using the one-time signing key
to sign the message. The corresponding one-time verification key and the precomputed
signature to the one-time verification key are attached to produce the final signature.
Namely, to sign messageM , the signer retreives from memory the precomputed signa-
ture6, and the pair(vk, sk). He then computes a one-time signature

σ
def= ssk(M).

The signature ofM consists of the triplet(vk, 6, σ ).

Verification

To verify that the triple(vk, 6, σ ) is indeed a signature ofM with respect to the verifi-
cation keyVK, the verifier acts as follows. First, he uses algorithmV to check that6 is
indeed a signature of (the one-time verification key)vk with respect to the verification-
keyVK. Next, he checks, by runningv, thatσ is indeed a signature ofM with respect to the
one-time verification keyvk. Namely, the verification procedure amounts to evaluating
the following predicate:

VVK(vk, 6) ∧ vvk(M, σ ).

Key, Message, and Signature Lengths

We denote byk(·) and m(·) the key and message length functions for the ordinary
signature scheme. Letl : N 7→ N be a function bounding the length of the signature in
the ordinary signature scheme, as a function of the parametern (rather than as a function
of the message length,m(n)). Similarly, we denote the corresponding functions for the
one-time signature scheme byk1(·), m1(·), andl1(·), and the functions for the resulting
on-line/off-line scheme byk∗(·), m∗(·), andl ∗(·). Then the following equalities hold:

k∗(n) = k(n),

m∗(n) = m1(n),

m(n) = k1(n).

In other words, the key length of the on-line/off-line scheme equals the one of the ordinary
scheme, whereas the message length for the on-line/off-line scheme equals the one of the
one-time scheme. In addition, the ordinary scheme must allow signatures to messages
of length equal to the key length of the one-time scheme. Efficiency improvements can
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be obtained by using collision-free hashing functions. This allows us to setm∗(n) = n
and to deal with longer messages by hashing, as well as allowing us to setm(n)¿ k1(n)
and to permit the one-time verification key to be hashed before it is signed. For details
see Section 3.3.

Finally, we remark that the length of the signatures produced by the resulting scheme
grows linearly with the key length of the one-time scheme, even in the case where hashing
is used! Namely,

l ∗(n) = k1(n)+ l (n)+ l1(n).

3.2. Security

The basic on-line/off-line signature scheme can be proven secure against adaptive cho-
sen message attacks provided that both the original schemes (i.e., the ordinary scheme
(G, S,V) and the one-time scheme(g, s, v)) are secure against chosen message attack.
As usual in complexity-based cryptography, the above statement is not only valid in
asymptotic terms but also has a concrete interpretation which is applicable to specific
key lengths. Due to the practical nature of the current work, we take the uncommon
approach of making this concrete interpretation explicit.6

Lemma 1. Suppose that Q, T : N 7→ N and ε: N 7→ R are functions so that the
resulting on-line/off-line signature scheme can be existentially broken, via a chosen
Q(·)-message attack, in time T(·) with probabilityε(·). Then, for every n∈ N, at least
one of the following holds:

• The underlying one-time signature scheme can be existentially broken, via a chosen
(single) message attack, with probability at leastε(n)/2Q(n) and within time

T(n)+ tG(n)+ (tg(n)+ ts(n)+ tS(n)) · Q(n),

where tA(n) is a bound on the time complexity of algorithm A.
• The underlying ordinary signature scheme can be existentially broken, via a chosen

Q(n)-message attack, with probability at leastε(n)/2 and within time

T(n)+ (tg(n)+ ts(n)) · Q(n).

The lemma is to be understood in the contrapositive. That is, if both the underlying
(ordinary and one-time) signature schemes cannot be broken within the parameters
specified in the conclusion of the lemma, then the on-line/off-line scheme cannot be
broken within the parameters specified in the hypothesis.

Proof. We denote the resulting on-line/off-line signature scheme by(G∗, S∗,V∗).
Suppose thatF∗ is a probabilistic algorithm which in timeT(·) forges signatures of
(G∗, S∗,V∗), with success probabilityε(n), via a chosenQ(n)-message attack. In the
rest of the discussion we fixn and consider the forged signature output byF∗ (at the end

6 This clearly results in a more cumbersome statement, but we believe that in the context of the current
paper the price is worth paying.
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of its attack). This forged signature either uses a one-time verification key,vk, which
has appeared in a previous signature (supplied by the signer under the chosen message
attack), or uses a one-time verification keyvk which has not appeared previously. Thus,
one of the following two cases occurs.

Case1: With probability at leastε(n)/2, algorithm F∗ forms a new signature using a
one-time verification key used in a previous signature. In this case we use algorithmF∗

to construct an algorithm,F1, forging signatures under the one-time signature scheme
(g, s, v). Loosely speaking, algorithmF1 operates as follows. It creates an instance of
the ordinary signature scheme and many additional instances of the one-time signature
scheme. For all these instances, algorithmF1 will be able to produce signatures. Algo-
rithm F1 will use the attacked instance of the one-time signature scheme in one of its
responses toF∗. In caseF∗ halts with a forged signature in which the attacked instance
of the one-time scheme appears, then algorithmF1 has succeeded in its attack. Details
follow.

On inputvk and access to a chosen (single) message attack on the corresponding
signing operatorssk, algorithmF1 proceeds as follows. AlgorithmF1 runsG to obtain
a pair of corresponding keys(SK,VK) for the ordinary signature scheme. Without loss
of generality, assume thatF∗ always asksQ(n) queries (i.e., messages to be signed).
Algorithm F1 uniformly selects an integeri ∈ {1, 2, . . . , Q(n)}, and invokes algorithm
F∗ on inputVK. (Motivating remark: algorithmF1 will use the very instance it attacks
in the i th message to be signed forF∗.)

Next, F1 suppliesF∗ with signatures to messages ofF∗’s choice. The signature to
the j th message, denotedMj , is produced as follows. Ifj 6= i , algorithm F1 runs
g to generate a pair of one-time keys,7 denoted(skj , vkj ), and answers with the triplet
(vkj , SSK(vkj ), sskj , (Mj )). Note thatF1 has no difficulty doing so since, having produced
SKandskj , it knows the required signing keys. In the case ofj = i , algorithmF1 uses its
the single message attack, which it is allowed, to obtain a signatureσ to the messageMi

(relative to the verification keyvk). Usingσ and the ordinary signing keySK, algorithm
F1 supplies the required signature(vk, SSK(vk), σ ).

Eventually, with probability at leastε(n)/2, algorithmF∗ halts yielding a signature
to a new message, denotedM , in which the one-time verification key is identical to one
of the one-time verification keys which has appeared before. With probability 1/Q(n),
conditioned on the event that such a forged signature is output byF∗, the forged signature
ouput byF∗ uses the same one-time verification key used in thei th signature, namely,
the one-time verification keyvk. SinceM 6= Mi , algorithm F1 obtains (and indeed
outputs) a signature to a new message relative to the one-time verification keyvk.
Hence, the attack on the one-time signature scheme succeeds with probability at least
ε(n)/2Q(n). We observe that the time complexity of algorithmF1 can be bounded by
tG(n)+ T(n)+ Q(n) · (tg(n)+ ts(n)+ tS(n)).

Case2: With probability at leastε(n)/2, algorithm F∗ forms a new signature using a
one-time verification key not used in previous signatures. In this case we use algorithm

7 We remark that it is very unlikely thatvkj equalsvk. Yet, if this happens, then algorithmF1 can useskj

(which it knows) in order to forge signatures, relative tovk (= vkj ), to any message.
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F∗ to construct an algorithm,F2, forging signatures under the ordinary signature scheme
(G, S,V). Loosely speaking, algorithmF2 operates as follows. It creates many instances
of the one-time signature scheme. For each of these instances, algorithmF2 will be able
to produce signatures. AlgorithmF2 will use the chosen message attack on the ordinary
signature scheme to obtain signatures to these one-time verification keys and, using the
corresponding one-time signing keys,F2 will be able to supplyF∗ with signatures to
messages of its choice. IfF∗ halts with a forge signature in which a new instance of the
one-time scheme appears, then algorithmF2 has succeeded in its attack. Details follow.

On input VK (and access to chosen message attack on the corresponding signing
operatorSSK), algorithmF2 invokesF∗ on inputVKand suppliesF∗ with signatures to
messages ofF∗’s choice as follows. To supply a signature to thej th message, denoted
Mj , algorithm F2 starts by runningg to generate a pair of one-time keys, denoted
(skj , vkj ). Algorithm F2 then uses the chosen message attack to obtain an ordinary
signature, denoted6j , to vkj (relative to the ordinary verification keyVK) and replies
with the triplet(vkj , 6j , sskj (Mj )). (Note thatF2 has no difficulty producingsskj (Mj )

since it knows the required signing key.)
Eventually, with probability at leastε(n)/2, algorithmF∗ yields a signature to a new

message which contains anSSK-signature of a one-time verification key which has not
appeared so far. In this case, algorithmF2 obtains (and indeed outputs) a signature to
a new message relative to the ordinary verification keyVK. Hence, the attack on the
ordinary signature scheme succeeds with probability at leastε(n)/2. We observe that
the time complexity of algorithmF2 can be bounded byT(n) + Q(n) · (tg(n) + ts(n))
and that it asksQ(n) queries. The lemma follows.

Remark. The chosen message attacks (on the underlying schemes) described in the
above proof, are in fact oblivious of the corresponding verification key of the attacked
scheme. In Case 1 the chosen message attack (on the one-time schemessk) requires
obtaining a signature underssk to a message,Mi , that is chosen by the adversary which
does not seevk before. In Case 2 the chosen message attack (on the ordinary scheme
SSK) requires obtaining signatures underSSK to a sequence of randomly and indepen-
dently generated one-time verification keys. Thus, the resulting on-line/off-line signature
scheme resists general chosen message attacks (which may depend on the corresponding
verification key), even if the underlying ordinary and one-time signature schemes only
resist chosen message attacks which are oblivious of the corresponding verification key.

Recalling the standard definition of security (i.e., Definition 4), we get:

Theorem 1. The resulting on-line/off-line signature scheme is secure(in the standard
sense) provided that the underlying ordinary and one-time signature schemes are secure.

3.3. Efficiency Considerations

The off-line computation, in our scheme, reduces to generating an instance of the one-
time signature scheme and computing the signature of a single string (specifically, the
one-time verification key) under the ordinary signature scheme. The on-line phase of the
signing process merely requires applying the signing process of the one-time signature
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scheme. Hence, our on-line/off-line scheme is advantageousfor the signeronly if the
signing algorithms of one-time signature schemes are much faster than signing algorithms
of ordinary schemes. Indeed, this seems to be the case if the one-time signature schemes
based on one-way functions, described in Section 4, are used and especially if DES is
used as a one-way function.

In addition, if the verification procedure in the ordinary signature scheme (and in the
one-time signature scheme) is much faster than signing in the ordinary scheme, then the
entire on-line (signing and verification) process is accelerated. This condition (i.e., much
faster verification) is satisfied in Rabin’s scheme as well as in RSA when used with a
small verification exponent (e.g., 3). Hence, attractive implementations of the general
scheme can be presented—see Section 5.

A major factor affecting the efficiency of the above scheme is the length of the strings to
which the ordinary and one-time signing algorithms are applied. A standard practice used
to reduce the time required for signing (as well as verification) is to use very fast hashing
functions which map long strings into much shorter ones. These hashing functions have
to be secure in the sense that it is hard to form collisions; namely, find two strings which
are mapped by the function to the same image.8 Assuming the intractability of factoring
(alternatively of extracting discrete logarithms), such functions can be constructed [3],
[8]. Yet, in practical implementations, much faster hashing schemes may be used. A
typical example is the MD5 recently suggested by Rivest [18], [19].

The security of a scheme which uses hashing can be proven in a way analogous to the
proof of Lemma 1. That is, two cases are considered: the case that a forged signature
is formed using a hashed value which has appeared in previous signatures, and the case
that such a hashed value does not appear in the forged signature. In the first case we
derive an algorithm which contradicts the collison-free property of the hashing function,
whereas in the second case we proceed as in the proof of Lemma 1.

3.4. A Remark

Most ordinary signing algorithms are based on the computational difficulty of integer
factorization. Should some moderately faster factoring algorithm come about, then longer
ordinary verification and secret keys will be necessary. This will cause a significant
slowdown in the off-line stage, but not in the on-line stage, provided one-time signature
schemes are based on other computational assumptions (as suggested above). Thus, our
construction may become even more useful if ordinary signature schemes will become
slower due to increasing security requirements.

4. One-Time Signature Schemes Based on One-Way Functions

One-time signatures schemes play a central role in our construction of on-line/off-line
signature schemes. A general method for constructing one-time signatures has been

8 Actually, a lower level of security suffices for our purposes. Specifically, it suffices that the function is
one-way hashing; namely, given a preimage to the function it is infeasible to find a different preimage which is
mapped, under the hashing function, to the same image [14]. It is known that one-way hashing functions can
be constructed using any one-way function [14], [21], but this construction is very far from being practical.
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known for a relatively long time; see [16] and [12]. Here we present a comprehensive
analysis of the security of several variants of the basic method as well as new variants
which improve over the known constructions in several respects.

4.1. The Basic Construction

We start with thebasic construction(of one-time signature schemes based on one-way
functions). Let f be a one-way function; namely, we assume thatf is polynomial-time
computable but it is infeasible to invertf with noticeable success probability (taken over
the distribution resulting from applyingf to a uniformly chosen preimage). The signing
key consists of a sequence ofm pairs ofn-bit-long strings,(x0

1, x1
1), . . . , (x

0
m, x1

m), and
the verification key consists of the result of applying the one-way functionf to each of
these 2m strings. That is, the verification key consists of the sequence

( f (x0
1), f (x1

1)), . . . , ( f (x0
m), f (x1

m)),

where f is the one-way function. To sign the messageσ1 · · · σm, the signer reveals
xσ1

1 , . . . , x
σm
t , and the signee appliesf to the revealed strings and checks whether they

match the corresponding strings in the verification key. Loosely speaking, this scheme
is secure since otherwise we get a way to invert the one-way functionf . Further details
will become obvious later.

4.2. Shortening the Lengths of Keys and Signatures

A somewhat unappealing property of the basic construction is that it uses very long keys
and signatures. Additional ideas can be used to reduce these lengths. We start with an
idea which is attributed in [12] to Winternitz. The idea is to use onlym+ 1 strings, each
of lengthn, instead of the 2m strings used above. The signing key consists of a sequence
of m + 1 (n-bit-long) strings,x0, x1, . . . , xm, and the verification key consists of the
sequencef m(x0), f (x1), . . . , f (xm), where f t (x) denotes the string resulting fromx
by applying f successivelyt times. To sign the messageσ1 · · · σm, the signer reveals

thexi ’s for whichσi = 1 as well asy
def= f 6 σi (x0). Verification is done in the obvious

manner (i.e., applyingf to the suppliedxi ’s and applying f m−6 σi to y). Intuitively,
the zero-component serves as an “accumulator” for the rest. To prove that the signature
scheme is secure we need to assume thatf is one-way in a strong sense defined below.

Another idea is to break the message to be signed into blocks and to use each block as an
indicator determining how many timesf has to be applied to each of the individual strings
in the signing key so as to form the signature. Note that in the previous construction,
depending on the bits of the message to be signed, the functionf is applied between
m and zero times tox0, and either once or not at all to eachxi , for i 6= 0. A precise
description, which combines both ideas, follows.

Construction 1 (Based on Accumulator and Block Partition). Lett,m: N 7→ Nbe two
polynomial-time computable integer functions so that 1≤ t (n) = O(logn), 1≤ m(n) =
poly(n), andt (n) dividesm(n), for all n ∈ N. Let f : {0, 1}∗ 7→ {0, 1}∗ be a polynomial-
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time computable function. We consider the following one-time signature scheme with
message length functionm(·):
• Key generation: On input 1n, the key generator uniformly selectsx0, x1, . . . , xm/t ∈
{0, 1}n, wherem

def= m(n) and t
def= t (n). The signing key consists of thesexi ’s,

whereas the verification key is

ȳ
def= f (2

t−1)·(m/t)(x0), f 2t−1(x1), . . . , f 2t−1(xm/t ).

• Signing: To sign a messageM ∈ {0, 1}m, its t-bit-long blocks,σ1, . . . , σm/t , are
interpreted as integers9 and the signature is

f 6
m/t
i=1σi (x0), f 2t−1−σ1(x1), . . . , f 2t−1−σm/t (xm/t ).

• Verification: The components of the signature vector are subjected to the corre-
sponding number of applications off and the result is compared with the ver-
ification key. Namely, to verify that(z0, z1, . . . , zm/t ) constitutes a signature to
M = (σ1, . . . , σm/t ) relative to the verification keȳy = (y0, y1, . . . , ym/t ), one
computes

f (2
t−1)·(m/t)−6m/t

i=1σi (z0), f σ1(z1), . . . , f σm/t (zm/t )

and compares the resulting vector to the vectorȳ.

In what follows we refer to the keys and signatures as having 1+ (m/t) components
numbered by integers from 0 tom/t .

In case the functionf is one-to-one, the security of Construction 1 can be proven
assuming thatf is one-way. Otherwise, a seemingly stronger assumption is required.
This assumption refers to the infeasibility of performing a task which we call quasi-
inverting.

Definition 7 (Quasi-Inverting). Letf : {0, 1}∗ 7→ {0, 1}∗ be a polynomial-time com-
putable function. Given an image,y, the task ofquasi-inverting f on y is to find an
x and ani = poly(|y|) so that f i+1(x) = f i (y). (For i = 0, the standard notion of
inverting is regained.)

We stress that in casef is one-to-one, quasi-invertingf is equivalent to the traditional
notion of inverting f . Otherwise,f −1 f does not necessarily equal the identity function,
and consequentlyf i+1(x) = f i (y) does necessarily mean thatx is an inverse ofy under
f (i.e., f (x) = y). Yet, we believe that quasi-inverting is infeasible for many natural
one-way functions.10 Here and below, we refer to the complexity of quasi-invertingf on

9 That is, the string 0t is interpreted as 0, the string 0t−11 as 1, etc.
10 We remark that, using the ideas of Levin [10], it follows that the existence of pseudorandom generators

imply the existence of polynomial-time computable functions for which quasi-inverting is infeasible. Using
the result of Hastadet al. [9], it follows that one-way functions exist if and only if polynomial-time computable
functions for which quasi-inverting is infeasible exist. However, the latter result is obtained via an impractical
construction and thus the equivalence just stated is of little relevance to this paper.
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input taken from one of the distributionsf m(Un), wherem= poly(n) andUn denotes a
random variable uniformly distributed over{0, 1}n.

Lemma 2. Suppose that T: N 7→ Nandε: N 7→ Rare functions so that the above one-
time signature scheme can be existentially broken,via a chosen(single) message attack, in
time T(·)with probabilityε(·).Then, for every n∈ Nand some i≤ m(n)/t (n)·(2t (n)−1),
the function f can be quasi-inverted on distribution fi (Un) in time T(n) with success
probability

ε(n)

(m(n)/t (n)) · 2t (n)+1
,

where Un denotes a random variable uniformly distributed over{0, 1}n.

In the statement of Lemma 2, as well as in all other lemmata in this section, we ignore
the time required to compute the functionf (in the forward direction!). Namely, the quasi-
inverting algorithm (of the conclusion) actually runs in timeT(n) + 2t · (m/t) · t f (n)
(rather thanT(n)), wheret f denotes the complexity of computingf . This omission
is justified since the additive term is negligible in all reasonable applications of such
lemmata.

The statement of Lemma 2, as well as its successors (i.e., Lemmata 5 and 7), contains
some element of nonuniformity; specifically, the value ofi . Indeed, our proof incorpo-
rates this valuei in the quasi-inverting algorithm thus introducing an element of non-
uniformity. This can be eliminated, using standard techniques (i.e., selecti uniformly
in the relevant range), at the cost of decreasing the success probability by another factor
of (m(n)/t (n)) · 2t (n).

Proof. Let F be a probabilistic algorithm that existentially breaks the one-time scheme,
via a chosen (single) message attack, in timeT(·)with probabilityε(·). Hence, for every

n ∈ N, with probability ε
def= ε(n), algorithm F first asks for a signature of some

M ∈ {0, 1}m and then produces a signature to someM ′ 6= M . Let M = b1 · · ·bm/t and

M ′ = c1 · · · cm/t , wherem
def= m(n) andt

def= t (n). Then one of the following two cases
occurs.

Case1:a j exists so that bj < cj . Intuitively, in this case we can use thej th component
of the signature forged byF to quasi-invertf (on the(2t − 1− bj )th iterate of f ).

Case2:
∑m/t

j=1 bj >
∑m/t

j=1 cj . Intuitively, in this case we can use the zero-component
of the signature forged byF to quasi-invertf (on the(

∑
bj )th iterate of f ).

We start by presenting a parametrized family of quasi-inverting algorithms, denoted
{Aj,k}, which uses the forging algorithmF as a subroutine. The first parameter,j (0 ≤
j ≤ (m/t)), represents the signature-component that the algorithm tries to use in order to
quasi-invert the functionf . The second parameter,k, represents the distributionf k(Un)
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on which the algorithm tries to quasi-invertf . We denoteT0
def= (m/t) · (2t − 1) and

Ti
def= 2t − 1 for all otheri ’s (i.e., i = 1, . . . , (m/t)). (Ti corresponds to the number

of times that f is iterated to form thei th component of the verification key, where the
components are indexed by 0, 1, . . . , (m/t).) On input y, supposedly taken from the
distribution f k(Un), algorithmAj,k proceeds as follows. It forms a verification key as in
the key generation, except that thej th component isf Tj−k(y). That is, the verification
key is set toy0, y1, . . . , ym/t , whereyj = f Tj−k(y) andyi = f Ti (xi ) with xi uniformly
distributed (in{0, 1}n), for all i 6= j . Next, Aj,k invokesF with this verification key,
obtaining a signature requestM = b1 · · ·bm/t . The rest of the description is presented
in two cases, depending on the value of the parameterj .

For j 6= 0. If Tj − bj ≥ k, then the algorithmAj,k supplies the required signature as
follows (otherwiseAj,k halts). Thej th component of the required signature is obtained
by iterating f on y for (Tj −bj )−k times, whereas the other components are obtained by
iterating f on each of the correspondingxi ’s for the appropriate number of times. (Note
that f (Tj−bj )−k(y) is indeed inf −bj (yj ) = f −bj ( f Tj−k(y)) as expected.) Having received
the desired signature, algorithmF may form a signature to a new message. Suppose that
this signature is to a message in which thej th component, denotedc, is greater than

b
def= Tj − k. Then this yields an element, denotedz, of f −c( f b(y)). Algorithm Aj,k

outputs f c−b−1(z), which is in f −b−1 f b(y) and thus a quasi-inverse ofy. (In casef is
one-to-one,z= f −c( f b(y)) = f b−c(y) and f c−b−1(z) = f −1(y).)

For j = 0. Similarly, if
∑m/t

i=1 bi ≥ k, then the zero-component of the signature desired

by F is formed by iteratingf ony for (
∑m/t

i=1 bi )−k times. (Here,f (6
m/t
i=1bi )−k(y) is indeed

in f −(T0−6m/t
i=1bi )(y0) = f −(T0−6m/t

i=1bi )( f T0−k(y)) as expected.) Again, having received the
desired signature, algorithmF may form a signature to a new message. Suppose that this
signature is to a message in which the sum of the components, denotedc, is less thank.
Then this yields an element, denotedz, of f −(T0−c)( f T0−k(y)). Algorithm Aj,k outputs
f k−c−1(z), which is in f −(T0−k)−1 f T0−k(y) and thus a quasi-inverse ofy. (In casef is
one-to-one,z= f −(T0−c)( f T0−k(y)) = f c−k(y) and f k−c−1(z) = f −1(y).)

To analyze the performance of these algorithms, we use the following notations which
refer to the behavior of the forging algorithmF . For j = 1, . . . , (m/t), we denote by
pj (b) the probability that algorithmF , after asking for a signature to a message in
which the j th component equalsb, forges a signature to a message in which thej th
component is greater thanb. (The events considered here correspond to Case 1 discussed
above.) Similarly, we denote byp0(b) the probability that algorithmF , after asking for a
signature to a message in which the sum of the components equalsb, forges a signature
to a message in which the sum of the components is less thanb. (The event considered
here corresponds to Case 2.) Clearly,

m/t∑
j=0

Tj∑
k=0

pj (k) ≥ ε.
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We conclude that either
m/t∑
j=1

Tj−1∑
k=0

pj (k) ≥ ε

2
(1)

or
T0∑

k=1

p0(k) ≥ ε

2
. (2)

Now, we consider the effect of thepj (b)’s on the algorithmsAj,k. We first observe that
eachAj,k invokesF on the “correct” distribution (i.e., on the distributionf T0(U0

n ), . . . ,

f Tm/t (Um/t
n ), where theUi

n represent independent random variables uniformly distributed
over{0, 1}n). For everyj 6= 0 andk < Tj , we define random variablesb1 · · ·bm/t (resp.
c1 · · · cm/t ) representing the message for whichF has required a signature (resp. for which
F has forged a signature). The probability thatAj,k quasi-inverts on input distribution
f k(Un) equals

Prob[(bj ≤ Tj − k) ∧ (cj > Tj − k)] ≥ Prob[(bj = Tj − k) ∧ (cj > Tj − k)]

= pj (Tj − k).

Similarly, the probability thatA0,k quasi-inverts on input distributionf k(Un) equals

Prob

[(
m/t∑
i=1

bi ≥ k

)
∧
(

m/t∑
i=1

ci < k

)]
≥ Prob

[(
m/t∑
i=1

bi = k

)
∧
(

m/t∑
i=1

ci < k

)]
= p0(k).

Thus, if (1) holds then, for somei < T1, we have
∑m/t

j=1 pj (i ) ≥ ε/(2 · (2t − 1)). It
follows that an algorithm, which selectsj uniformly in {1, . . . , (m/t)} and invokesAj,i ,
quasi-invertsf on f i (Un) with probability at least

m/t∑
j=1

1

m/t
· pj (i ) >

ε

(m/t) · 2t+1
.

On the other hand, if (2) holds then, for somei ≤ T0, algorithmA0,i quasi-invertsf on
f i (Un) with probability at least

p0(i ) ≥ ε

2 · ((m/t) · 2t − 1)
.

The lemma follows.

Remark. For t = 1, the statement of Lemma 2 is tight in the following sense. Any
algorithm inverting f (in time T(n)) with probability ε(n) yields an(m · T(n)-time)
chosen message attack on the one-time signature scheme which existentially forges a
signature with probability 1− (1− ε(n))m ≈ m · ε(n) (for ε(n) ¿ 1/m). Hence, in
the case whent = 1, the security loss of a factorm is inevitable. Similarly, for general
t ≥ 1, we get an inevitable loss of security by anm/t factor. However, we do not know
if the security loss of a 2t factor is essential in this case.
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4.3. Enhancing Security by Use of Error-Correcting Codes

As just remarked, the security loss of a factor ofm/t in the above construction is
inevitable. To avoid this loss, we need a new idea. Loosely speaking, the idea is to
encode messages via a good error-correcting code and sign the encoded message rather
than the original one. This idea stands in contrast to the common practice of trying to
shorten the message to be signed. Yet, the moderate increase in the length of the message
to be signed will provide a substantial benefit. The reason being that in order to forge a
signature the adversary needs to invert the one-way function on many points rather than
on a single one. For the sake of simplicity, we apply the idea first to the basic construction
(of Section 4.1). However, before doing so, we recall some basic definitions and facts
from the theory of error-correcting codes.

Background on Error-Correcting Codes

Definition 8 (Error-Correcting Code [11]). Letm,m′, d: N 7→ N. An (m(·),m′(·),
d(·))-code is an (efficiently computable) mapping,µ, of m(·)-bit-long strings tom′(·)-
bit-long strings so that, for every twox 6= y ∈ {0, 1}m(n),

dist(µ(x), µ(y)) ≥ d(n),

where dist(α, β) denotes the Hamming distance (i.e., number of mismatches) between
α andβ.

For our purposes, we do not need the code to have an efficient decoding algorithm.
Hence, for our purposes, we can use random linear codes (i.e., a mapping defined by
multiplication by a randomm×m′ Boolean matrix). By the Gilbert–Varshamov bound
[11], [22] a uniformly chosenm×m′ matrix defines an(m,m′, d)-code with probability
1− p provided that

d−1∑
i=1

(
m′

i

)
< p · 2m′−m+1.

For example, we can setm′ = 2m, p = 2−m/2, andd = ρ ·m′, whereH2(ρ) ≤ 1
4 (ρ = 1

20
will do).11 Alternatively,m′ = 3m, p = 2−m/2, andd = ρ ·m′, whereH2(ρ) ≤ 1

2 (ρ = 1
8

will do). For small values ofm′ andm, larger values ofρ are attainable by specially
designed codes. For example, form = 79 andm′ = 128, a code with distanced = 15
(ρ > 0.117) exists, whereas form = 80 andm′ = 160, d = 23 (ρ > 0.143) [11,
Appendix A.1] is obtained. Form = 128, we use a code with distanced = 13 and
codewords of lengthm′ = 185, yieldingρ > 0.07.

Basic Scheme with Error-Correcting Codes

Loosely speaking, to sign a messageM one first computes the codewordC
def= µ(M) and

then signsC. In addition to verifying, as usual, thatC is properly signed, the verification

11 As usual,H2(x)
def= −(x log2 x + (1− x) log2(1− x)) denotes the Binary Entropy Function.
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procedure checks thatC indeed equalsµ(M). Hence, a chosen message attack needs to
produce a signature to a stringC′ that is not only different fromC, but is also at distance
at leastd from C.

Construction 2 (Using Error-Correcting Codes). Letm,m′, d: N 7→ Nbe polynomial-
time computable integer functions, letµ: {0, 1}∗ 7→ {0, 1}∗ be an(m(·),m′(·), d(·))-
code, and letf : {0, 1}∗ 7→ {0, 1}∗ be a polynomial-time computable function. We
consider the following one-time signature scheme for message length functionm(·):
• Key Generation: On input 1n, the key generator uniformly selectsx0

1, x1
1, . . . , x

0
m′ ,

x1
m′ ∈ {0, 1}n, wherem′ def= m′(n). The signing key consists of thesex j

i ’s, whereas
the verification key isf (x0

1), f (x1
1), . . . , f (x0

m′), f (x1
m′).

• Signing: To sign a messageM ∈ {0, 1}m, σ1 · · · σm′
def= µ(M) is computed and

xσ1
1 , . . . , x

σm′
m′

is revealed as the signature toM .
• Verification: To verify a signature to a messageM ∈ {0, 1}m, we first compute the

codewordC = µ(M). Next, we subject the components of the signature vector to
the corresponding number of applications off and finally compare the result against
the verification key. Namely, to verify that(z1, . . . , zm′) constitutes a signature to
M = (σ1, . . . , σm) relative to the verification keȳy = (y0

1, y1
1, . . . , y0

m′ , y1
m′), the

codewordσ1 · · · σm′ ← µ(M) is computed andf (zi ) is compared withyσi
i , for

eachi .

As a special case (i.e., by lettingµ be the identity function), we derive the basic
construction (mentioned in Section 4.1 above):

Definition 9 (Basic Construction). Thebasic constructionis derived from Construc-
tion 2 by settingµ to be the identity transformation.

Lemma 3. Suppose that T: N 7→ N andε: N 7→ R are functions so that the one-time
signature scheme of Construction2 can be existentially broken, via a chosen(single)
message attack, in time T(·) with probabilityε(·). Then, for every n∈ N, the function

f can be inverted in time T(n) with success probability(ρ(n)/2) · ε(n), whereρ(n)
def=

d(n)/m′(n).

As a special case we derive a bound for the security of the basic construction. Namely,

Corollary 4. Suppose that T: N 7→ N andε: N 7→ R are functions so that the basic
construction can be existentially broken, via a chosen(single) message attack, in time
T(·) with probabilityε(·). Then, for every n∈ N, the function f can be inverted in time
T(n) with success probability(1/2m(n)) · ε(n).
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Proof of Lemma 3. Let F be a probabilistic algorithm that existentially breaks the
one-time scheme, via a chosen (single) message attack, in timeT(·) with probability
ε(·). Hence, for everyn ∈ N, with probabilityε(n), algorithmF first asks for a signature
of M ∈ {0, 1}m and then produces a signature toM ′ 6= M . Letµ(M) = b1 · · ·bm′ and
µ(M ′) = c1 · · · cm′ . By definition of the code,bi 6= ci for at least aρ fraction of thei ’s
in {1, . . . ,m′}.

The inverting algorithm,A, operates as follows. On inputy, algorithmA uniformly
selectsi ∈ {1, . . . ,m′} and j ∈ {0, 1}. Next, A forms a verification key as in the key
generation, except that the(2i + j − 1)st component isy, and invokesF with this
verification key. With probability1

2, algorithm F asks for the signature, to a message
denotedM , that A can supply (i.e., thei th bit of µ(M) equals j ). In this case, with
probabilityε(n), algorithmF returns a signature of a messageM ′ and with probability
at leastρ thei th bit ofµ(M ′) is different from thei th bit ofµ(M). This yields an inverse
of y under f , and the lemma follows.

Scheme with Block Coding

We now combine the shortening ideas of Section 4.2 with the coding idea just presented.
In fact, we only use one of the shortening ideas; specifically, the partition of the binary
string intot-bit-long blocks. Each block is assigned a pair of strings in the signing key
(resp. verification key). The partition into blocks fits very nicely with error-correcting
codes, providedm′/t ≤ 2t . Namely, we partition them-bit-long message intom/t
blocks (each of lengtht) and encode thesem/t blocks usingm′/t blocks (each of
lengtht). Our encoding scheme views them/t blocks as elements inGF(2t ) specifying
a polynomial of degree(m/t) − 1 over this field, and the codeword is the sequence
of values this polynomial yields on(m′/t) different elements of the field (hence the
requirementm′/t ≤ 2t ). This encoding, known as block-coding and specifically as BCH
code, has the property that different messages (viewed as polynomials) are mapped to
codewords that agree on at most(m/t)−1 values. Hence, the “block distance” between
codewords corresponds to(m′ −m)/t .

Construction 3 (Based on Block Partition and Coding). Lett,m,m′: N 7→ N be poly-
nomial-time computable integer functions so that 1≤ t (n) = O(logn), 1 ≤ m(n) ≤
m′(n) = poly(n), m′(n)/t (n) ≤ 2t (n), and t (n) divides bothm(n) andm′(n), for all
n ∈ N. Let f : {0, 1}∗ 7→ {0, 1}∗ be a polynomial-time computable function. We consider
the following one-time signature scheme for message length functionm(·):
• Key generation: On input 1n, the key generator uniformly selectsx0

1, x1
1, . . . , x

0
m′/t ,

x1
m′/t ∈ {0, 1}n, wherem′ def= m′(n) andt

def= t (n). The signing key consists of these

x j
i ’s, whereas the verification key is

f 2t−1(x0
1), f 2t−1(x1

1), . . . , f 2t−1(x0
m′/t ), f 2t−1(x1

m′/t ).

• Signing: To sign a messageM ∈ {0, 1}m, its t-bit-long blocks,σ1, . . . , σm/t , are
interpreted as elements inGF(2t ) specifying a polynomial of degreet − 1 over
the field (i.e.,σi is interpreted as the(i − 1)st coefficient of the polynomial). The
values of the polynomial at somem′/t field elements are now interpreted as integers,
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denotedτ1, . . . , τm′/t ∈ {0, 1, . . . ,2t − 1}, and the signature

f τ1(x0
1), f 2t−1−τ1(x1

1), . . . , f τm′/t (x0
m′/t ), f 2t−1−τm′/t (x1

m/t )

is computed.
• Verification: The polynomial and its values at them′/t points is constructed as

above, the components of the signature vector are subjected to the corresponding
number of applications off and the result is compared with the verification key.

Lemma 5. Let m′(n) = (1 + α) · m(n), for some constantα > 0. Suppose that
T : N 7→ N andε: N 7→ R are functions so that the above one-time signature scheme can
be existentially broken,via a chosen(single) message attack, in time T(·)with probability
ε(·). Then, for every n∈ N and some i≤ (2t (n)−1), the function f can be quasi-inverted
on distribution fi (Un) in time T(n)with success probability(α/(1+α)2t (n))·ε(n),where
Un denotes a random variable uniformly distributed over{0, 1}n.

Proof. Using the same ideas as in the proofs of the last two lemmata.

Remark. We can set 2t = m′/t andα = 1. Then, fort ≥ 4, we get security at least
as in the basic construction while using keys and signatures which are only four times
as large as those used in Construction 1. In general, when setting 2t = m′/t , the bound
on success probability of attacks in the new construction is related to the bound in the
basic construction by a factor of(1+ α)2/αt , which is typically smaller than 1.

4.4. Further Enhancing Security

The reader may note that the enhanced security asserted in the previous subsection
stems from the fact that when using a forging algorithm we have a better chance that
it inverts the function on the desired component (provided that we choose the desired
component at random). We did not take advantage of the fact that this forging algorithm
inverts the function on many components. To do so we have to consider the problem
of simultaneously inverting a one-way function on many images, and to show how this
problem reduces to forging signatures in Constructions 2 and 3. Once this is done, the
security of the signature scheme is based on the difficulty of inverting the function on
many images, a task that may be more difficult than inverting the function on a single
image.12 For example, the run-time versus success-probability tradeoffs, in exhaustive

12 We stress that hardness here is expressed by two parameters: specifically, the running time and success
probability of the inverting algorithm. In this setting it is not known whether inverting a function on many
unrelated images is harder than inverting it on a single image. Specifically, it is not known whether, when
fixing the running time, the success probability of inverting the function on several images decreases with the
number of images. The well-known amplification of one-way functions (attributed to Yao and implicit in [24])
guarantees that the success probability of inverting the function on several images decreases with the number
of images, provided that the time bound of the inverting algorithm is decreased as well. Specifically, the ratio
of the running time over the success probability, which represents the hardness of inverting the function on
several images, does not grow with the number of images. This makes the above-mentioned amplification
method less attractive for our purposes.
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search for inverting a function, are less favorable when it is necessary to invert the
function on several instances (see Assumption 3 in the subsequent section).

Lemma 6. Suppose that T: N 7→ Nandε: N 7→ Rare functions so that Construction2
can be existentially broken, via a chosen(single) message attack, in time T(·) with
probabilityε(·). Let k: N 7→ N so that k(n) ≤ d(n). Then, for every n∈ N, the function
f can be simultaneously inverted on k(n) images, in time T(n) with success probability

1

2k(n)
·
(

k(n)−1∏
j=0

d(n)− j

m′(n)− j

)
· ε(n) ≈

(
d(n)

2m′(n)

)k(n)

· ε(n),

where the approximation holds provided k(n)¿ d(n).

Proof. Similar to the proof of Lemma 3. Fixing anyn ∈ N, the inverting algorithm,
A, operates as follows. On inputy1, . . . , yk, algorithm A uniformly selectsk different
elements, denotedi1, i2, . . . , i k, in {1, . . . ,m′} and j1, . . . , jk ∈ {0, 1}. Next, A forms a
verification key as in the key generation, except that for everyl ≤ k the(2i l + jl − 1)st
component isyl , and invokes the forging algorithm,F , with this verification key. With
probability 1/2k, algorithmF asks for the signature, to a message denotedM , that A
can supply (i.e., for everyl , thei l th bit ofµ(M) equalsjl ). In this case, with probability
ε(n), algorithmF returns a signature of a messageM ′. With probability at least(d/m′) ·
((d − 1)/(m′ − 1)) · · · ((d − k + 1)/(m′ − k + 1)), the bit locationsi1 throughi k of
µ(M ′) andµ(M) are all in disagreement. This yields inverses ofy1 throughyk under f ,
and the lemma follows.

Using similar ideas, we get:

Lemma 7. Let m′(n) = (1 + α) · m(n), for some constantα > 0. Suppose that
T : N 7→ N and ε: N 7→ R are functions so that Construction3 can be existentially
broken, via a chosen(single) message attack, in time T(·) with probability ε(·). Let
k: N 7→ N so that k(n) ≤ αm(n) and Un denote a random variable uniformly distributed
over {0, 1}n. Then, for every n∈ N and some i1, . . . , i k(n) ≤ (2t (n) − 1), the function
f can be simultaneously quasi-inverted on k(n) images, taken from the distributions
f i1(Un) through fik(n) (Un), in time T(n) with success probability

1

2t (n)·k(n) ·
(

k(n)−1∏
j=0

α − ( j/m(n))

1+ α − ( j/m(n))

)
· ε(n) ≈

(
α

(1+ α) · 2t (n)

)k(n)

· ε(n),

where the approximation holds provided k(n)¿ α ·m(n).

5. Concrete Implementations

We now suggest concrete implementations of our general on-line/off-line signature
scheme offering fast on-line computations (both for signer and verifier). The imple-
mentations differ by the construction they use for a one-time signature scheme. This
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section is not intended to provide a comparative analysis of these alternatives; such an
analysis is provided in the previous section. The purpose of this section is to demonstrate
the viability of our general construction by presenting several realistic implementations
based on off-the-shelf products.

5.1. The Ingredients

All the concrete implementations use Rabin’s scheme [17] in the role of the ordinary
signature scheme and the DES [15] as a basis for a one-way function, which is in turn
used to construct a one-time signature scheme. The constructions of one-time signature
schemes used are those presented in the previous section, and the implementations differ
only by the specific construction (of a one-time signature scheme) which they use.

Some of our implementations have marginal security which results from the fact
that using the DES as a basis for a one-way function starts to become problematic (in
many applications). Indeed, an alternative commercial product providing a more secure
one-way function is long due. Needless to say that analogous implementations of our
scheme, using such a hypothetical realistic one-way function, will then follow and enjoy
analogously improved security.

The Ordinary Signature Scheme

In the role of the ordinary signature scheme we use a modification of Rabin’s scheme
[17]. In this modification we use integers which are the product of two large (say 256
bits long) primes, one congruent to 3 modulo 8 and the other congruent to 7 modulo 8.
For such an integerN and for every integerv ∈ Z∗N (the multiplicative group modulo

N) exactly one of the elements in the setSv
def= {v,−v,−2v,−2v} is a square modulo

N (see [23] and [8]). Moreover, each square moduloN has exactly four distinct square
roots modN. We define theextendedsquare root ofv moduloN, denotedext

√
vmodN,

to be a distinguished square root moduloN (say, the smallest one) of the appropriate
member ofSv. Computing ext

√
vmodN is feasible if the factorization ofN is known, and

is considered intractable otherwise.
The message space is associated with the elements of the above multiplicative group.

Larger messages are first hashed into such an element. It is assumed that the message
space satisfies the following condition: Ifv 6= u, thenSv ∩ Su = ∅. This can be enforced
by using only values of the second eighth ofZ∗N (i.e.,{v ∈ Z∗N : N/8< v < N/4}).

Consider a user A, whose public key is a modulusNA. User A alone knows the
factorization ofNA. Signing messageM , in the modified Rabin scheme, amounts to
extracting an extended square root ofM , modulo NA. Anyone can verify thatα is a
legitimate signature ofM by computingα2 modNA and checking that it indeed belongs
to the setSM .

The scheme described so far is not secure against existential forgery. It is not clear
whether this problem is really important to our application; nevertheless padding by a
random suffix (see [17]) overcomes the obvious attack.13

13 Actually, the random padding is not necessary in applications such as ours where the signature scheme
is applied to a randomly looking string (e.g., obtained by hashing the message).
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We assume that it is infeasible to break the modified Rabin scheme, even after a chosen
message attack, when the integers which are used are the product of two large (say 256
bits long) primes.

The One-Time Signature Scheme

For the one-time signature scheme, we use any of the constructions presented in Section 4.
These constructions exhibit a tradeoff between key and signature size, on one hand, and
computation time and security on the other hand. In particular, we propose using the

DES algorithm as a one-way functionf (x)
def= DESx0(M); that is, the value obtained by

encrypting a standard message, denotedM , using DES with keyx0, wherex ∈ {0, 1}55.
We stress that our “effective” key length is merely 55 bits, and the zero-padding yields a
standard DES key of 56 bits. This convention is adopted in order to “destroy” the known
relation between (standard) DES keys, given by the equalityDESK (M) = DESK (M),
whereα denotes the string derived fromα by flipping all bits. In what follows whenever
we refer to the DES we mean the “one-way function”f defined above.

The Collision-Free Hashing Scheme

In the role of the collision-free hashing function we use any standard way of using DES
in a hashing mode. (See, for example, [16].) Alternatively, the recently suggested MD4
or MD5 may be used (see [18] and [19]). We recommend thatH map arbitrarily long
strings to 128-bit-strings (i.e.,m = 128). For some applications, one may be content
with m= 64.

5.2. Four Implementations

We now describe four versions of the concrete implementation. We start with a straight-
forward implementation of the general scheme with the modified Rabin scheme playing
the role of the ordinary signature scheme and the DES one-way function being used to
construct a one-time signature scheme following the basic construction of Section 4.
The other three implementations differ from the first one only in the way in which the
one-way function is used to construct a one-time signature scheme.

Implementation 1. The modified Rabin scheme, with primes of length 256, is used
as the ordinary signature scheme. As a one-time signature scheme, for message length
m= 128, we use the basic construction (see Definition 9) with DES in the role of the one-
way function. Finally, fast collision-free hashing functions are used to hash arbitrarily
long strings tom-bit strings.

The key length for the one-time signature scheme is 2m·n, where, in the case of a DES-
based one-way function,n = 55. The total length of the signature in the resulting on-
line/off-line scheme is 3m·n+512, which for our choice of parameters (i.e.,m= 128 and
n = 55) yields 21,632. The most time-consuming operation in the off-line signing phase
is the computation of an ordinary signature in the modified Rabin scheme, which amounts
to extracting square roots modulo 256-bit primes. On-line signing only involves retrieving
relevant information from memory. Verification amounts tomDES computations, which
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may be performed in parallel, and a single multiplication modulo a 512-bit integer (i.e.,
verification in the modified Rabin scheme). The signatures and keys can be shortened
by a factor of≈ t if we are willing to increase the number of DES computations by a
factor of 2t − 1. Fort = 4 this tradeoff seems worthwhile. Namely,

Implementation 2. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementation. As a one-time signature scheme, for message
lengthm = 128, we use Construction 1, witht = 4. Again, DES is used in the role of
the one-way function.

Now, the key length for the one-time signature scheme is(1+m/t) · n, and the total
length of the signature in the resulting on-line/off-line scheme is thus 2(1+m/t)·n+512.
For our choice of parameters (i.e.,m= 128,t = 4, andn = 55) we get a signature length
of 4142. The number of DES operations increases by a factor of 2t − 1= 15. However,
the security of the current implementation is decreased by a factor of(2t −1)/t = 3.75.
Improved security can be obtained by using Construction 3 as a basis for the one-time
signature scheme. Namely,

Implementation 3. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementations. As a one-time signature scheme, for message
lengthm = 120, we use Construction 3, withm′ = 160 andt = 5. Again, DES is used
in the role of the one-way function.

Now, the key length for the one-time signature scheme is 2· (m′/t) · n, and the total
length of the signature in the resulting on-line/off-line scheme is 4· (m′/t) · n + 512.
For our choice of parameters (i.e.,m = 120,m′ = 160, t = 5, andn = 55) we get a
signature length of 7552. The number of DES operations is about three times as high as
in the previous implementation. However, the security of the current implementation is
even better than in Implementation 1. To get even better security we use Construction 2:

Implementation 4. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementations. As a one-time signature scheme, for message
lengthm= 120, we use Construction 2, withm′ = 185 andd = 13. Again, DES is used
in the role of the one-way function.

Now, the key length for the one-time signature scheme is 2·m′ · n, and total length
of the signature in the resulting on-line/off-line scheme is thus 3·m′ · n+ 512. For our
choice of parameters (i.e.,m = 128,m′ = 185, andn = 55) we get a signature length
of 31,037. The number of DES operations is 185 (instead of 128 in Implementation 1).

The complexity bounds for the four implementations are tabulated in Table 1 (for the
choice of parameters specified above). For the reader’s convenience we also present the
relative security of these implementations. The security figures are upper bounds on the
success probability of some reasonably restricted attacks fully described and analyzed
below. (Hence, the lower the security figures are, the better.)
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Table 1

Implementation

1 2 3 4

Message length 128 128 120 128
Key length 14,080 1,815 3,520 20,350
Signature length 21,632 4,142 7,552 31,037
DES operations 128 1,920 4,800 185

Security
1

1, 400

1

370

1

2, 600

1

12, 000

Security

Our analysis is based on two assumptions. The first is that it is practically infeasible to
existentially forge signatures to the modified Rabin scheme, even after a chosen message
attack. In other words, we assume that the probability that such a practical attack succeeds
is negligible and hence we ignore it altogether. Our second assumption is that the DES-
based one-way function cannot be inverted better than by exhaustive search (in the
{0, 1}55 “effective” key space). A more accurate statement follows. We stress that this
assumption does not contradict current knowledge concerning the cryptanalysis of DES
(and in particular differential cryptanalysis method of Bilham and Shamir [2]).

By the proof of Lemma 1, a breach of security in the on-line/off-line scheme yields
either a breach of security in the modified Rabin scheme or a breach of security in the
one-time scheme. We stress that this lemma asserts that if the on-line/off-line scheme
is broken with probabilityε(n), then either Rabin’s scheme is broken with probability
ε(n)/2 (within the same time and query complexities) or, with probabilityε(n)/2, one
of the instances of the one-time scheme is broken. Assuming that a breach of security
in the modified Rabin scheme is infeasible, we ignore the first possibility and are left
with the second. Before continuing, we now explicitly state our assumption concerning
the security of the DES-based one-way function. Intuitively, the assumption states that
the best tradeoff between the running time of an inverting algorithm and its success
probability is obtained by the “exhaustive search” algorithm (i.e., an algorithm which
uses its time to select random preimages and check if they are mapped to the given
image).

Assumption 1. Let D
def= 255 ≈ 3.6 × 1016 denote the number of elements in the

domain of the DES-based one-way function. Then a randomized algorithm running in
time that allows only T DES evaluations, succeeds ininvertingthe DES-based function
on a given image, with probability at most T/D.

We start by evaluating the security of the first implementation presented above (i.e.,
Implementation 1). Combining Assumption 1, Lemma 1, and Corollary 4, we conclude
that a chosenQ-message attack taking timeT succeeds in existential forgery with
probability at most(T · (2m · Q))/D (wherem = 128 denotes the message length in
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Table 2

Q T ε

104 106 1

14, 000

104 107 1

1, 400

104 108 1

140

Implementation 1). Thus, the success probability of an attack which asks forQ messages
to be signed and runs in time allowingT DES computations is bounded by

256· T · Q
D

.

We stress thatQ is upper-bounded by the number of messages signed by asingle instance
of our on-line/off-line signature scheme, throughout the “life time” of this instance. It
(i.e., Q) is not the total number of messages which can be signed by all instances of
our system. Recall that an instance of the signature scheme is obtained by running the
key generator. Typically, each user generates a new instance of the signature scheme
which it uses for a bounded time period. Thus, we believe that it is safe to assume that
in a real-life application, the number of messages being signed by a single instance of
the system is at most 10,000. Note thatT , the time spent by the attacker, is typically
much larger thanQ. Several estimates for the success probability of forging signatures
by attacking the DES-based one-way function are given in Table 2. As above,T denotes
the time spent (i.e., number of function evaluations) in the attack,Q denotes the number
of message signed, andε denotes an upper bound on the success probability

We conclude by evaluating the security of the other three implementations. This is
done using the corresponding lemmata of Section 4. First, using Lemma 3, it follows
that the probability of breaking Implementation 4 is smaller by a factor 9 than the
bound presented for the probability of breaking Implementation 1. In the analysis of
Implementations 2 and 3 we use a seemingly stronger assumption concerning the DES.
Intuitively, this assumption asserts that also quasi-inverting the DES (see Definition 7)
cannot be done better than by exhaustive search:

Assumption 2. For every i ≥ 1, let Xi be the distribution obtained by uniformly
selecting a preimage for the DES-based function and iterating the function i times on
this preimage. Then, for every i ≤ 32, a randomized algorithm running in time that
allows only T DES evaluations, succeeds inquasi-invertingthe DES-based function on
Xi , with probability at most T/D.

The constant 32 in the above assumption is the smallest value which suffices for our
analysis. Now, using Lemma 5, we observe that Implementation 3 (withm′ = 4

3 ·m= 2t t
andt ≥ (1+α)2/2α = 8

3)maintains the security of Implementation 1. (Here, as before,
security means a bound on the success probability of forging algorithms running within
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Table 3

Q T ε2 ε3 ε4

104 106 1

3, 700

1

26, 000

1

120, 000

104 107 1

370

1

2, 600

1

12, 000

104 108 1

37

1

260

1

1, 200

some time bounds.) Actually, security is increased by a factor of 3t/8 (which for t = 5
yields≈ 2). Similarly, inspecting Lemma 2, it follows that the probability of breaking
Implementation 2 is at most(2t − 1)/t times bigger than the bound peresented for
Implementation 1 (which fort = 4 means a factor of 3.75).

The bounds for the success probability of forging signatures in the last three imple-
mentations are given in Table 3. The bounds on the success probabilities of Implemen-
tations 2–4 are denotedε2, ε3, andε4, respectively, andQ andT are as above.

Some of the above figures provide marginal security. This is due to the fact that DES
has a key-space of marginal size. Indeed, it would have been desirable to have a practical
one-way funtion for which inverting requires an exhaustive search over a domain with
270 elements (rather than 255) or even better 2110 elements. Corresponding probability
bounds for the above implementation and the last attack (i.e.,Q = 104 andT = 108) are
given in Table 4. In addition, we tabulate the probability bounds also for a much stronger
attack in whichQ · T = 1020. The parametersε2, ε3, ε4, Q, andT are as above. In
addition, we consider a parameterD (= 270 or 2110) representing the size of the domain.

The bounds on the success probabilities of Implementations 3 and 4, can be improved
using the following reasonable assumption. For the anslysis of Implementation 4, we
only need the first part of the assumption.

Assumption 3. A randomized algorithm running in time that allows only T DES eval-
uations, succeeds insimultaneously invertingthe DES-based function on k given images,
with probability at most(T/D)k. Furthermore, the same holds with respect tosimulta-
neously quasi-invertingthe DES-based funtion on k given images, each distributed as
in Assumption2.

Table 4

D Q T ε2 ε3 ε4

270 104 108 1

12, 000

1

85, 000

1

390, 000

2110 104 108 1

1.3 · 1016

1

9 · 1016

1

40 · 1016

2110 104 1016 1

1.3 · 108

1

9 · 108

1

40 · 108
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Table 5

Q T ε3 ε4

104 106 1

41, 000

1

108

104 107 1

2, 600

1

600, 000

104 108 1

260

1

6, 000

In particular, using Lemma 6 withk = 2, 3 (k < d = 13), it follows that the
probability of breaking Implementation 4 is at most max{p, (15.4 · p)2, (256 · p)3},
where p is the bound computed by using Lemma 3. Similarly, using Lemma 7 with
k = 2 (k < αm = 40), it follows that the probability of breaking Implementation 3 is
at most max{p, (128· p)2}, wherep is the bound computed by using Lemma 5. Hence,
our security bounds (for DES; i.e.,D = 255)) are improved as shown in Table 5.

6. A Related Theoretical Result

Using the underlying ideas of our general construction, we obtain the following equiva-
lence:

Theorem 2. Digital signature schemes that are secure against a chosen message attack
exist if and only if signature schemes secure against random message attack exist.

Proof. The necessary condition is obvious. To prove the sufficient condition, we present
the following construction that uses much of the structure of our general construction.

Let (G, S,V) be a signatrue scheme secure against random message attack. By a
padding argument, we may assume that the message length for parametern equalsn
(i.e.,m(n) = n). We consider two instances of this scheme, the first with parametern and
the second with parameter 2n2. We now construct the signature scheme(G∗, S∗,V∗) as
follows.

The key-generation algorithm,G∗, consists of usingG twice to produce two pairs
of matching public and secret keys,(VK1,SK1) and(VK2,SK2). The signing algorithm,
S∗, operates as follows. First, obliviously of the message to be signed, algorithmS∗

randomly selects 2n strings of lengthn each, denotedr1, . . . , r2n. The concatenation of
these strings, denotedr̄ , is called thereference sequence. Second,S∗ computes

6
def= SSK1(r̄ ).

The last step depends on the message to be signed. To sign a messageM = b1 · · ·bn,

where eachbi ∈ {0, 1}, algorithm S∗ computes, for eachi , σi
def= SSK2(r2i−bi ). The

signature of messageM consists of the reference sequencer̄ , its authentication6, and

a “signature sequence”σ , whereσ
def= σ1 · · · σn. The verification algorithm is obvious

from the above.
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Parenthetical Remark. By a minor modification we can obtain an on-line/off-line sig-
nature scheme, in which no computation is necessary in the on-line signing phase. In the

modified scheme,sj
def= SSK2(r j ) is precomputed for everyj (1 ≤ j ≤ 2n), and in the

on-line phase it is merely necessary to retrieve the appropriate precomputedsj (i.e., those
j which equal 2i −bi for somei ). Unfortunately, verification in the(G∗, S∗,V∗) scheme
is substantially more expensive than in the original(G, S,V) scheme, specifically by a
factor ofn+ 1. Hence, the scheme presented in this section does not offer much hope
in terms of practical implementations (sincen should be set large enough to resist a
birthday attack14).

We now prove that if(G∗, S∗,V∗) is existentially forgeable via achosenmessage
attack, then(G, S,V) is existentially forgeable via arandommessage attack. The proof
is very similar to the proof of Lemma 1.

Let F∗ be a probabilistic polynomial-time algorithm which forges signatures of
(G∗, S∗,V∗), with success probabilityε(n) > 1/ poly(n), via a chosen message at-
tack. Such a forged signature either uses a reference sequence which has appeared (as a
reference sequence) in a previous signature or uses a reference sequence which has not
appeared previously. Thus, one of the following two cases occurs.

Case1: With probability at leastε(n)/2, algorithm F∗ forms a new signature using
a reference sequence which has appeared in a previous signature. In this case we
construct an algorithm,F1, forging signatures of(G, S,V) as follows. On inputVK
(and access torandommessage attack on the correspondingSSK), algorithm F1 runs
G to obtain a new pair of corresponding keys(SK′,VK′). Then algorithmF1 initiates
algorithmF∗ on inputVK∗ = (VK′,VK), and supplies it with signatures to messages of
F∗’s choice.

To get a signature for the messageM = b1 · · ·bn, requested byF∗, algorithmF1 asks
for n new randomSSK-signatures (i.e., signatures ton uniformly selectedn-bits-long
messages). (Here we employ a random message attack onSSK.) Suppose thatF1 is given
the message-signature pairs(ρ1, σ1), . . . , (ρn, σn), where theρi ’s are uniformly and
independently distributed and theσi ’s were obtained by applyingSSK to the corresponding

ρi ’s (i.e., σi = SSK(ρi )). Algorithm F1 setsr2i−bi

def= ρi and completes the reference
sequencēr = (r1, . . . , r2n) by selecting the remaining(n) ri ’s at random. Algorithm
F1 now uses its secret keySK′ to produce a signature6 to the reference sequencer̄

(i.e., 6
def= SSK′(r1 · · · r2n)). Finally, F1 providesF∗ with the triple (r̄ , 6, σ ), where

σ
def= σ1 · · · σn, as a signature ofM .
We stress that it is unlikely that the samen-bit-long string appears in two different

reference sequences given toF∗ (since theri ’s are uniformly chosen from a huge space,
i.e., of size 2n). Eventually, with probability at leastε(n)/2, algorithm F∗ yields a
signature to a new message, denotedM = b1 · · ·bn, in which the reference sequence,

14 In practical implementationsn will not be the actual length of the message, which is much too long, but
rather the length of the hashed value. In a birthday attack we use 2n/2 “perturbations” of a desired message
to match its hashed value with one of 2n/2 values signed by the signer in a random message attack. Hence,n
should be large enough so that it is infeasible to obtain 2n/2 signatures.
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denotedr̄ , is identical to a reference sequence used in a previous message. We denote
this previous message byM ′ = c1 · · · cn. SinceM 6= M ′, a positioni exists in which
the two messages differ (i.e.,bi 6= ci ) and it follows that the signatureM contains a
signatureSSK(r j ), wherer j is the j th block in r̄ and j = 2i − bi . (We stress that the
signatureSSK(r j )was not part of the signature obtained forM ′, sinceci 6= bi ). With very
high probability, then-bit-long stringr j has not appeared in any position in any reference
sequence, except for its appearance in thej th position ofr̄ . Hence, we obtained anSSK-
signature to the string for which a signature has not been seen so far. Outputting this
(r j , SSK(r j )) pair, algorithmF1 achieves existential forgery, via a random message attack.

Case2:With probability≥ ε(n)/2,algorithm F∗ forms a new signature using a reference
sequence not used in previous signatures. In this case we construct an algorithm,F2,
forging signatures of(G, S,V) as follows. On inputVK (and access torandommessage
attack onSSK), algorithmF2 runsG to obtain a new pair of corresponding keys(SK′,VK′).
Then algorithmF2 initiates algorithmF∗ on inputVK∗ = (VK,VK′), and supplies it with
signatures to messages ofF∗’s choice.

To get a signature for the messageM = b1 · · ·bn, requested byF∗, algorithmF2 asks
for a newSSK-signature on a random message (of length 2n2). Suppose thatF2 is given
the message-signature pair(r̄ , 6), wherer̄ is uniformly chosen and6 was obtained by
applyingSSK to r̄ (i.e.,6 = SSK(r̄ )). Algorithm F2 partitionsr̄ into 2n strings, each of
lengthn; i.e.,(r1, . . . , r2n) = F . Using its secret keySK′, algorithmF2 obtains signatures
via SSK′ to eachr j , for j = 2i −bi and 1≤ i ≤ n. We denote this sequence of signatures
by σ = (σ1, . . . , σn), whereσi is a signature viaSSK′ to r2i−bi (i.e.,σi = SSK′(r2i−bi )).
Algorithm F2 givesF∗ the triple(r̄ , 6, σ ) as a signature ofM .

Eventually, with probability at leastε(n)/2, algorithmF∗ yields a signature to a new
message which contains anSSK-signature to a new reference sequence. If this happens,
thenF2 outputs thisSSK-signature, hence committing existential forgery (via a random
message attack).

Hence, in both cases a contradiction is derived and the theorem follows.
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