J. Cryptology (1996) 9: 35-67 Journal of

CRYPTOLOBY

© 1996 International Association for
Cryptologic Research

On-Line/Off-Line Digital Signatures*

Shimon Even
Computer Science Department, Technion—Israel Institute of Technology,
Haifa 32000, Israel
even@cs.technion.ac.il

Oded Goldreich

Department of Applied Mathematics and Computer Science,
Weizmann Institute of Science, Rehovot, Israel
oded@wisdom.weizmann.ac.il

Silvio Micali
Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139, U.S.A.
silvio@theory.lcs.mit.edu

Communicated by Gilles Brassard

Received 19 August 1992 and revised 21 December 1994

Abstract. A new type of signature scheme is proposed. It consists of two phases.
The first phase is performed off-line, before the message to be signed is even known.
The second phase is performed on-line, once the message to be signed is known, and
is supposed to be very fast. A method for constructing such on-line/off-line signature
schemes is presented. The method uses one-time signature schemes, which are very
fast, for the on-line signing. An ordinary signature scheme is used for the off-line stage.

In a practical implementation of our scheme, we use a variant of Rabin’s signature
scheme (based on factoring) and DES. In the on-line phase all we use is a moderate
amount of DES computation and a single modular multiplication. We stress that the
costly modular exponentiation operation is performed off-line. This implementation is
ideally suited for electronic wallets or smart cards.

Key words. Digital signatures, Integer factorization, RSA, DES, One-time signature
schemes, Error-correcting codes, Chosen message attack.

1. Introduction

Informally, in a digital signature scheme, each usepublishes goublic keywhile
keeping secret aecret keyU'’s signature of a messagm is a values, depending on

* A preliminary version appeared in tieeoceedings of Crypt89. Shimon Even was supported by the fund
for the Promotion of Research at the Technion.

35

36 S. Even, O. Goldreich, and S. Micali

m and his secret key, such thidt (using his secret key) can quickly generateand
anyone can quickly verify the validity af, usingU’s public key. However, it is hard
to forgeU'’s signatures without knowledge of his secret key. We stress that signing is a
noninteractive process involving only the signer, and that arbitrarily many messages can
be signed, with one pair of keys.

Many signature schemes are known. Based on various intractability assumptions, sev-
eral schemes have been proven secure even against chosen messag#] Jttack],
[14], [21]. Unfortunately, in these schemes, the signing process is not sufficiently fast for
some practical purposes. Furthermore, even more efficient schemes like?R[Shd
Rabin’s scheme ofl[/] (which achieve a “lower level” of security) are considered too
slow for many practical applications (e.g., electronic wallB}s[F]). In particular, these
signature schemes require performing modular exponentiation with a large modulus as
part of the signing process, and this in turn requires many modular multiplications. Fur-
thermore, these costly operations can start only once the message to be signed becomes
known. Consequently, these signhature schemes will become much more attractive if only
a few (say, two or three) modular multiplications need to be performed once the message
becomes known, while the more costly operations can be preprocessed. This leads to the
notion of an on-line/off-line signature scheme.

A New Notion

To summarize, in many applications signatures have to be produced very fast once the
message is presented. However, slower precomputations can be tolerated, provided that
they do not have to be performed on-line (i.e., once the message to be signed is handed to
the signer and while the verifier is waiting for the signature). This suggests the notion of
anon-line/off-linesignature scheme, in which the signing process can be broken into two
phases. The first phase, perfornaodidling, is independent of the particular message to be
signed; while the second phase is perforraedine, once the message is presented. We

are interested in on-line/off-line signature schemes in which the off-line stage is feasible
(though relatively slow) and both on-line signing and verification are fast.

A General Construction

We present a general construction transforming an ordinary digital signature scheme to
an on-line/off-line one. This is done by properly combining three main ingredients:

1. An (ordinary) signature scheme.

2. Afastone-timesignature scheme (i.e., a signature scheme known to be unforgeable,
provided it is used to sign a single message).

3. Afastcollision-free hashing scheme (i.e., ahashing scheme for which itis infeasible
to find two strings which hash to the same value).

The essence of the construction is to use the ordinary signature scheme to sign (off-line) a
randomly constructed instance of the information which enables one-time signature, and

later to sign (on-line) the message using the one-time signature scheme (which is typically
very fast). The hashing scheme is most likely to be used in practice for compressing long

messages into shortigs but it is not essential for the basic construction.

On-Line/Off-Line Digital Signatures 37

We present several practical implementations of the general scheme. In these imple-
mentations we use a modification of Rabin’s signature schénjer the role of the
ordinary signature scheme, and DEIS][as a basis for a one-time signature scheme.
The security of these implementations is based on the intractability of factoring large
integers and the assumption that DES behaves like a random cipher. The only compu-
tations (possibly) required in the on-line phase of the signing process are applications
of DES. Verification requires some DES computations (but not too many) and a sin-
gle modular multiplication. The costly modular computation, of extracting square roots
modulo a large (e.g., 512-bit) composite integer with known factorization, is performed
off-line. A reasonable choice of parameters enables the signing of 100-bitusigs
only 200 on-line DES computations (which can be performed much faster than expo-
nentiation).

One-Time Signature Schemes

One-time signature schemes play a central role in our construction of on-line/off-line
signature schemes. This is due to the fact that they seem to offer a much faster sign-
ing process than ordinary signature schemes. The disadvantage of one-time signature
scheme, namely, the fact that the signing key can only be used once, turns out to be
irrelevant for our purposes.

A general method for constructing one-time signatures was proposed in the late 1970s
by Rabin [L6] and several variants of it have appeared since ($8@. [The basic idea
is to use a one-way function to map blocks of the (uniformly chosen) private key into
corresponding blocks of the public key and sign a message (from a prefix-free code) by
revealing the corresponding blocks of the private key. A rigorous analysis of the security
of the basic scheme is implicit id], [14], and [21]. In this paper we present a compre-
hensive analysis of the security of several variants of the basic scheme. Furthermore, we
present new variants which improve over the known constructions in several respects. In
particular, we observe that signing error-corrected encodings of messages requires the
forger to come-up with signatures of strings which are very different from the strings for
which it has obtained signatures via a chosen message affai.observation can be
used to enhance the security of any signature scheme, but its effect is most noticeable in
the context of the one-time signature schemes mentioned above.

Security

To discuss, even informally, the issue of security, we need some terminoladnsen
message attads an attempt by an adversary to forge a user’s signature of some mes-
sage, after obtaining from the user signatures of messages of the adversary’s choosing;
in this scenario the user behaves like an oracle which answers the adversary’s queries.
The adversary’s choice of (message) queries may depend on the user’s public key and
the previous signatures the adversary has receivedandom message attadk an

1 Such atag is the result of compressing the document to signed, using a collision-free hashing scheme. See
above.
2 We remark that error-correcting codes have been used in a somewhat related setting lygNaor [

38 S. Even, O. Goldreich, and S. Micali

attempt of an adversary to forge a signature of a user after getting from him signatures to
messages which are randomly selected in the message’s{idwse messages are se-
lected independently of the adversary’s actions.) In both cases (chosen and random mes-
sage attacks), security means the infeasibility of forging a signature to any message for
which the user has not supplied the signature @xdstential forgeryn the terminology

of [8]).

A sufficient condition for an on-line/off-line signature scheme, as described above, to
withstand chosen message attack is that both signature schemes used in the construction
(i.e., ingredients 1 and 2 above) withstand such attacks. However, in particular imple-
mentations it suffices to require that these underlying schemes only withstand random
message attack. This is demonstrated in the following theoretical result, where we use
a signature scheme secure against random message attack, both in the role of the ordi-
nary signature scheme and in order to implement a one-time signature scheme. One-way
hashing is not used at all. The resulting scheme is secure against chosen message attack.
Hence we get:

Theorem. Digital signature schemes that are secure against chosen message attack
exist if and only if signature schemes secure against random message attack exist

We remark that the above theorem can be derived from Rompel’s work by observing
that the existence of a signhature scheme secure against known message attack implies
the existence of one-way functions, while the latter implies the existence of signature
schemes which are secure against a chosen message atjaelojvever, this alternative
proof is much more complex and is obtained via a far more impractical construction.
We remark that the preliminary version of our wof [which includes a proof of the
above theorem), predates Rompel's wazk][

Organization

Basic definitions concerning signature schemes are presented in Section 2. In Section 3
the general construction of an on-line/off-line signature scheme is presented. The con-
struction of a one-time signature scheme is addressed in Section 4. Concrete implemen-
tations of the general scheme, which utilize different constructions of one-time signature
schemes, are presented in Section 5. We conclude with a proof of the theorem stated
above (Section 6).

2. Some Basic Definitions

Following the informal presentation in the Introduction, we recall the following defini-
tions due to Goldwasset al. [8].

3 Random message attack is a special case of the so-kalteeh message attagkwhich the adversary is
given signatures to messages chosen arbitrarily by the user.

On-Line/Off-Line Digital Signatures 39

Signature Schemes

Definition 1 (Signature Schemes). A signature scheme is a trigi&ts, V), of prob-
abilistic polynomial-time algorithms satisfying the following conventions:

o Algorithm G is called thekey generatarThere is a polynomiak(-), called thekey
length so that on input 7, algorithmG outputs a paii(sk, vk) so thatsk, vk €
{0, 1}*™_ The first elementsk, is called thesigning keyand the second element is
the (correspondingjerification key

e Algorithm Siis called thesigning algorithm There is a polynomialn(-), called
the message lengtrso that on input a pai¢sk, M), wheresk e {0, 1}™ and
M e {0, 1}™™ algorithmSoutputs a string calledsignature(of messagé/ with
signing keysk). The random variabl&(sk, M) is sometimes written aS;x(M).

e Algorithm V is called theverification algorithm For everyn, every(sk, vk) in the
range ofG(1"), everyM e {0, 1}™™, and every in the range of5;(M), it holds
that

V(M, vk, o) = 1.

(It may also be required that (M, vk, o) = 1 implies thato is in the range of
Sik(M) for a signing keysk corresponding to the verification kex. However,

this intuitively appealing requirement is irrelevant to the real issues—in view of the
security definitions which follow.)

Note thatn is a parameter which determines the lengths of the keys and the messages
as well as the security of the scheme as defined below. We emphasize that the above
definition does not say anything about the security of the signature scheme, which is the
focus of the subsequent definitions. We remark that signature schemes are defined to
deal with messages of fixed and predetermined lengthr(i(@)). Messages of different
lengths are dealt with by one of the standard conventions. For example, shorter messages
can always be padded to the desired length, and longer messages can be broken into many
pieces each bearing an ID relating the piece to the original message (eigh, pinece
will contain a header reading that it is thi piece out ot pieces of a message with a
specific (randomly chosen) ID number). Alternatively, longer messages can be “hashed
down” to the desired length using a collision-free hashing function. For more details see
Section 3.3.

Types of Attacks

Goldwasseret al. discuss several types of attacks ranging in severity from a totally
nonadaptive one (in which the attacker only has access to the verification key) up to the
so-called chosen message attack (in which the attacker gets the verification key and may
get sighatures to many messages of its choice). We remark that a chosen message attack
is generally considered to be a satisfactory model of the most serious plausible attacks
to which a properly used real-life sighature scheme may be subjected. In this paper we
discuss the chosen message attack as well as a special (and hence weakkfarwrnof
messageattack (which we caltandom message attack

40 S. Even, O. Goldreich, and S. Micali

Definition 2 (Types of Attacks).

e A chosen message attack a signature schent&, S, V) is a probabilistic oracle
machine that on input (a parametef)dnd (a verification keyyk also gets oracle
access t&(-), where(sk, vk) is in the range of5(1"). The (randomized) oracle
Sk answers a query € {0, 1}™™ with the random variabl&(q) = S(sk,).

(For simplicity we assume that the same query is not asked twice.)

e Arandom message attack a signhature scheni&, S, V) is a probabilistic oracle
machine that on input"landvk also gets independently selected samples from the
distribution(R,, Sk(R,)), whereR, is a random variable uniformly distributed in
{0, 1}™™ and(sk, vk) is in the range oG (1").

The above definition does not refer to the complexity of the attacking machines. In
our results we explicitly specify the running times of the attackers as well as the number
of queries that they make (resp. number of signatures that they receive).

Success of Attacks

Goldwasseet al. also discuss several levels of success of the (various) attacks, ranging
from total forgery/breaking (i.e., ability to forge a signature for every message) up to
existential forgery/breaking (i.e., ability to forge a signature for some message).

Definition 3 (Success of Attacks). Consider an attack on input paramétand.a ver-
ification keyvk.

e We say that an attack has resultedatal forgeryif it outputs a progranx for a
time-bounde®l universal maching), so thatV (M, vk, U (z, M)) = 1 holds, for
everyM e {0, 1)™™,

e We say that an attack has resulteéxistential forgeryf it outputs a paifM, o), so
thatm e {0, 1}™™ andV (M, vk, o) = 1, andM is different from all messages for
which a signature has been handed over (by the signing oracle) during the attack.

The above definition does not refer to the success probability of the attacking ma-
chines. In our results we explicitly specify the success probability of the attackers. The
probability is taken over all possiblsk, vk) pairs according to the distribution defined
by G(1"), and over all internal coin flips of the attacking machines and the answering
oracles.

Security Definitions

Security definitions for signatures schemes are derived from the above by combining
a type of an attack with a type of forgery and requiring that such attacks, restricted to
specified time bounds, fail to produce the specified forgery, except for with a specified
probability. For example, consider the following standard definition.

4 The time bound can be fixed to a specific polynomial. Using padding arguments, it can be shown that the
choice of the polynomial, as long as it is greater than, 8&yis immaterial (seel[0)]).

On-Line/Off-Line Digital Signatures 41

Definition 4 (Standard Definition of Secure Signature Schemes). Asignature schemeis
said to besecuref every probabilistic polynomial-time chosen message attack succeeds
in existential forgery with negligible probability.

(A function f: N +— N is called negligible if, for every polynomiagb(-) and all
sufficiently largen’s, it holds thatf (n) < 1/p(n).)

Notice that there is nothing sacred in the choice of polynomials as specification for the
time bound or success probability. This choice is justified and convenient for a theoretical
treatment of the various notions. Yet, for deriving results concerning real-life/practical
schemes the more cumbersome alternative of specifying feasible time bounds and no-
ticeable success probabilities should be preferred. Furthermore, to be meaningful for
real-life/practical systems, security assertions should be made with respect to a fixed
machine model which does not allow speeding-up the computation on fix input lengths
by making the program more complex. Thus, whenever we refer to running time, it is
with respect to the following model.

Definition 5 (Machine Model). All algorithms are considered as programs for a fixed
universal RAM. Theunning time of an algorithnfon a particular input) is the sum of
the actual running time and the length of the program. flimming-time complexity of

a computational taskon inputs of lengtm) is the running time of the best algorithm
achieving the task for inputs of length

An alternative complexity bound that may be used is the size of boolean citcuits.
In contrast to any realistic model of computation, we ignore the small overhead created
when a program passes control to a subroutine and things of that sort.

Conditional Security

Since establishing the security of a signature scheme (as defined above) amounts to
proving lower bounds on some computational tasks, one can momentarily only hope
for conditional security assertions. Typically, such assertions relate the security of the
constructed scheme to the security of the underlying scheme or primitive. Such a relation
can be expressed (as done in the Introduction) by sayindfttiet underlying scheme

is secure in some sendhen the constructed scheme is secure in some other.sense
An alternative formulation, adopted in most of this paper, is the contrapositive. That
is, if the construction can be broken within certain parametgss., time bound and
success probability}hen the underlying scheme can be broken within ceftatated)
parameters Actually, our results are stronger (which is indeed desirable): the latter
breaking algorithm (i.e., for the underlying scheme) consists of a fixed algorithm that
uses the former breaking algorithm as a subroutine. We stress that such assertions are to
be understood as relating to the machine model of Definition 5.

5 We prefer the above model since it is more appealing from a practical point of view. We stress that our
proofs do not take advantage of the nonuniformity of the model.

42 S. Even, O. Goldreich, and S. Micali
3. The General Construction

We first define digital signature schemes with less-stringent security properties. Namely,

Definition 6. A one-time signature schenie a digital signature scheme which can

be used to sign a single message legitimately. A one-time signature scheewiis
against known (resp. chosen) message attack (of certain time complexity and success
probability) if it is secure against such attacks which are restricted to a single query.

Notice the analogy with a one-time pad, which allows private messages to be sent
securely as long as the secret pad is not used twice. An early version of a one-time
signature was suggested by Ralif][It required an exchange of messages between the
signer and signee. Schemes which avoid such an exchange were suggested by Lamport,
Diffie, Winternitz, and Merkle; se€lp]. In particular, a one-time signature scheme can
be easily constructed using any one-way function. For further details see Section 4.

We belive that the importance of one-time signature schemes stem from their simplicity
and the fact that they can be implemented very efficiently. Our construction demonstrates
that one-time signatures can play an important role in the design of very powerful and
useful signature schemes.

As our construction uses both a one-time signature scheme and an ordinary signature
scheme, we always attach the term “one-time” to terms such as “signing key” and
“verification key” associated with the one-time signature scheme. Hopefully, this will
help to avoid confusion.

3.1. The Basic Scheme

Let (G, S, V) denote an ordinary signature scheme anddes, v) denote a one-time
signature scheme. Below we describe our general on-line/off-line signature scheme. In
our description we assume that the security parameter is

Key Generation

The key generation for our on-line/off-line scheme coincides with the one of the ordinary
scheme. Namely, the signer ruBon input T' to generate a pair of matching verification
and signing keygVK, SK). He announces his verification k&K, while keeping in secret

the corresponding signing kegK.

Off-Line Computation

The off-line phase consists of generating a pair of one-time signing/verifying keys, and
producing an ordinary signature of the one-time verification key. Both one-time keys
and the signature are stored for future use in the on-line phase. We stress that the off-line
phase is performed independently of the message (to be later signed). Furthermore, the
message may not even be determined at this stage. Following is a detailed description of
the off-line phase. The signer runs algoritgran input I to select randomly a one-time
verification keyk and its associated one-time signing ké&y(This pair of one-time keys

is unlikely to be used again.) He then computes the signaturk,afsing the ordinary

On-Line/Off-Line Digital Signatures 43

signing algorithmS with the keySK. Namely,

» L sy (vk).

The signer stores the pair of one-time kegisk, sk), as well as the “precomputed sig-
nature,”x.

On-Line Signing

The on-line phase is performed once a message to be signed is presented. It consists of re-
trieving a precomputed unused pair of one-time keys, and using the one-time signing key
to sign the message. The corresponding one-time verification key and the precomputed
signature to the one-time verification key are attached to produce the final signature.
Namely, to sign messagdd, the signer retreives from memory the precomputed signa-
ture X, and the paiKvk, sk). He then computes a one-time signature

o sy (M).

The signature oM consists of the tripletvk, X, o).

Verification

To verify that the triple(vk, X, o) is indeed a signature &fl with respect to the verifi-
cation keyVK the verifier acts as follows. First, he uses algorit¥irto check that is
indeed a signature of (the one-time verification kely)with respect to the verification-
keyVK. Next, he checks, by runningthato is indeed a signature & with respectto the
one-time verification keyk. Namely, the verification procedure amounts to evaluating
the following predicate:

VVK(Uk7 E) A vvk(M’ U)

Key, Messageand Signature Lengths

We denote byk(-) and m(-) the key and message length functions for the ordinary
signature scheme. L&t N — N be a function bounding the length of the signature in
the ordinary signature scheme, as a function of the paramétather than as a function
of the message lengtm(n)). Similarly, we denote the corresponding functions for the
one-time signature scheme ky(-), my(-), andl(-), and the functions for the resulting
on-line/off-line scheme bi¢*(-), m*(-), andl*(-). Then the following equalities hold:

k*(n) = k(n),
m*(n) = my(n),
m(n) = kq(n).

In other words, the key length of the on-line/off-line scheme equals the one of the ordinary
scheme, whereas the message length for the on-line/off-line scheme equals the one of the
one-time scheme. In addition, the ordinary scheme must allow signatures to messages
of length equal to the key length of the one-time scheme. Efficiency improvements can

44 S. Even, O. Goldreich, and S. Micali

be obtained by using collision-free hashing functions. This allows us to'geh = n
and to deal with longer messages by hashing, as well as allowing ustgrset ki (n)
and to permit the one-time verification key to be hashed before it is signed. For details
see Section 3.3.

Finally, we remark that the length of the signatures produced by the resulting scheme
grows linearly with the key length of the one-time scheme, even in the case where hashing
is used! Namely,

[*(n) = ky(n) +1(n) +11(n).

3.2. Security

The basic on-line/off-line signature scheme can be proven secure against adaptive cho-
sen message attacks provided that both the original schemes (i.e., the ordinary scheme
(G, S, V) and the one-time schendg, s, v)) are secure against chosen message attack.
As usual in complexity-based cryptography, the above statement is not only valid in
asymptotic terms but also has a concrete interpretation which is applicable to specific
key lengths. Due to the practical nature of the current work, we take the uncommon
approach of making this concrete interpretation expficit.

Lemma l. Suppose that QT: N — N ande: N — R are functions so that the
resulting on-line/off-line signature scheme can be existentially broki@na chosen
Q(-)-message attackn time T(-) with probabilitys(-). Then for every ne N, at least

one of the following holds

e The underlying one-time signature scheme can be existentially hrakenchosen
(single message attackvith probability at least (n)/2Q(n) and within time

T(M) +te(N) + (tg(N) + ts(N) + ts(n)) - Q(N),

where k(n) is a bound on the time complexity of algorithm A
e The underlying ordinary signature scheme can be existentially brekea chosen
Q(n)-message attackvith probability at least (n)/2 and within time

T(N) + (tg(n) + ts(n)) - Q(N).

The lemma is to be understood in the contrapositive. That is, if both the underlying
(ordinary and one-time) signature schemes cannot be broken within the parameters
specified in the conclusion of the lemma, then the on-line/off-line scheme cannot be
broken within the parameters specified in the hypothesis.

Proof. We denote the resulting on-line/off-line signature schemg®y, S*, V*).
Suppose thaE* is a probabilistic algorithm which in tim& (-) forges signatures of
(G*, S*, V*), with success probability(n), via a choserQ(n)-message attack. In the
rest of the discussion we fixand consider the forged signature outpuHiy(at the end

6 This clearly results in a more cumbersome statement, but we believe that in the context of the current
paper the price is worth paying.

On-Line/Off-Line Digital Signatures 45

of its attack). This forged signature either uses a one-time verificatiorvkeyyhich

has appeared in a previous signature (supplied by the signer under the chosen message
attack), or uses a one-time verification kégywhich has not appeared previously. Thus,

one of the following two cases occurs.

Casel: With probability at leaskt(n)/2, algorithm F* forms a new signature using a
one-time verification key used in a previous signaturia this case we use algorithF
to construct an algorithnf;;, forging signatures under the one-time signature scheme
(9, s, v). Loosely speaking, algorithri; operates as follows. It creates an instance of
the ordinary signature scheme and many additional instances of the one-time signature
scheme. For all these instances, algorithpwill be able to produce signatures. Algo-
rithm F; will use the attacked instance of the one-time signature scheme in one of its
responses t&*. In caseF* halts with a forged signature in which the attacked instance
of the one-time scheme appears, then algorithrhas succeeded in its attack. Details
follow.

On inputvk and access to a chosesingle message attack on the corresponding
signing operatoss, algorithmF, proceeds as follows. Algorithri; runsG to obtain
a pair of corresponding key$K, VK) for the ordinary signature scheme. Without loss
of generality, assume th&* always ask€Q(n) queries (i.e., messages to be signed).
Algorithm F; uniformly selects an integére {1, 2, ..., Q(n)}, and invokes algorithm
F* on inputVK. (Motivating remark: algorithn¥; will use the very instance it attacks
in theith message to be signed fBr.)

Next, F; suppliesF* with signatures to messages [6f’s choice. The signature to
the jth message, denoteld;, is produced as follows. If # i, algorithm Fy runs
g to generate a pair of one-time keyygenoted(skj, vkj), and answers with the triplet
(vkj, Ssk(vkj), Ssk» (Mj)). Note that=; has no difficulty doing so since, having produced
SKandsk;, it knows the required signing keys. In the cas¢ ef i, algorithmF uses its
the single message attack, which it is allowed, to obtain a signatir¢he messagh/;
(relative to the verification keyk). Usingo and the ordinary signing ke§K, algorithm
F1 supplies the required signatupek, Ssk(vk), o).

Eventually, with probability at least(n)/2, algorithmF* halts yielding a signature
to a new message, denotil in which the one-time verification key is identical to one
of the one-time verification keys which has appeared before. With probabii@yr),
conditioned on the event that such a forged signature is outgtit [the forged signature
ouput byF* uses the same one-time verification key used in theignature, namely,
the one-time verification keyk. SinceM =# M;, algorithm F; obtains (and indeed
outputs) a signature to a new message relative to the one-time verificationkkey
Hence, the attack on the one-time signature scheme succeeds with probability at least
e(n)/2Q(n). We observe that the time complexity of algorithfn can be bounded by
ta(n) + T(n) + Q(N) - (tg(n) + ts(n) + ts(n)).

Case2: With probability at leaskt(n)/2, algorithm F* forms a new signature using a
one-time verification key not used in previous signaturda this case we use algorithm

7 We remark that it is very unlikely thatk; equalsvk. Yet, if this happens, then algorithfy can usesk
(which it knows) in order to forge signatures, relativeto(= vkj), to any message.

46 S. Even, O. Goldreich, and S. Micali

F* to construct an algorithnk,, forging signatures under the ordinary signature scheme
(G, S, V). Loosely speaking, algorithif, operates as follows. It creates many instances

of the one-time signature scheme. For each of these instances, algBsithithbe able

to produce signatures. Algorithf will use the chosen message attack on the ordinary
signature scheme to obtain signatures to these one-time verification keys and, using the
corresponding one-time signing keys, will be able to supplyF* with signatures to
messages of its choice. | halts with a forge signature in which a new instance of the
one-time scheme appears, then algoritiiinas succeeded in its attack. Details follow.

On input VK (and access to chosen message attack on the corresponding signing
operatorSsy), algorithmF, invokesF* on inputVK and supplied=* with signatures to
messages df*’s choice as follows. To supply a signature to fite message, denoted
M;j, algorithm F, starts by runningg to generate a pair of one-time keys, denoted
(sk, vkj). Algorithm F; then uses the chosen message attack to obtain an ordinary
signature, denotell;, to vk; (relative to the ordinary verification keyK) and replies
with the triplet(vk;, X, ss (Mj)). (Note thatF, has no difficulty producings (M;)
since it knows the required signing key.)

Eventually, with probability at least(n)/2, algorithmF* yields a signature to a new
message which contains &y-signature of a one-time verification key which has not
appeared so far. In this case, algoritfinobtains (and indeed outputs) a signature to
a new message relative to the ordinary verification W& Hence, the attack on the
ordinary signature scheme succeeds with probability at k@sy2. We observe that
the time complexity of algorithni, can be bounded by (n) + Q(n) - (tg(n) + ts(n))
and that it ask€)(n) queries. The lemma follows. O

Remark. The chosen message attacks (on the underlying schemes) described in the
above proof, are in fact oblivious of the corresponding verification key of the attacked
scheme. In Case 1 the chosen message attack (on the one-time sgferaquires
obtaining a signature undsyi to a messagéVl;, that is chosen by the adversary which

does not seek before. In Case 2 the chosen message attack (on the ordinary scheme
Ssk) requires obtaining signatures undgy to a sequence of randomly and indepen-
dently generated one-time verification keys. Thus, the resulting on-line/off-line signature
scheme resists general chosen message attacks (which may depend on the corresponding
verification key), even if the underlying ordinary and one-time signature schemes only
resist chosen message attacks which are oblivious of the corresponding verification key.

Recalling the standard definition of security (i.e., Definition 4), we get:

Theorem 1. The resulting on-line/off-line signature scheme is seuréhe standard
sensgprovided that the underlying ordinary and one-time signature schemes are secure

3.3. Efficiency Considerations

The off-line computation, in our scheme, reduces to generating an instance of the one-
time signature scheme and computing the signature of a single string (specifically, the
one-time verification key) under the ordinary signature scheme. The on-line phase of the
signing process merely requires applying the signing process of the one-time signature

On-Line/Off-Line Digital Signatures a7

scheme. Hence, our on-line/off-line scheme is advantageoube signeronly if the

signing algorithms of one-time signature schemes are much faster than signing algorithms
of ordinary schemes. Indeed, this seems to be the case if the one-time signature schemes
based on one-way functions, described in Section 4, are used and especially if DES is
used as a one-way function.

In addition, if the verification procedure in the ordinary signature scheme (and in the
one-time signature scheme) is much faster than signing in the ordinary scheme, then the
entire on-line (signing and verification) process is accelerated. This condition (i.e., much
faster verification) is satisfied in Rabin’s scheme as well as in RSA when used with a
small verification exponent (e.g., 3). Hence, attractive implementations of the general
scheme can be presented—see Section 5.

A major factor affecting the efficiency of the above scheme is the length of the strings to
which the ordinary and one-time signing algorithms are applied. A standard practice used
to reduce the time required for signing (as well as verification) is to use very fast hashing
functions which map long strings into much shorter ones. These hashing functions have
to be secure in the sense that it is hard to form collisions; namely, find two strings which
are mapped by the function to the same im&gessuming the intractability of factoring
(alternatively of extracting discrete logarithms), such functions can be constr@gted |
[8]. Yet, in practical implementations, much faster hashing schemes may be used. A
typical example is the MD5 recently suggested by Riv&g},[19].

The security of a scheme which uses hashing can be proven in a way analogous to the
proof of Lemma 1. That is, two cases are considered: the case that a forged signature
is formed using a hashed value which has appeared in previous signatures, and the case
that such a hashed value does not appear in the forged signature. In the first case we
derive an algorithm which contradicts the collison-free property of the hashing function,
whereas in the second case we proceed as in the proof of Lemma 1.

3.4. A Remark

Most ordinary signing algorithms are based on the computational difficulty of integer
factorization. Should some moderately faster factoring algorithm come about, thenlonger
ordinary verification and secret keys will be necessary. This will cause a significant
slowdown in the off-line stage, but not in the on-line stage, provided one-time signature
schemes are based on other computational assumptions (as suggested above). Thus, our
construction may become even more useful if ordinary signature schemes will become
slower due to increasing security requirements.

4. One-Time Signature Schemes Based on One-Way Functions

One-time signatures schemes play a central role in our construction of on-line/off-line
signature schemes. A general method for constructing one-time signatures has been

8 Actually, a lower level of security suffices for our purposes. Specifically, it suffices that the function is
one-way hashinghamely, given a preimage to the function it is infeasible to find a different preimage which is
mapped, under the hashing function, to the same imagelf is known that one-way hashing functions can
be constructed using any one-way functia#][[21], but this construction is very far from being practical.

48 S. Even, O. Goldreich, and S. Micali

known for a relatively long time; sed.§] and [12]. Here we present a comprehensive
analysis of the security of several variants of the basic method as well as new variants
which improve over the known constructions in several respects.

4.1. The Basic Construction

We start with thebasic constructiorfof one-time signature schemes based on one-way
functions). Letf be a one-way function; namely, we assume tha polynomial-time
computable but it is infeasible to inveftwith noticeable success probability (taken over
the distribution resulting from applying to a uniformly chosen preimage). The signing
key consists of a sequencerafpairs ofn-bit-long strings,(x?, x1), ..., (x8, x%), and

the verification key consists of the result of applying the one-way fundtitmeach of
these n strings. That is, the verification key consists of the sequence

(F X0, Ty, ... (FXQ), T(x3)),

where f is the one-way function. To sign the message - - or,, the signer reveals

X1, ..., X", and the signee applielsto the revealed strings and checks whether they
match the corresponding strings in the verification key. Loosely speaking, this scheme
is secure since otherwise we get a way to invert the one-way funétiéuarther details

will become obvious later.

4.2. Shortening the Lengths of Keys and Signatures

A somewhat unappealing property of the basic construction is that it uses very long keys
and signatures. Additional ideas can be used to reduce these lengths. We start with an
idea which is attributed inl[2] to Winternitz. The idea is to use oniyg + 1 strings, each

of lengthn, instead of the & strings used above. The signing key consists of a sequence
of m+ 1 (n-bit-long) strings,xo, X1, .. ., Xm, and the verification key consists of the
sequencef ™(Xg), f(X1),..., f(Xm), where f(x) denotes the string resulting from

by applying f successively times. To sign the message - - - o, the signer reveals

thex;’s for whichg; = 1 as well asy def 3o (Xo). Verification is done in the obvious

manner (i.e., applying to the suppliedk;’s and applyingf™ > to y). Intuitively,

the zero-component serves as an “accumulator” for the rest. To prove that the signature

scheme is secure we need to assume thHatone-way in a strong sense defined below.
Anotherideaisto break the message to be signed into blocks and to use each block as an

indicator determining how many timdshas to be applied to each of the individual strings

in the signing key so as to form the signature. Note that in the previous construction,

depending on the bits of the message to be signed, the funttisrapplied between

m and zero times t&p, and either once or not at all to eagh fori # 0. A precise

description, which combines both ideas, follows.

Construction 1 (Based on Accumulator and Block Partition). tem: N — Nbetwo
polynomial-time computable integer functions sothat 1(n) = O(logn),1 < m(n) =
poly(n), andt (n) dividesm(n), foralln € N. Let f: {0, 1}* — {0, 1}* be a polynomial-

On-Line/Off-Line Digital Signatures 49

time computable function. We consider the following one-time signature scheme with
message length function(.):

e Key generationOn input T', the key generator uniformly seleots x1, . .., Xm/t €

{0, 1}", wherem gef m(n) andt def t(n). The signing key consists of thesggs,

whereas the verification key is

_ def t_1). t_ t_
§= @MY (x0), 271 (xp), .., T2 7 Xmpt).

e Signing To signh a messag® € {0, 1}™, its t-bit-long blocks,oq, ..., om, are
interpreted as integetand the signature is

m/t
FR57 (x0), £27770), o F2 7O (i),

o \erification The components of the signature vector are subjected to the corre-
sponding number of applications df and the result is compared with the ver-

ification key. Namely, to verify thatzy, zi, ..., zZm,t) constitutes a signature to
M = (01, ..., 0oms) relative to the verification key = (yo, Y1, - .., Ym/t), One
computes

F DO 0) £(zy), ., £ (Ze)

and compares the resulting vector to the vegtor

In what follows we refer to the keys and signatures as haviag(fin/t) components
numbered by integers from 0 to/t.

In case the functiorf is one-to-one, the security of Construction 1 can be proven
assuming thaff is one-way. Otherwise, a seemingly stronger assumption is required.
This assumption refers to the infeasibility of performing a task which we call quasi-
inverting.

Definition 7 (Quasi-Inverting). Letf: {0, 1}* — {0, 1}* be a polynomial-time com-
putable function. Given an imagg, the task ofguasi-inverting fony is to find an
x and ani = poly(]y|) so thatf'*1(x) = f'(y). (Fori = 0, the standard notion of
inverting is regained.)

We stress that in casleis one-to-one, quasi-invertinfjis equivalent to the traditional
notion of invertingf . Otherwise,f 1 f does not necessarily equal the identity function,
and consequently' *1(x) = fi(y) does necessarily mean thait an inverse of under
f (i.e., f(X) = y). Yet, we believe that quasi-inverting is infeasible for many natural
one-way functiond® Here and below, we refer to the complexity of quasi-invertingn

9 That is, the string Qis interpreted as 0, the string @1 as 1, etc.

10 Wwe remark that, using the ideas of Levir(], it follows that the existence of pseudorandom generators
imply the existence of polynomial-time computable functions for which quasi-inverting is infeasible. Using
the result of Hastadt al. [9], it follows that one-way functions exist if and only if polynomial-time computable
functions for which quasi-inverting is infeasible exist. However, the latter result is obtained via an impractical
construction and thus the equivalence just stated is of little relevance to this paper.

50 S. Even, O. Goldreich, and S. Micali

input taken from one of the distributiorf$"(U,,), wherem = poly(n) andU, denotes a
random variable uniformly distributed ovéo, 1}".

Lemma 2. SupposethatTN — Nande: N — Rare functions so thatthe above one-
time signature scheme can be existentially brokiara choselfsingle message attack
time T(-) with probabilitye (-). Thenfor every ne Nand somei< m(n)/t(n)-(21™—1),
the function f can be quasi-inverted on distribution(U,) in time T(n) with success
probability

e(n)
(m(n)/t(n)) - 2tm+1"’

where U, denotes a random variable uniformly distributed oy@r1}".

In the statement of Lemma 2, as well as in all other lemmata in this section, we ignore
the time required to compute the functibrin the forward direction!). Namely, the quasi-
inverting algorithm (of the conclusion) actually runs in tiffign) + 2t - (m/t) - t¢(n)

(rather thanT (n)), wheret; denotes the complexity of computinfy This omission
is justified since the additive term is negligible in all reasonable applications of such
lemmata.

The statement of Lemma 2, as well as its successors (i.e., Lemmata 5 and 7), contains
some element of nonuniformity; specifically, the value .dhdeed, our proof incorpo-
rates this value in the quasi-inverting algorithm thus introducing an element of non-
uniformity. This can be eliminated, using standard techniques (i.e., seleitormly
in the relevant range), at the cost of decreasing the success probability by another factor
of (m(n)/t(n)) - 2t™,

Proof. LetF be aprobabilistic algorithm that existentially breaks the one-time scheme,

via a chosen (single) message attack, in tinge with probabilitye(-). Hence, for every

n € N, with probability ¢ oef e(n), algorithm F first asks for a signature of some

M e {0, 1}™ and then produces a signature to saie# M. LetM = by - - - by, and

def

M’ = ¢y - - - Cyyt, Wherem def m(n) andt = t(n). Then one of the following two cases

OCCurs.

Casel:a j exists sothatjp< ¢;. Intuitively, in this case we can use téh component
of the signature forged bl to quasi-invertf (on the(2' — 1 — by)th iterate off).

Case2: Z;“:/} b > Zlmz/tl ¢j. Intuitively, in this case we can use the zero-component
of the signature forged bl to quasi-invertf (on the(}_ bj)th iterate off).

We start by presenting a parametrized family of quasi-inverting algorithms, denoted
{ Ak}, which uses the forging algorithif as a subroutine. The first paramete(0 <
j < (m/t)), represents the signature-component that the algorithm tries to use in order to
quasi-invert the functiorf . The second parametét,represents the distributiof(U,)

On-Line/Off-Line Digital Signatures 51

on which the algorithm tries to quasi-inveft We denotel, def (m/t) - (2 — 1) and

Ti %2t _ 1 for all otheri’s (i.,e.,i = 1,...,(m/t)). (T; corresponds to the number

of times thatf is iterated to form théth component of the verification key, where the
components are indexed byD) ..., (m/t).) On inputy, supposedly taken from the
distribution fK(Up), algorithmA, x proceeds as follows. It forms a verification key as in
the key generation, except that tjin component isf i=%(y). That is, the verification
key is set toyo, Y1, - - -, Ymyt, Wherey; = fTi¥(y) andy, = fTi(x) with x; uniformly
distributed (in{0, 1}"), for all i # j. Next, A; « invokesF with this verification key,
obtaining a signature request = by - - - by,t. The rest of the description is presented
in two cases, depending on the value of the paranjeter

For j # 0. If T} —b; > k, then the algorithmA; « supplies the required signature as
follows (otherwiseA, \ halts). Thejth component of the required signature is obtained
by iteratingf ony for (T; —b;) —k times, whereas the other components are obtained by
iterating f on each of the correspondimngs for the appropriate number of times. (Note
that f i-P)=k(y)isindeed inf % (y;) = f P (fTi—¥(y)) as expected.) Having received
the desired signature, algorithifnmay form a signature to a new message. Suppose that
this signature is to a message in which fiib component, denoted is greater than

b % T; — k. Then this yields an element, denotgdof f=¢(fP(y)). Algorithm Ak
outputs f2-1(z), which is in f ®=1 f2(y) and thus a quasi-inverse gf (In casef is

one-to-onez = f~¢(fP(y)) = fP=¢(y) and f<P1(z) = f~(y).)

For j = 0. Similarly, ifZimz/{ b > k, then the zero-component of the signature desired
by F is formed by iteratingf onyfor (Y™ by) —k times. (Heref ")~ (y) is indeed

in f~To-Zib) (yo) = £~(To-ZLiB) (£ To—k(y)) as expected.) Again, having received the
desired signature, algorithfimay form a signature to a new message. Suppose that this
signature is to a message in which the sum of the components, denatéekss thark.

Then this yields an element, denotgcf f~To=9(fTo—k(y)). Algorithm A, x outputs
fk=¢=1(z), which is in f ~(To~0 -1 { To—k(yy and thus a quasi-inverse gf (In casef is
one-to-onez = f~To=O(fTok(y)) = feK(y)and f*°1(z) = f1(y).)

To analyze the performance of these algorithms, we use the following notations which
refer to the behavior of the forging algorithf Forj = 1, ..., (m/t), we denote by
pj (b) the probability that algorithnf, after asking for a signature to a message in
which the jth component equals, forges a signature to a message in which ftie
component is greater thén(The events considered here correspond to Case 1 discussed
above.) Similarly, we denote b (b) the probability that algorithnf, after asking for a
signature to a message in which the sum of the components dxjfialges a signature
to a message in which the sum of the components is lessth@ime event considered
here corresponds to Case 2.) Clearly,

m/t T

PTG

=0 k=0

52 S. Even, O. Goldreich, and S. Micali

We conclude that either

m/t Tj—1 e
DD 6]
i=1 k=0 2
or
T[) 8
> polk) > 5.)
k=1

Now, we consider the effect of thg (b)’s on the algorithmsA; . We first observe that
eachA, x invokesF on the “correct” distribution (i.e., on the distributide(U?), .. .,

f Tt (U,T/t), where theJ! representindependent random variables uniformly distributed
over{0, 1}"). For everyj # 0 andk < T;, we define random variabl&s - - - by, (resp.

C1 - - - Cmyt) representing the message for whichas required a signature (resp. for which
F has forged a signature). The probability thgf quasi-inverts on input distribution
fKU,) equals

Prob[bj < Tj — k) A (¢j > Tj — K)]

v

Problb; = Tj — k) A (¢j > Tj — K]

Similarly, the probability thaiy, x quasi-inverts on input distribution(U,,) equals

pb[(z/ b= k) A (Z/ - k)} pbKZ/ b = k) A (Z/ - k)}
= po(k).

Thus, if (1) holds then, for somie < Ty, we haverm:/; pi(i) > ¢e/(2- (2" = 1)). It
follows that an algorithm, which selecjsuniformly in {1, ..., (m/t)} and invokesA ;,
quasi-invertsf on f'(Uy,) with probability at least

v

mto g

> — p) > S —

= m/t (m/t) - 2t+1

On the other hand, if (2) holds then, for some To, algorithmAg; quasi-invertsf on
f'(Un) with probability at least

. &
Po(i) > 2 (D 2 -1

The lemma follows. O

Remark. Fort = 1, the statement of Lemma 2 is tight in the following sense. Any
algorithm inverting f (in time T (n)) with probability ¢(n) yields an(m - T (n)-time)

chosen message attack on the one-time signature scheme which existentially forges a
signature with probability - (1 — ¢(n))™ ~ m- ¢(n) (for e(n) « 1/m). Hence, in

the case wheh = 1, the security loss of a facton is inevitable. Similarly, for general

t > 1, we get an inevitable loss of security bymit factor. However, we do not know

if the security loss of a'Xactor is essential in this case.

On-Line/Off-Line Digital Signatures 53

4.3. Enhancing Security by Use of Error-Correcting Codes

As just remarked, the security loss of a factorroft in the above construction is
inevitable. To avoid this loss, we need a new idea. Loosely speaking, the idea is to
encode messages via a good error-correcting code and sign the encoded message rather
than the original one. This idea stands in contrast to the common practice of trying to
shorten the message to be signed. Yet, the moderate increase in the length of the message
to be signed will provide a substantial benefit. The reason being that in order to forge a
signature the adversary needs to invert the one-way function on many points rather than
on asingle one. For the sake of simplicity, we apply the idea first to the basic construction
(of Section 4.1). However, before doing so, we recall some basic definitions and facts
from the theory of error-correcting codes.

Background on Error-Correcting Codes

Definition 8 (Error-Correcting Code [11]). Lein,nY,d: N — N. An (m(-), m'(-),
d(-))-code is an (efficiently computable) mapping,of m(-)-bit-long strings tam'(-)-
bit-long strings so that, for every two#£ y € {0, 1}™™,

dist(1(x), i (y)) = d(n),

where diste, 8) denotes the Hamming distance (i.e., number of mismatches) between
a andp.

For our purposes, we do not need the code to have an efficient decoding algorithm.
Hence, for our purposes, we can use random linear codes (i.e., a mapping defined by
multiplication by a randonm x m’ Boolean matrix). By the Gilbert—Varshamov bound
[11], [22] a uniformly chosem x mY matrix defines aiim, m’, d)-code with probability
1 — p provided that

d-1 n
YT)<pz
i=1

For example, we canset = 2m, p = 2-™2, andd = p-m’, whereH,(p) < %1(,0 =
will do).** Alternatively,m’ = 3m, p = 2-™2, andd = p-m', whereH,(p) < 3 (0 = 3
will do). For small values ofn” andm, larger values ofp are attainable by specially
designed codes. For example, for= 79 andm’ = 128, a code with distanad = 15
(p > 0.117) exists, whereas fom = 80 andm’ = 160,d = 23 (p > 0.143 [1],
Appendix A.1] is obtained. Fom = 128, we use a code with distande= 13 and
codewords of lengtm’ = 185, yieldingp > 0.07.

aBl=

Basic Scheme with Error-Correcting Codes

Loosely speaking, to sign a messadene first computes the codewded™" w(M)and
then sign<C. In addition to verifying, as usual, th@tis properly signed, the verification

11 As usual,Ha(x) def —(xlog, X + (1 — x) log,(1 — x)) denotes the Binary Entropy Function.

54 S. Even, O. Goldreich, and S. Micali

procedure checks th&indeed equals(M). Hence, a chosen message attack needs to
produce a signature to a strif@j that is not only different fron€, but is also at distance
at leastd from C.

Construction 2 (Using Error-Correcting Codes). Let m', d: N — Nbe polynomial-
time computable integer functions, let {0, 1}* — {0, 1}* be an(m(-), m'(-), d(-))-
code, and letf: {0,1}* — {0, 1}* be a polynomial-time computable function. We
consider the following one-time signature scheme for message length fungtion

e Key GenerationOn input T, the key generator uniformly seleot§, xi, ..., x°

s My
xt e {0, 1}", wherem’ gef m'(n). The signing key consists of thexlé’s, whereas
the verification key isf (x?), f(x}), ..., f(x%), f(x%).

e Signing To sign a messagel € {0, 1}™, 01 - - - oy d=ef,u(M) is computed and

XPh o X
is revealed as the signatureb.

o Verification To verify a signature to a messalye e {0, 1}™, we first compute the
codewordC = u(M). Next, we subject the components of the signature vector to
the corresponding number of applicationg afnd finally compare the result against
the verification key. Namely, to verify thé;, ..., zy) constitutes a signature to
M = (o1, ..., om) relative to the verification key = (y9, yi,...,y%, yi), the
codewordos - - - oy < (M) is computed and (z) is compared withy”, for
eachi.

As a special case (i.e., by letting be the identity function), we derive the basic
construction (mentioned in Section 4.1 above):

Definition 9 (Basic Construction). Théasic constructioris derived from Construc-
tion 2 by settingu to be the identity transformation.

Lemma 3. Suppose that TN — Nande: N — R are functions so that the one-time
signature scheme of Constructi@can be existentially brokewia a chosen(single

message attachkn time T(-) with probabilitys(-). Then for every ne N, the function

f can be inverted in time {n) with success probabilityp (n)/2) - e(n), wherep (n) def

d(n)/m’(n).

As a special case we derive a bound for the security of the basic construction. Namely,

Corollary 4. Suppose that TN — N ande: N+ R are functions so that the basic
construction can be existentially brokena a choser(single message attachkn time

T (-) with probabilitys(-). Then for every ne N, the function f can be inverted in time
T (n) with success probabilitygl/2m(n)) - e(n).

On-Line/Off-Line Digital Signatures 55

Proof of Lemma 3. Let F be a probabilistic algorithm that existentially breaks the
one-time scheme, via a chosen (single) message attack, inrtimavith probability
e(-). Hence, for every € N, with probabilitye (n), algorithmF first asks for a signature
of M € {0, 1}™ and then produces a signatureMd # M. Let u(M) = by --- by and
w(M’) = ¢ - - - cyy. By definition of the codely, # ¢ for at least g fraction of thei’s
in{l,...,m}.

The inverting algorithmA, operates as follows. On inpyt algorithm A uniformly
selects € {1,...,m}andj € {0, 1}. Next, A forms a verification key as in the key
generation, except that th@ + j — 1)st component ig/, and invokesF with this
verification key. With probability%, algorithm F asks for the signature, to a message
denotedM, that A can supply (i.e., théth bit of (M) equalsj). In this case, with
probabilitys(n), algorithmF returns a signature of a messadgéand with probability
at leasto theith bit of . (M’) is different from the th bit of w(M). This yields an inverse
of y under f, and the lemma follows. O

Scheme with Block Coding

We now combine the shortening ideas of Section 4.2 with the coding idea just presented.
In fact, we only use one of the shortening ideas; specifically, the partition of the binary
string intot-bit-long blocks. Each block is assigned a pair of strings in the signing key
(resp. verification key). The partition into blocks fits very nicely with error-correcting
codes, providedn'/t < 2'. Namely, we partition then-bit-long message inton/t

blocks (each of lengtl) and encode thesm/t blocks usingm’/t blocks (each of
lengtht). Our encoding scheme views thig't blocks as elements i@ F(2!) specifying

a polynomial of degreém/t) — 1 over this field, and the codeword is the sequence

of values this polynomial yields ofm'/t) different elements of the field (hence the
requirementn’/t < 2Y). This encoding, known as block-coding and specifically as BCH
code, has the property that different messages (viewed as polynomials) are mapped to
codewords that agree on at mast/t) — 1 values. Hence, the “block distance” between
codewords corresponds tm’ — m)/t.

Construction 3 (Based on Block Partition and Coding). ltem, m: N — N be poly-
nomial-time computable integer functions so thatl(n) = O(logn), 1 < m(n) <
m'(n) = poly(n), M (n)/t(n) < 2!™, andt(n) divides bothm(n) andm'(n), for all

n e N.Let f: {0, 1}* — {0, 1}* be a polynomial-time computable function. We consider
the following one-time signature scheme for message length furction

e Key generationOn input T', the key generator uniformly seleot$ xi, ..., x

] m//ta
xrln,/t € {0, 1}", wherenm’ gef m’(n) andt d:mt(n). The signing key consists of these

x!'s, whereas the verification key is
t_ t__ t__ t_
F21), F270 0 - F2 OG0 T2 06).

e Signing To signh a messag®l € {0, 1}™, its t-bit-long blocks,oq, ..., omt, are
interpreted as elements aF(2') specifying a polynomial of degrete— 1 over
the field (i.e.,o; is interpreted as thé — 1)st coefficient of the polynomial). The
values of the polynomial at som& /1t field elements are now interpreted as integers,

56 S. Even, O. Goldreich, and S. Micali
denotedrs, ..., T/t € {0, 1, ..., 2" — 1}, and the signature
0y §2—1-11,y1 /it (0 21ty ol
fr(xy), f XDy s Ky) € I (Xinyt)

is computed.

e Verification The polynomial and its values at tim'/t points is constructed as
above, the components of the signature vector are subjected to the corresponding
number of applications of and the result is compared with the verification key.

Lemmab5. Let m(n) = (1 + «) - m(n), for some constant > 0. Suppose that

T: N+~ Nande: N — R are functions so that the above one-time signature scheme can
be existentially broketvia a chosetfsinglé message attack time T(-) with probability

e(-). Thenfor every ne Nand some i< (2! —1), the function f can be quasi-inverted
ondistribution f (Uy) intime T(n) with success probability /(1+a)2!™)-&(n), where

U, denotes a random variable uniformly distributed oy@r1}".

Proof. Using the same ideas as in the proofs of the last two lemmata. O

Remark. We can set 2= m'/t anda = 1. Then, fort > 4, we get security at least

as in the basic construction while using keys and signatures which are only four times
as large as those used in Construction 1. In general, when séttiagr?/t, the bound

on success probability of attacks in the new construction is related to the bound in the
basic construction by a factor ¢f + «)?/at, which is typically smaller than 1.

4.4. Further Enhancing Security

The reader may note that the enhanced security asserted in the previous subsection
stems from the fact that when using a forging algorithm we have a better chance that
it inverts the function on the desired component (provided that we choose the desired
component at random). We did not take advantage of the fact that this forging algorithm
inverts the function on many components. To do so we have to consider the problem
of simultaneously inverting a one-way function on many images, and to show how this
problem reduces to forging signatures in Constructions 2 and 3. Once this is done, the
security of the signature scheme is based on the difficulty of inverting the function on
many images, a task that may be more difficult than inverting the function on a single
image'? For example, the run-time versus success-probability tradeoffs, in exhaustive

12 e stress that hardness here is expressed by two parameters: specifically, the running time and success
probability of the inverting algorithm. In this setting it is not known whether inverting a function on many
unrelated images is harder than inverting it on a single image. Specifically, it is hot known whether, when
fixing the running time, the success probability of inverting the function on several images decreases with the
number of images. The well-known amplification of one-way functions (attributed to Yao and impligif)n [
guarantees that the success probability of inverting the function on several images decreases with the number
of images, provided that the time bound of the inverting algorithm is decreased as well. Specifically, the ratio
of the running time over the success probability, which represents the hardness of inverting the function on
several images, does not grow with the number of images. This makes the above-mentioned amplification
method less attractive for our purposes.

On-Line/Off-Line Digital Signatures 57

search for inverting a function, are less favorable when it is necessary to invert the
function on several instances (see Assumption 3 in the subsequent section).

Lemma 6. SupposethatTN — Nande: N — Rarefunctions sothat Constructién
can be existentially brokervia a chosen(single message attackn time T(-) with
probabilitys(-). Letk N — N so that Kn) < d(n). Thenfor every ne N, the function
f can be simultaneously inverted otmlximagesin time T(n) with success probability

1 (P dm | dm \ "
2“”“(-[& m(n) — | '8(”)”<2m/(n)> oo

J

where the approximation holds providethlk <« d(n).

Proof. Similar to the proof of Lemma 3. Fixing any € N, the inverting algorithm,
A, operates as follows. On inpyt, . . ., Yk, algorithm A uniformly selects different
elements, denotéad, i, ..., ik IN{1,...,m}andjs,..., jx € {0, 1}. Next, Aforms a
verification key as in the key generation, except that for elveryk the (2i; + j; — 1)st
component iy, and invokes the forging algorithnf,, with this verification key. With
probability 1/2, algorithm F asks for the signature, to a message denMedhat A
can supply (i.e., for every, thei, th bit of (M) equalsj;). In this case, with probability
g(n), algorithmF returns a signature of a messagé With probability at leastd/n) -
(d-=0/(M —-21)---((d—-k+1)/(m — k + 1)), the bit locations; throughiy of
w(M’)y andu (M) are all in disagreement. This yields inverseypthroughyy underf,
and the lemma follows. O

Using similar ideas, we get:

Lemma?7. Letni(n) = (1 + «) - m(n), for some constank > 0. Suppose that
T: N~ Nande: N — R are functions so that Constructidhcan be existentially
broken via a chosen(single message attackn time T(-) with probability ¢(-). Let

k: N — Nsothatkn) < am(n) and U, denote arandom variable uniformly distributed
over {0, 1}". Then for every ne N and someyi, ..., ikn < (2™ — 1), the function

f can be simultaneously quasi-inverted ofmkimages taken from the distributions
fi1(Uy) through f«o (Up), in time T(n) with success probability

1 (M e —(G/mm) o ko
kM) < Jl:!, 1+a—(j/m(n)) -e(n) = (7(1—1-04) : 2“”)) -e(n),

where the approximation holds providethk <« « - m(n).

5. Concrete Implementations

We now suggest concrete implementations of our general on-line/off-line signature
scheme offering fast on-line computations (both for signer and verifier). The imple-
mentations differ by the construction they use for a one-time signature scheme. This

58 S. Even, O. Goldreich, and S. Micali

section is not intended to provide a comparative analysis of these alternatives; such an
analysis is provided in the previous section. The purpose of this section is to demonstrate
the viability of our general construction by presenting several realistic implementations
based on off-the-shelf products.

5.1. The Ingredients

All the concrete implementations use Rabin’s schein@ ih the role of the ordinary
signature scheme and the DES[[as a basis for a one-way function, which is in turn
used to construct a one-time signature scheme. The constructions of one-time signature
schemes used are those presented in the previous section, and the implementations differ
only by the specific construction (of a one-time signature scheme) which they use.

Some of our implementations have marginal security which results from the fact
that using the DES as a basis for a one-way function starts to become problematic (in
many applications). Indeed, an alternative commercial product providing a more secure
one-way function is long due. Needless to say that analogous implementations of our
scheme, using such a hypothetical realistic one-way function, will then follow and enjoy
analogously improved security.

The Ordinary Signature Scheme

In the role of the ordinary signature scheme we use a modification of Rabin’s scheme
[17]. In this modification we use integers which are the product of two large (say 256
bits long) primes, one congruent to 3 modulo 8 and the other congruent to 7 modulo 8.
For such an integeN and for every integer € Zy, (the multiplicative group modulo

N) exactly one of the elements in the ﬁtdﬁf {v, —v, —2v, —2v} is a square modulo
N (see P3] and [8]). Moreover, each square modul has exactly four distinct square
roots modN. We define thextendedquare root of moduloN, denoted%/v modN,

to be a distinguished square root modiNo(say, the smallest one) of the appropriate
member ofS,. Computing%/v modN is feasible if the factorization dfl is known, and

is considered intractable otherwise.

The message space is associated with the elements of the above multiplicative group.
Larger messages are first hashed into such an element. It is assumed that the message
space satisfies the following conditionult£ u, thenS, NS, = @. This can be enforced
by using only values of the second eighthZjf (i.e.,{v € Z§: N/8 < v < N/4}).

Consider a user A, whose public key is a modulNis. User A alone knows the
factorization of Na. Signing messag#l, in the modified Rabin scheme, amounts to
extracting an extended square rootMf modulo Na. Anyone can verify thatv is a
legitimate signature dfl by computingx? modNa and checking that it indeed belongs
to the setSy.

The scheme described so far is not secure against existential forgery. It is not clear
whether this problem is really important to our application; nevertheless padding by a
random suffix (seel[7]) overcomes the obvious atta&k.

13 Actually, the random padding is not necessary in applications such as ours where the signature scheme
is applied to a randomly looking string (e.g., obtained by hashing the message).

On-Line/Off-Line Digital Signatures 59

We assume thatitis infeasible to break the modified Rabin scheme, even after a chosen
message attack, when the integers which are used are the product of two large (say 256
bits long) primes.

The One-Time Signature Scheme

Forthe one-time signature scheme, we use any of the constructions presented in Section 4.
These constructions exhibit a tradeoff between key and signature size, on one hand, and

computation time and security on the other hand. In particular, we propose using the

DES algorithm as a one-way functidr(x) def DESo(M); that is, the value obtained by

encrypting a standard message, dendtedising DES with key0, wherex e {0, 1}.

We stress that our “effective” key length is merely 55 bits, and the zero-padding yields a
standard DES key of 56 bits. This convention is adopted in order to “destroy” the known
relation between (standard) DES keys, given by the equalit$ (M) = DES-(M),
wherea denotes the string derived framby flipping all bits. In what follows whenever

we refer to the DES we mean the “one-way functidntlefined above.

The Collision-Free Hashing Scheme

In the role of the collision-free hashing function we use any standard way of using DES
in a hashing mode. (See, for exampl&g][) Alternatively, the recently suggested MD4

or MD5 may be used (sed§ and [L9]). We recommend thatl map arbitrarily long
strings to 128-bit-strings (i.em = 128). For some applications, one may be content
with m = 64.

5.2. Four Implementations

We now describe four versions of the concrete implementation. We start with a straight-
forward implementation of the general scheme with the modified Rabin scheme playing
the role of the ordinary signature scheme and the DES one-way function being used to
construct a one-time signature scheme following the basic construction of Section 4.
The other three implementations differ from the first one only in the way in which the
one-way function is used to construct a one-time signature scheme.

Implementation 1. The modified Rabin scheme, with primes of length 256, is used

as the ordinary signature scheme. As a one-time signature scheme, for message length
m = 128, we use the basic construction (see Definition 9) with DES in the role of the one-
way function. Finally, fast collision-free hashing functions are used to hash arbitrarily
long strings tam-bit strings.

The key length for the one-time signature schemens? where, in the case of a DES-
based one-way functiom, = 55. The total length of the signature in the resulting on-
line/off-line scheme is®-n+512, which for our choice of parameters (ira.= 128 and
n = 55) yields 21,632. The most time-consuming operation in the off-line signing phase
is the computation of an ordinary signature in the modified Rabin scheme, which amounts
to extracting square roots modulo 256-bit primes. On-line signing only involves retrieving
relevant information from memory. Verification amountst®ES computations, which

60 S. Even, O. Goldreich, and S. Micali

may be performed in parallel, and a single multiplication modulo a 512-bit integer (i.e.,
verification in the modified Rabin scheme). The signatures and keys can be shortened
by a factor of~ t if we are willing to increase the number of DES computations by a
factor of 2 — 1. Fort = 4 this tradeoff seems worthwhile. Namely,

Implementation 2. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementation. As a one-time signature scheme, for message
lengthm = 128, we use Construction 1, with= 4. Again, DES is used in the role of

the one-way function.

Now, the key length for the one-time signature schem@ is m/t) - n, and the total
length of the signature in the resulting on-line/off-line scheme is thlis h/t) -n+512.
For our choice of parameters (i.mn,= 128,t = 4, andn = 55) we get a signature length
of 4142. The number of DES operations increases by a factdr-ofl2= 15. However,
the security of the current implementation is decreased by a factar ef1)/t = 3.75.
Improved security can be obtained by using Construction 3 as a basis for the one-time
signature scheme. Namely,

Implementation 3. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementations. As a one-time signature scheme, for message
lengthm = 120, we use Construction 3, with' = 160 andt = 5. Again, DES is used

in the role of the one-way function.

Now, the key length for the one-time signature scheme- ig2/t) - n, and the total
length of the signature in the resulting on-line/off-line scheme g /t) - n 4+ 512.
For our choice of parameters (i.en,= 120,m" = 160,t = 5, andn = 55) we get a
signature length of 7552. The number of DES operations is about three times as high as
in the previous implementation. However, the security of the current implementation is
even better than in Implementation 1. To get even better security we use Construction 2:

Implementation 4. The ordinary signature scheme and the collision-free hashing func-
tion are as in the previous implementations. As a one-time signature scheme, for message
lengthm = 120, we use Construction 2, with = 185 andd = 13. Again, DES is used

in the role of the one-way function.

Now, the key length for the one-time signature scheme-ig2 n, and total length
of the signature in the resulting on-line/off-line scheme is thus3 n + 512. For our
choice of parameters (i.en = 128,m’ = 185, andn = 55) we get a signature length
of 31,037. The number of DES operations is 185 (instead of 128 in Implementation 1).
The complexity bounds for the four implementations are tabulated in Table 1 (for the
choice of parameters specified above). For the reader’s convenience we also present the
relative security of these implementations. The security figures are upper bounds on the
success probability of some reasonably restricted attacks fully described and analyzed
below. (Hence, the lower the security figures are, the better.)

On-Line/Off-Line Digital Signatures 61

Table 1

Implementation

1 2 3 4
Message length 128 128 120 128
Key length 14,080 1,815 3,520 20,350
Signature length 21,632 4,142 7,552 31,037
DES operations 128 1,920 4,800 185
1 1 1 1

Securit 211
ecunty 1400 370 2600 12000

Security

Our analysis is based on two assumptions. The first is that it is practically infeasible to
existentially forge signatures to the modified Rabin scheme, even after a chosen message
attack. In other words, we assume that the probability that such a practical attack succeeds
is negligible and hence we ignore it altogether. Our second assumption is that the DES-
based one-way function cannot be inverted better than by exhaustive search (in the
{0, 1)°° “effective” key space). A more accurate statement follows. We stress that this
assumption does not contradict current knowledge concerning the cryptanalysis of DES
(and in particular differential cryptanalysis method of Bilham and Shazhjir [

By the proof of Lemma 1, a breach of security in the on-line/off-line scheme yields
either a breach of security in the modified Rabin scheme or a breach of security in the
one-time scheme. We stress that this lemma asserts that if the on-line/off-line scheme
is broken with probabilitye (n), then either Rabin’s scheme is broken with probability
e(n)/2 (within the same time and query complexities) or, with probabélity) /2, one
of the instances of the one-time scheme is broken. Assuming that a breach of security
in the modified Rabin scheme is infeasible, we ignore the first possibility and are left
with the second. Before continuing, we now explicitly state our assumption concerning
the security of the DES-based one-way function. Intuitively, the assumption states that
the best tradeoff between the running time of an inverting algorithm and its success
probability is obtained by the “exhaustive search” algorithm (i.e., an algorithm which
uses its time to select random preimages and check if they are mapped to the given
image).

Assumption 1. Let D %' 255 ~ 3.6 x 106 denote the number of elements in the
domain of the DES-based one-way functibhen a randomized algorithm running in
time that allows only T DES evaluatigrsicceeds imvertingthe DES-based function
on a given imagewith probability at most 7D.

We start by evaluating the security of the first implementation presented above (i.e.,
Implementation 1). Combining Assumption 1, Lemma 1, and Corollary 4, we conclude
that a choserQ-message attack taking time succeeds in existential forgery with
probability at mos{(T - (2m - Q))/D (wherem = 128 denotes the message length in

62 S. Even, O. Goldreich, and S. Micali

Table 2
Q T £
1
10¢ 1 14,000
1
7
10° 10 1, 400
1
o 108 —
140

Implementation 1). Thus, the success probability of an attack which asisfarssages
to be signed and runs in time allowifigDES computations is bounded by

256.T-Q
5

We stress thad is upper-bounded by the number of messages signedibgke instance
of our on-line/off-line sighature scheme, throughout the “life time” of this instance. It
(i.e., Q) is not the total number of messages which can be signed by all instances of
our system. Recall that an instance of the signature scheme is obtained by running the
key generator. Typically, each user generates a new instance of the signature scheme
which it uses for a bounded time period. Thus, we believe that it is safe to assume that
in a real-life application, the number of messages being signed by a single instance of
the system is at most 10,000. Note tAatthe time spent by the attacker, is typically
much larger tharQ. Several estimates for the success probability of forging signatures
by attacking the DES-based one-way function are given in Table 2. As abalenotes
the time spent (i.e., number of function evaluations) in the att@a#enotes the number
of message signed, andlenotes an upper bound on the success probability

We conclude by evaluating the security of the other three implementations. This is
done using the corresponding lemmata of Section 4. First, using Lemma 3, it follows
that the probability of breaking Implementation 4 is smaller by a factor 9 than the
bound presented for the probability of breaking Implementation 1. In the analysis of
Implementations 2 and 3 we use a seemingly stronger assumption concerning the DES.
Intuitively, this assumption asserts that also quasi-inverting the DES (see Definition 7)
cannot be done better than by exhaustive search:

Assumption 2. For every i > 1, let X; be the distribution obtained by uniformly
selecting a preimage for the DES-based function and iterating the function i times on
this preimage Then for every i < 32, a randomized algorithm running in time that
allows only T DES evaluationsucceeds ilguasi-invertinghe DES-based function on

X, with probability at most JD.

The constant 32 in the above assumption is the smallest value which suffices for our
analysis. Now, using Lemma 5, we observe that Implementation 3 uvith g-m =2
andt > (14+w)?/20 = g) maintains the security of Implementation 1. (Here, as before,
security means a bound on the success probability of forging algorithms running within

On-Line/Off-Line Digital Signatures 63

Table 3
Q T £2 £3 &4
1 1 1
10* 10°
3,700 26,000 120,000
1 1 1
7 = = -
10f 10 370 2,600 12,000
1 1 1
1¢* 1¢° 37 260 1,200

some time bounds.) Actually, security is increased by a factot & @vhich fort =5
yields~ 2). Similarly, inspecting Lemma 2, it follows that the probability of breaking
Implementation 2 is at mog®2' — 1)/t times bigger than the bound peresented for
Implementation 1 (which for = 4 means a factor of 3.75).

The bounds for the success probability of forging signatures in the last three imple-
mentations are given in Table 3. The bounds on the success probabilities of Implemen-
tations 2—4 are denoted, 3, ande4, respectively, and) andT are as above.

Some of the above figures provide marginal security. This is due to the fact that DES
has a key-space of marginal size. Indeed, it would have been desirable to have a practical
one-way funtion for which inverting requires an exhaustive search over a domain with
270 elements (rather tharP9 or even better 20 elements. Corresponding probability
bounds for the above implementation and the last attack@.es,10* andT = 10®) are
given in Table 4. In addition, we tabulate the probability bounds also for a much stronger
attack in whichQ - T = 10%°. The parameters,, ¢3, ¢4, Q, and T are as above. In
addition, we consider a paramef@i(= 27° or 2!10) representing the size of the domain.

The bounds on the success probabilities of Implementations 3 and 4, can be improved
using the following reasonable assumption. For the anslysis of Implementation 4, we
only need the first part of the assumption.

Assumption 3. A randomized algorithm running in time that allows only T DES eval-
uations succeeds igimultaneously invertinthe DES-based function on k given images
with probability at mos{T /D). Furthermore the same holds with respectsonulta-
neously quasi-invertinthe DES-based funtion on k given imageach distributed as

in Assumptior?.

Table 4
D Q T €2 £3 &4
1 1 1
270 104 10°
12,000 85,000 390,000
1 1 1
2110 10 10°
1.3-106 9.10L6 40- 106
1 1 1

210 g 108

13.10° 9.108 40-10°

64 S. Even, O. Goldreich, and S. Micali

Table 5
Q T £3 &4
1 1
10t — —
41,000 108
1 1
7 _
10t 10 2,600 600, 000
1 1
10 108 — —
260 6, 000

In particular, using Lemma 6 with = 2,3 (k < d = 13), it follows that the
probability of breaking Implementation 4 is at most rfpx(15.4 - p)?, (256- p)3},
where p is the bound computed by using Lemma 3. Similarly, using Lemma 7 with
k =2 (k < am = 40), it follows that the probability of breaking Implementation 3 is
at most maxp, (128- p)?}, wherep is the bound computed by using Lemma 5. Hence,
our security bounds (for DES; i.eD = 25%)) are improved as shown in Table 5.

6. A Related Theoretical Result

Using the underlying ideas of our general construction, we obtain the following equiva-
lence:

Theorem 2. Digital signature schemes that are secure against a chosen message attack
exist if and only if signature schemes secure against random message attack exist

Proof. The necessary condition is obvious. To prove the sufficient condition, we present
the following construction that uses much of the structure of our general construction.
Let (G, S, V) be a signatrue scheme secure against random message attack. By a
padding argument, we may assume that the message length for pararegtealsn
(i.e.,m(n) = n). We consider two instances of this scheme, the first with parametea
the second with parameten2 We now construct the signature sche(@, S*, V*) as
follows.
The key-generation algorithnG*, consists of usings twice to produce two pairs
of matching public and secret key®/K;, SK;) and(VKy, SKy). The signing algorithm,
S*, operates as follows. First, obliviously of the message to be signed, algo&thm
randomly selectsi2strings of lengtm each, denoted,, . . ., ro,. The concatenation of
these strings, denotédis called theeference sequenc8econdS* computes

def

T = S ().

The last step depends on the message to be signed. To sign a miglssadpe - - - by,
where eachy; € {0, 1}, algorithm S* computes, for each, o; def Sk, (P2,). The
signature of messagd consists of the reference sequencés authenticatiort, and
a “signature sequence’, whereo def o1 -+ - on. The verification algorithm is obvious
from the above.

On-Line/Off-Line Digital Signatures 65

Parenthetical Remark By a minor modification we can obtain an on-line/off-line sig-
nature scheme, in which no computation is necessary in the on-line signing phase. In the

modified schemes; def Ssk, (rj) is precomputed for every (1 < j < 2n), and in the
on-line phase itis merely necessary to retrieve the appropriate precorsp(itedthose

j which equal 2—b; for somei). Unfortunately, verification in theG*, S*, V*) scheme

is substantially more expensive than in the origif@&l S, V) scheme, specifically by a
factor ofn 4+ 1. Hence, the scheme presented in this section does not offer much hope
in terms of practical implementations (sinneshould be set large enough to resist a
birthday attack®).

We now prove that ifG*, S, V*) is existentially forgeable via ahosenmessage
attack, then(G, S, V) is existentially forgeable via@ndommessage attack. The proof
is very similar to the proof of Lemma 1.

Let F* be a probabilistic polynomial-time algorithm which forges signatures of
(G*, S, V*), with success probabilitg(n) > 1/ poly(n), via a chosen message at-
tack. Such a forged signature either uses a reference sequence which has appeared (as a
reference sequence) in a previous signature or uses a reference sequence which has not
appeared previously. Thus, one of the following two cases occurs.

Casel: With probability at leaste(n)/2, algorithm F* forms a new signature using
a reference sequence which has appeared in a previous signatiehis case we
construct an algorithmfy, forging signatures ofG, S, V) as follows. On inputvK
(and access teandommessage attack on the correspondfg), algorithm F; runs
G to obtain a new pair of corresponding ke§&K, VK). Then algorithmF; initiates
algorithm F* on inputVK* = (VK, VK), and supplies it with signatures to messages of
F*’s choice.

To get a signature for the message= b, - - - b,, requested by *, algorithmF; asks
for n new randomSsk-signatures (i.e., signatures mouniformly selectech-bits-long
messages). (Here we employ a random message attegj.9suppose thak; is given
the message-signature paiis, o1), ..., (on, on), Where thep;’s are uniformly and
independently distributed and thgs were obtained by applyingsto the corresponding

oi's (i.e., 00 = Ssk(pi)). Algorithm Fy setsryi_p, gef pi and completes the reference
sequencé& = (rq,...,rsn) by selecting the remainingn) r;’s at random. Algorithm
F1 now uses its secret keyK to produce a signaturkE to the reference sequence

(ie., X def Ssk(ry---ran)). Finally, F; providesF* with the triple (f, X, o), where

def .
o = 010, @S a signature d¥l.

We stress that it is unlikely that the saméit-long string appears in two different
reference sequences giveritd (since the;’s are uniformly chosen from a huge space,
i.e., of size 2). Eventually, with probability at least(n)/2, algorithm F* yields a
signature to a new message, dendwd= b, - - - by, in which the reference sequence,

14 In practical implementations will not be the actual length of the message, which is much too long, but
rather the length of the hashed value. In a birthday attack we"Ud¢rturbations” of a desired message
to match its hashed value with one df2values signed by the signer in a random message attack. Hence,
should be large enough so that it is infeasible to obt&iA gignatures.

66 S. Even, O. Goldreich, and S. Micali

denoted, is identical to a reference sequence used in a previous message. We denote
this previous message W’ = c; - - - ¢,. SinceM # M’, a positioni exists in which

the two messages differ (i.ey, # ¢;) and it follows that the signaturl! contains a
signatureSsk(rj), wherer; is the jth block inf and j = 2i — by. (We stress that the
signatureSsk(rj) was not part of the signature obtained kéf, sincec; # by). With very

high probability, ther-bit-long stringrj has not appeared in any position in any reference
sequence, except for its appearance injtheposition off. Hence, we obtained a®x-
signature to the string for which a signature has not been seen so far. Outputting this
(rj, Ssk(rj)) pair, algorithmF; achieves existential forgery, via a random message attack.

Case2: With probability> ¢(n)/2,algorithm F* forms a new signature using a reference
sequence not used in previous signaturels this case we construct an algorithR,
forging signatures ofG, S, V) as follows. On inpu¥/K (and access tamndommessage
attack onSsi), algorithmF, runsG to obtain a new pair of corresponding k€, VK).
Then algorithmF; initiates algorithmF* on inputvVK* = (VK VK), and supplies it with
signatures to messagesfof's choice.

To get a signature for the messade= b; - - - b, requested by *, algorithmF, asks
for a newSsk-signature on a random message (of length) 2Suppose thak, is given
the message-signature péir X), wherer is uniformly chosen an@ was obtained by
applyingSsktor (i.e., ¥ = Ssk()). Algorithm F, partitionsr into 2n strings, each of
lengthn;i.e.,(ry, ..., ran) = F.Usingits secret kegK, algorithmF, obtains signatures
via Sk to eaclr;, for j = 2i —b; and 1< i < n. We denote this sequence of signatures
by o = (o1, ..., 0n), Whereg; is a signature Vidsy t0 ra_p, (i.€.,0i = Sk (ra-p))-
Algorithm F, givesF* the triple(f, , o) as a signature dff.

Eventually, with probability at least(n)/2, algorithmF* yields a signature to a new
message which contains &x-signature to a new reference sequence. If this happens,
thenF, outputs thisSsk-signature, hence committing existential forgery (via a random
message attack).

Hence, in both cases a contradiction is derived and the theorem follows. O

Acknowledgments

We are most grateful to the anonymous referees for their many valuable comments. We
are particularly grateful to them for urging us to provide a rigorous treatment to the
security of the concrete implementations. This comment made us inspect carefully the
complexity of the reductions and propose ways of improving them. We wish to thank
Mihir Bellare for pointing out some errors in an earlier version of the paper and for
suggesting how to correct them. We also wish to thank Eli Biham, Ronny Roth, and Adi
Shamir for helpful discussions.

References

[1] Bellare, M., and Micali, S., How To Sign Given Any Trapdoor FunctiBmpc. STOC88, pp. 32—42.
[2] Biham, E., and Shamir, A., Differential Cryptanalysis of DES-Like Cryptosystdmsnal of Cryptology
Vol. 4, No. 1, 1991, pp. 3-72.

On-Line/Off-Line Digital Signatures 67

[3] Damgard, I., Collision-Free Hash Functions and Public-Key Signature Sch&merypt87, LNCS,
Vol. 304, Springer-Verlag, Berlin, 1988, pp. 203-216.

[4] Even, S., Secure Off-Line Electronic Fund Transfer Between Nontrusting Parti&man Card2000:
The Future of IC CardsD. Chaum and I. Schaumuller-Bichl (eds.), North-Holland, Amsterdam, 1989,
pp. 57-66.

[5] Even, S., Goldreich, O., and Yacobi, Y., Electronic Walktlvances in CryptologyProc. Crypto 83,
D. Chaum (ed.), Plenum, New York, 1984, pp. 383-386.

[6] Even, S., Goldreich, O., and Micali, S., On-Line/Off-Line Digital Signatufedyances in Cryptology
Proc. Crypto89, G. Brassard (ed.), LNCS, Vol. 435, Springer-Verlag, Berlin, 1990, pp. 263-277.

[7] Goldreich, O., Two Remarks Concerning the Goldwasser—Micali—Rivest Signature Sékaraaces in
Cryptology—Crypt@6, A. M. Odlyzko (ed.), LNCS, Vol. 263, Springer-Verlag, Berlin, 1987, pp. 104—
110.

[8] Goldwasser, S., Micali, S., and Rivest, R. L., A Digital Signature Scheme Secure Against Adaptive
Chosen-Message AttackSIAM Journal on Computing/ol. 17, No. 2, April 1988, pp. 281-308.

[9] Hastad, J., Impagliazzo, R., Levin, L. A, and Luby, M., Construction of Pseudorandom Generator from
Any One-Way Function, Manuscript, 1993. See preliminary versions by Impagliazzo, Levin, and Luby
in Proc. 21st STOCand by Hastad iProc. 22nd STOC

[10] Levin, L. A., One-Way Functions and Pseudorandom Generaansibinatorica Vol. 7, No. 4, 1987,
pp. 357-363.

[11] MacWilliams, F. J., and Sloane, N. J. AThe Theory of Error-Correcting Code#orth-Holland,
Amsterdam, 1977.

[12] Merkle, R. C., A Digital Signature Based on a Conventional Encryption Func#aivances in
Cryptology—Crypt@7, C. Pomerance (ed.), LNCS, Vol. 293, Springer-Verlag, Berlin, 1987, pp. 369—
378.

[13] Naor, M., Bit Commitment Using Pseudorandom Generatensg. Crypto89, pp. 123-132.

[14] Naor, M., and Yung, M., Universal One-Way Hash Functions and Their Cryptographic Applidatam,
21st STOC 1989, pp. 33-43.

[15] National Bureau of Standardsgderal Information Processing Standayd@&ibl. 46 (DES 1977).

[16] Rabin, M. O., Digital Signatures, iRoundations of Secure ComputatjdR. A. DeMillo et al. (eds.),
Academic Press, New York, 1978, pp. 155-168.

[17] Rabin, M. O., Digitalized Signatures and Public-Key Functions as Intractable as Factorization, Report
TR-212, Lab. for Computer Science, MIT, January 1979.

[18] Rivest, R. L., The MD4 Message Digest AlgorithRroc. Crypto90, A. J. Menezes and S. A. Vanstone
(eds.), LNCS, Vol. 537, Springer-Verlag, Berlin, 1991, pp. 303-311.

[19] Rivest, R. L., The MD5 Message-Digest Algorithm, Internet Request for Comments, April 1992.

[20] Rivest, R. L., Shamir, A., and Adleman, L., A Method for Obtaining Digital Signatures and Public-Key
CryptosystemsCommunications of the ACMWol. 21, No. 2, 1978, pp. 120-126.

[21] Rompel, J., One-Way Functions Are Necessary and Sufficient for Secure SignBroeg2nd STOC
1990, pp. 387-394.

[22] Roth, R., Topics in Coding Theory, Lecture Notes, Computer Science Dept., Technion, Haifa, 1993.

[23] Williams, H. C., A Modification of the RSA Public-Key Encryption ProcedUfE£E Transactions on
Information TheoryVol. 26, No. 6, 1980, pp. 726—729.

[24] Yao, A. C., Theory and Applications of Trapdoor FunctioRsoc. IEEE Sympon Foundations of
Computer Sciengd 982, pp. 80-91.

