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Abstract— This paper presents a new ID based non-interactive key sharing system based on the
Weil pairing and the Tate pairing and show that the collusion attacks against the proposed IDNIKS is
infeasible, by proving that if some conventional collusion attacks should succeed the discrete logarithm
problem on the elliptic curve or discrete logarithm on the finite fields could be solved. This paper
also presents some new digital signature schemes based on the pairing. The schemes can use same
information data of the new IDNIKS, and apply the multiple or group signature and the signature

which can specify the verifiers.
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1 Introduction

Nowadays, the various classes of cryptosystems are
being applied to the information transmission and stor-
age systems. The more efficient and secure cryptosys-
tems are desired for the constructions of the world-
wide digital communication networks. The fast en-
cryption and decryption cryptosystem is indispensable
for the secure digital communication networks with
the large capacity. The systems of the common key
cryptosystems are currently the essential techniques
for the fast encryptions and decryptions. The com-
mon key-sharing system then is a key technology for
the secure and convenient common key cryptosystems.
One of the common key-sharing systems can be real-
ized by using the public key cryptosystem with the
public key verification center. However, this system 1is
necessary to rewrite the list of public key, when the
new users subscribe the cryptosystem. The ID based
non-interactive key sharing system with the trustful
center (hereafter, we shall call this system IDNIKS)
realizes the convenient cryptosystem which generates
the common key with ID information such as E-mail
address, thus the system is not necessary to rewrite
the list of public key[1],[2],[3][4],[5]-

This paper presents a new ID based non-interactive
key sharing system and some digital signature schemes
all of which are based on the pairings on the elliptic
curves over finite fields. Section 2 describes properties
of the pairings and introduces a new ID based non-
interactive key sharing system based on the Weil pair-
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pairing, key sharing, non-interactive, group digital signature

ing and the Tate pairing both of which are defined on
the elliptic curve over finite field. Section 3 discusses
the security of the proposed IDNIKS and show that the
collusion attacks against the proposed IDNIKS is in-
feasible, by proving that if some conventional collusion
attacks can succeed the discrete logarithm problem on
the elliptic curve or discrete logarithm on the finite
fields can then be solved. Section 4 presents some new
digital signature shames based on the Weil pairing.
These shames are not able to execute so fast as the
conventional schemes but the schemes can use same
information data of the new IDNIKS proposed in this
paper, and apply the multiple or group signature and
the signature which can specify the verifiers.

2 IDNIKS based on Pairing

In this section, we propose the IDNIKS based on
the pairing, and a basic method of the key sharing.
The several pairings over the elliptic curve, such as the
hight pairing, the Tate pairing and the Weil pairing
have been widely known[6],[7],[8].

2.1 Pairing

Let (, ) denote a pairing which is a mapping from
the additive group A to the multiple group M, then
the pairing (, ) € M of a,b,¢ € A holds the following
properties:

(a,b) l1forallaec A

if and only if 6 =0

non-degenerate

(a,b) = (bya)”! alternating
(a+be) = (a,e)(b0) Jinear
(a,b+¢) = (a,b)(a,c) } bil

The following equations hold by the property of the
bilinear

(ma,b) = (a,b)™



(a,mb) = (a,b)™

2.2 IDNIKS based on Pairing

Using the pairing, We propose the IDNIKS as fol-
lows.
Let ID; denote the ID information
of user 2. The trustful center publicizes the algorithm
(, ) and f(), where (, ) is a pairing and f() is a
function which embeds the ID information ID; to the
element P; of the group A. The center generates a

Preparation :

large random secret integer ! and calculates S; = [ P;.
The center then send S; secretly to user ¢. These data
are summarized as follows.

Center’s secret data ! (random integer)
Center’s public algorithm :  f(), (,)
User 2’s secret data S;

User 2’s public data : ID;, P;

For user a and b, ID,, I D are the ID information
of user @ and b, P, = f(ID,) and Py, = f(ID;) are the
elements of group A and S, = I[P, and Sy = lP, are
the secret informations of users a and b respectively.

We assume that the alpha-
betical order of ID, and IDy is given. The user a

Key sharing scheme :

generates the common key K4, € G with the user b
by
K = (Sa;Pb) = (Pa;Pb)l

and the user b generates the common key K3, € G
with the user a by

I{ba = (Pa)Sb) = (Pa)Pb)l'

Applying the properties of the pairing to the equa-
tions, it is clear that the equation K4, = K, holds. If
the order of 1D, and 1Dy is not given, let

kap = (SG)Pb) = (Pdan)l

and

kba = (Sb,Pa) = (Pb)Pa)la

then the user a generates the common key with the
user b by
I{ab = kab + ka_bl

and the user b generates the common key with the user
a by
Kpg = koo + ki1

2.3 IDNIKS based on Weil and Tate Pairing

The proposed IDNIKS in the above section can use
In these
case, the algorithm ( , ) uses the elliptic curve over
finite field E/F,. The elliptic curve should satisfy the
following conditions:

Weil or Tate pairing as the pairing ( , ) .

1. ¢ is larger than 2160

2. There exists the integer k such that #E/F,|¢" —
1 and ¢F ~ 2102¢

The first condition is necessary because the discrete
logarithm problems on the elliptic curve(ECDLP) is
made difficult enough. The second is necessary be-
cause the discrete logarithm problems on the finite
field over Fx(DLP) is made difficult and the pairing
algorithm (, ) can be computed practically.

The construction algorithm of the appropriate ellip-
tic curves are written in Appendix.

e In this section, we use the pairing on the elliptic
curve, however we can use the Weil pairing on
hyper elliptic curves in a straightforward man-
ner.

e The proposed IDNIKS can be constructed based
on other pairing.

2.4 IDNIKS based on Pairing and ID Vector

In this section, we propose an extended method of
IDNIKS based on the paring.

2.5 Construction
Let user a’s ID vector, ]7;, such that

24 Pan ).

P = ( Py Pao
The center generates the symmetric matrix, L, such
that

L = Lt
lll ll2 lln
121 l22 l2n
lnl ln2 e lnn

as the secret parameters.
The center calculates the user a’s secret vector, E),
such that

S, =P.L

and send §a) to the user a through a secure channel.
The user a calculates a shared key with the user b,
Kb, such that

Ko = S.B

- 7L
lig lig - lip Py
lo1 199 -+ oy Pyo
= (PaIPaQ"'Pan)
lnl ln2 lnn an
Pyy
n n n Pb
= (Z li1 Pg; Zlnpai Zlinpai) ’
i=1 i=1 i=1 .
an
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where point and point product means Weil pairing.
Therefore

H
A

Z Z]PGZ)Pb])

Paz;Pb]

.

||::]:

I{ab X I{ba =1.

3 Security Analysis

In this section, we discuss the security of the new
IDNIKS proposed in section ?.

3.1 Security of Center Secret

We first consider whether the center secret [ can
be revealed or not. If the attacker of the user a try
to find [ by P, and S, = I[P, or by (P,,P,) and
Ka = (P,, P,)!, it cannot be revealed, because [ is
a discrete logarithm of S, and P, and (P,, P,) and
K4p. Therefore any user cannot find /. Even if the at-
tacker a tries to forge the another user’s key K.l by
P, and S, = lP,, it cannot be forged, because S, and
S, are secret of the users b and ¢, and these cannot be
computed without /. Therefore only one user cannot
forge Kpec.

3.2 Collusion Attacks

Here we discuss the collusion attacks against the
proposed IDNIKS. We show that if the conventional
collusion attacks succeed, the discrete logarithm prob-
lem on finite fields(DLP) and discrete logarithm prob-

lem on the group of elliptic curve over finite fields(ECDLP)

can be solved. Then as long as the given DLP and
ECDLP are not able to be solved, any conventional
collusion attacks becomes infeasible.

Let n be the number of colluders and i denote the
i-th colluders. The ID information, the public infor-
mation and the secret information of the i-th colluder
are denoted by ID;, P; and S; respectively.

Users secret data

We now discus whether the secret of the user b can
be forged or not. The public data P, € E/F, of the
user b can be denoted by the linear combination of the
colluders data {P;} such that

P, = wiPi4uPy+4 -4 u,Py,. (1)

Then if the coefficients u; of Equation (1) are revealed,
the secret data of the user b can be forged by

Se = wS1+uSe+ -+ u,S,
ul(lP1)+u2(lP2)++un(an)
H{urPr +usPo+ -+ un Pp)

= P

In order to certify the complexity of the problem to
computes the coefficients u; of Equation (1), we shall
define the generalized elliptic curve discrete logarithm
problem (GECDLP) as follows.

GECDLP is a problem for computing u; and us such
that

P=uG + UQGQ,

where P is any point on E/Fg and (G1,G5) are gen-
erators of E/F.

Let the order of G4 and G5 denote #(G1) and #(G2)
respectively where #(G1)|#(G2). If GECDLP could
be solved, the coefficient uy, us such that P = u; Gy +
u9G5 and the coefficient vy, vy such that Q) = v1Gy +
v9(9 are derived and ECDLP ) = [P could be solved
by the following equations.

luy = vy (mod #(G4))
(

luy = vy (mod #(G2))
I = 2 (mod #(G1) )
T ow ged(ur, #(G1))
] = 2 (mod —#(Gz) )
T uy ged(ua, #(Ga))

We next consider the equivalence between the problem
to solve Equation (1) and GECDLP. If Equation (1)
could be solved, I; ; of

P, = El”

J#t

(1<i<n-—2) (2)

could be derived and the equation

-1 Ly - linoa Py
Iy -1 —lyn_n Py
ln_oyln_99-- —1 P,_s

ll}n—l ll,n

lQ}n—l lQ,n Pn—l
T : : P,

ln—2,n—1 ln—2,n

could be solved under the assumption of the determi-
nant of the left hand side of n — 2 x n — 2 matrix is co-
prime to #(G2) where P,_1 = G, P, = G5. If the de-

terminant is not coprime to #((G's), we can choose the

another solutions /; ; of Equation (2). Consequently
we have
Py lll,n—l lll,n
P2 _ lIQ,n—I ll2,n Pn—l
2 P )
Pn—2 l;z—2,n—1 l;—?,n

GECDLP of P; and (G1,G3) then could be solved if
Equation (1) could be solved.



We shall next show that if GECDLP could be solved
Equation (1) could be solved. GECDLP’s of P; and
(G1,G>) are denoted by

P lin lip

Py lar Izs Gy

2 I R < G ) '
P lng oo

) )

GECDLP of P, and (G1,G5) is denoted by
P, = v1G1 4+ v9Gs.

Then the following relations hold

v1G1 + vaGay. = Z ul; 1 Gy + Z u;l; 2 Gy

i=1 i=1

VU1

n
E w;l; g
i=1
n
E u;l; o
i=1

Clearly if v; and [; ; are given, u; can be solved. Here

V2

we finished the proof of the equivalence between GECDLP

and the problem of the solving of Equation (1). If the
group of the elliptic curve is cyclic, it is clear that the
GECDLP equal the ECDLP. Therefore the problem of
the solving of Equation (1) is equivalent to ECDLP in
this case.

There are some other collusion attacks. The collu-
sion attack to forge the Kp. from the colluder’s secret
Si without S, and S, are the same problem of the forg-
ing of the S}, from the S;. The collusion attack to forge
the K. from the common keys K;; of the outsiders 2
and j becomes the difficult problem because without
knowing the center secret [, the problem to forge Ky,
result in the Diffe-Hellman type problem.

4 Digital Signatures based on Pairing

4.1 Identity Based Digital Signature Scheme
based on Pairing

We propose an ID based digital signature scheme
based on the pairing.

4.1.1 Construction

Let the signer a’s public algorithms are the pairing
(, ) and a function f() which embedded the ID in-
formation 7D, of the user a to the elements P, € A.
Let the signer a’s secret data are a large integer ! and
@q = lP,. Then the user a choose a random element

R € A and make R and R’ = IR public. These data

are summarized as follows.

User a’s secret data
User a’s public algorithm

In order to create the signature, the signer a first
choose a random integer » and embed the massage m
to M € A. The signer then signs the message M €
E/F, by:

SO = Q.+ rM,
s = rR, Signature : (S(?) 5{1).

The signature is a pair of 530) and Sél). The verifier
computes the following pairing from the signature.

vi = en(S R)=e,(Pa, R) en(M,R)"
va = en(Pa, R) = en(Pa, R)l
v = e (M,SV) =e,(M,R)

The verifier can check the validity of the signature by
checking the validity of the following equations:

VaV3 = Vi,

Assuming the existence of the trustful center, letting
the secret data [ be the center’s secret, (), =l P, and
R, R’ = IR are computed by the center, the R and R’
are publicized by the center. Consequently, the signa-
ture can be created by the signer and the verifier can
then check the validity of the signature by using the
center public common data R, R’ and P, = h(ID,).

4.2 Identity Based Multiple Digital Signature
Scheme based on Pairing

We propose identity based multiple digital signature
schemes based on the pairing. This scheme can specify
verifier.

4.2.1 Construction

The pairing ( , ) € A is the center’s public algo-
rithm. Center’s public parameters are points , Ry,
and Ry(=[R1), on the elliptic curve, E, and his secret
parameter is scalar, /.

Center calculates signer A;’s (1 < 7 < n) secret key,
@i, such that

Qi =R,

and send (); to signer A through a secure channel.
These data are summarized as follows.

Center’s secret data ! (random integer)

Center’s public algorithm 70, (,), ,R,R
Signer A;’s secret data D Q;
Signer A;’s public data ID;, P;

The signature algorithm is given by the following;:



Step 1. Signer Ay converts message m to point, M,
on the elliptic curve, E/F, and generates
random number, r;. Signer A then calcu-

lates 5’%0) = @1+ M and Sfl) =r R, and
sends 511, and Sy o to signer As.

Step 2.
A5 then calculates Sgo) = (Q2+72510, Sél) =
7’2551) and 552) = ro Py, Signer As then
sends Séj) (0 < j <2) to signer Ag.

Step 3. Signer Ag generates random number, r3 and
calculates SE(,,O) = Q3+r3S§°), Sél) = r3551),
Sé2) = r35£2), and Sés) = r3Psy., Signer Ag

then sends Séj) (0 < j < 3) to signer Ay.

Step 4. Signer A; generates random number, r; and

calculates SZ»(O) = Qi+7;iSi—1,0, SZ(J) =751

where 2 < j < ¢ -1, and SZ»(i) =rP_1.,
Signer A; then sends Si(J) (0 <j<i)to
signer A;yq.

Step 5. Signer A,, generates random number, r,, and

calculates

Sr(zj) = T 57(13’_) 1

H rePio1 (2<j<n),
k=j

Tn 57(11—)1

n

HT’kR1,

k=1

S =

Qn + rnS,(lD_)l

n—1 n
= Z H Tij + H rkM.
j=1

k=j+1 k=1

The verifying algorithm of the message and the sign
of the signer A, is given by the followings:

Step 1. Verifier calculates
Po=Put Y | [IrePia
=2 \k=j
Step 2. Verifier calculates

v = (S Ry),

/UQ = (PG;RQ))

and

v3 = (]W, f[ rle) .

k=1

Signer Ay generates random number, ry. Signer

Step 3. Verifier checks

V1 = Vg X VU3

The verifying algorithm of the sign of the signer A;
(1 <i<n-—1)is given by the following:

Step 1. Verifier checks

(i), Py =1.

Note that the scheme can keeps the signed order secret
against the verifier without the n-th signer.

4.3 Extension of Specified Verifier

The proposed scheme can be extended to the scheme
with the specified verifier v. This scheme is to change
center’s public parameters, R; and R to verifier’s
identity, R = P,, and secret parameter, R’ = @, =
lP,), respectively.

Furthermore, the scheme can be extended to the
scheme with multiple verifiers. This is to change veri-
fier’s identity, R, and secret parameter, R, to verifiers’
identity, R; = P; (1 < i < n), and secret parameter,
R; = @Q; (1 <1< n). Note that the signature data S5
can be common without 51(11) because the only of the
data S,(ll) is generated by P; . Therefore the signature

for the m multiple specified verifiers is given by:

Sf(LO) SnQ) 57(13) . Sf(}”)
S

1 1 1
Sul Suh S
where 57(113 is used by the ¢-th verifier.

n,1 ) )
’

4.4 Extension to Verification of Signed Order

The proposed scheme can be extended to the scheme
which can verify the signed order. The extended scheme
can be realized by changing SZ-(O) as follows:

Note that the order of n-th signer is also verified on
the scheme in 4.2.

5 Extension to Multiple Centers

In the proposed IDNIKS and the signature schemes,
the trustful center can be a big brother. However by
setting up the multiple centers, we can construct the
system with no big brother on the condition that no
centers conspire.

6 Conclusion

We have proposed the IDNIKS and some signature
schemes and have shown the equivalences between the
the conventional collusion attacks against the proposed
IDNIKS and the generalized ECDLP and the DLP.



There are the open problem whether the proposed 1D-
NIKS is secure against the any collusion attacks. Fur-
ther work should be to analyze the security of the pro-
posed signature schemes.

Appendix

We present some methods to construct the appro-
priate elliptic curves for the proposed cryptosystems.
One of the construction algorithm of the appropriate
elliptic curves for the Tate pairing is given as follows:
to

Algorithm A1l

Step 1. Set negative integer D = O or 1 (mod 4)

such that k(D) is small, where h(D) is the
class number of D, and generate a large
prime number m such that 2490 < m < 2480

Step 2. Set a random integer ¢ ~

% and set
y = 2tm.

Set p = %Q ~ 21024 and test the pri-

marity of p. If not, go back Step 2.

Step 3.

Step 4. Derive the j invariant of an elliptic curve by
factoring the Hilbert class polynomial H (D)
and set the parameter of the elliptic curve

corresponding to j.

The constructed elliptic curve has trace 2 and Tate
pairing can be calculated over F,.

The appropriate elliptic curves for the Weil pair-
ing are super-singular elliptic curves[7]. The algorithm
for constructing the super-singular elliptic curve over
Fy(q =p") are given as follows:

Algorithm A2

Step 1. Set negative integer D = O or 1 (mod 4)
such that k(D) is small, where h(D) is the

class number of D, and set the size of p and
q = p" appropriately.

Step 2. Generate a large prime number p such that

p (/tjand (%) =—1.

Step 3. Compute the super-singular j polynomial
assigned to the imaginary quadratic field

with the discriminant with D.

Step 4. Check the order of the constructed ellip-
tic curve #E/F, and the size of ¢® where
#E/F,|¢" — 1. If the size of ¢* is larger
or smaller than the practical uses, go back

Step 2.
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