
LINEAR MODELS IN TEN MINUTES

DANIEL V. TAUSK

Introductory statistics textbooks are annoying to people with a reasonable
math background because everything is dumbed down for people with almost
no math background. For example, while studying such texts, sometimes
its hard to figure out what is really going on amidst so many ugly matrix
formulas. So if you have some math background (which here means mostly
some linear algebra and measure theory), let’s learn the abstract theory of
linear models in ten minutes. I consider only the linear models admitting a
simple exact inference theory, which are the linear models with a Gaussian
response variable whose variance is known up to a multiplicative constant.
Those include multiple linear regression, t tests and ANOVAs (but not mixed
models). Proofs will be somewhat sketchy so main ideas are not lost and
I can keep my “ten minutes” promise. Some extra details are given in
footnotes which can be mostly skipped in a first reading.

We assume the reader might have very little familiarity with probability
theory and statistics, so we start with a lightning course on what is needed
from probability theory (Section 1) and on Gaussian random variables and
random vectors (Section 2). In Section 3 we then present the abstract theory
of linear models. These first three sections is what should take about ten
minutes of learning. The connections with concrete applications (t tests,
linear regression, etc) are given in Section 4 and this could take a few more
minutes. Finally, in Appendix A we give a short rigorous presentation of
conditional probability and we use that formalism to properly present the
theory of linear models with a random explanatory variable.

1. Very basic probability theory in five minutes

We consider a fixed probability space, i.e., a measure space in which the
total measure is equal to 1. The measurable subsets of the probability space
are called events. We don’t need to give a name to the fixed probability
space because we won’t need to talk about it much — it’s just there. What
matters in probability theory are the random objects and their distributions.
By a random object X we mean a measurable function defined on the fixed
probability space and taking values in some measurable space (i.e., a set
endowed with a σ-algebra); we call X a random variable if it takes values in
the real numbers and a (V -valued) random vector if it takes values in a real
finite-dimensional vector space V . Both R and V are endowed with their
respective Borel σ-algebras.
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The probability P(X ∈ A) that a random object X belongs to a measur-
able subset A of its counterdomain is understood as the probability (i.e., the
measure) of the event [X ∈ A] which is defined as the inverse image X−1[A].
The distribution of a random object X is defined as the probability mea-
sure on its counterdomain given by the image under X of the probability
measure on its domain, i.e., it is the map that associates P(X ∈ A) to every
measurable subset A of the counterdomain of X.

We can form new random objects as functions of other random objects in
the following way: if f is a measurable function defined on the counterdo-
main of a random object X, we define a new random object f(X) by setting
f(X) = f ◦ X. Obviously the distribution of a measurable function of a
random object X depends only on the distribution of X.

A probability density for a random object X with respect to some positive
σ-finite measure ν on its counterdomain is defined as the Radon–Nikodym
derivative of the distribution of X with respect to ν, assuming that such
distribution is absolutely continuous with respect to ν. A family of random
objects is said to be independent if the distribution of the family (seen as a
single random object taking values in the product measurable space) is the
product measure of the distributions of the individuals of the family. Clearly,
measurable functions of independent random objects are again independent
random objects.

The expected value (or simply mean) of an integrable random variable X,
denoted E(X), is defined as the integral of X with respect to the probability
measure on its domain. Note that the expected value of X or of any real-
valued function of X depends only on the distribution of X as it is equal to
the integral of such a function with respect to the distribution of X. The
covariance Cov(X,Y ) of two square-integrable random variables X and Y
is defined as the L2-inner product of their expectation free components1 or,
more explicitly:

Cov(X,Y ) = E
[(
X − E(X)

)(
Y − E(Y )

)]
= E(XY )− E(X)E(Y ).

If X and Y are independent random variables then Fubini’s Theorem yields
E(XY ) = E(X)E(Y ) and thus Cov(X,Y ) = 0. The variance of a square-
integrable random variable X is defined by Var(X) = Cov(X,X) and the
standard deviation of X is defined as the square root of Var(X). Note
that the standard deviation is just the semi-norm associated to the positive
semi-definite inner product Cov on the space of square-integrable random
variables. We have Var(X) = 0 if and only if X is constant almost every-
where.

If X is an integrable V -valued random vector for some real finite-dimen-
sional vector space V , we again define the expected value (or mean) E(X)

1Note that E(X) is just the L2-orthogonal projection of X onto the one-dimensional
subspace of constant maps and that the expectation free component X−E(X) of X is the
L2-orthogonal projection of X onto the hyperplane consisting of random variables with
zero expectation.
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of X as the integral of X with respect to the probability measure on its
domain, so that now E(X) is an element of V . If X is square-integrable,
the variance Var(X) of X is defined as the positive semi-definite symmetric
bilinear form on the dual space V ∗ given by:

Var(X) : V ∗ × V ∗ ∋ (α, β) 7−→ Cov
(
α(X), β(X)

)
.

Typical statisticians (which only work in coordinates and don’t like abstract
vector spaces) would call some matrix representation of Var(X) the covari-
ance matrix of X. It is easy to see that the variance of X is degenerate if
and only if X takes values with probability 1 in a proper affine subspace
of V . If Var(X) is nondegenerate then it is a legitimate (positive definite)
inner product on V ∗ and hence it induces a linear isomorphism

(1) V ∗ ∋ α 7−→ Var(X)(α, ·) ∈ V ∗∗ ∼= V

from V ∗ to V which then induces an inner product on V . The matrix that
represents the inner product induced on V is the inverse of the matrix that
represents the inner product on V ∗ (assuming one uses on V ∗ the dual of
the basis used on V ).

Clearly, if T : V → W is a linear map between real finite-dimensional
vector spaces and X is an integrable V -valued random vector then:

E
(
T (X)

)
= T

(
E(X)

)
.

Moreover, if X is square-integrable then the bilinear map Var
(
T (X)

)
is the

pull-back of the bilinear map Var(X) by the adjoint T ∗ : W ∗ → V ∗ of the
linear map T , i.e.:

(2) Var
(
T (X)

)
= Var(X)(T ∗·, T ∗·).

It is often convenient to identify the bilinear map Var(X) on V ∗ with the
linear map (1) because for linear maps we can write formulas involving
compositions that readily translate into matrix multiplications2 when bases
are chosen. Using such identification, equality (2) becomes:

(3) Var
(
T (X)

)
= T ◦Var(X) ◦ T ∗.

2. Gaussian random vectors in two minutes

A random variable X is said to be Gaussian (or normally distributed) if it
is either constant almost everywhere or if its probability density with respect
to the Lebesgue measure is the exponential of a second degree polynomial
with a negative leading coefficient. The distribution of a Gaussian random
variable X is completely determined by its mean µ ∈ R and standard devia-
tion σ ≥ 0 and its probability density with respect to the Lebesgue measure

2However, one should keep in mind that if B : V ×W → R is a bilinear form then the
standard matrix representation of B is the transpose of the standard matrix representation
of the corresponding linear map V ∋ v 7→ B(v, ·) ∈ W ∗. This problem does not arise, of
course, if V = W and B is symmetric.
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is given by f(x) = 1
σ
√
2π

exp
(
− (x−µ)2

2σ2

)
if σ > 0. A Gaussian random vari-

able with mean zero and unit variance is called standard normal. Since an
affine transformation of a Gaussian random variable is Gaussian, it follows
that if X is Gaussian with mean µ and standard deviation σ > 0 then X−µ

σ
is standard normal.

Definition 1. For a finite-dimensional real vector space V , we call a V -
valued random vector X Gaussian (or we say that the distribution of X
is multivariate normal) if the random variable α(X) is Gaussian for every
linear functional α ∈ V ∗.

Obviously a linear (or affine) function of a Gaussian random vector is
again a Gaussian random vector.

Since two V -valued random vectors have the same distribution if and only
if they have the same characteristic function3, it follows that the distribution
of a V -valued random vector X is determined by the distribution of α(X)
for all α ∈ V ∗ and hence that the distribution of a Gaussian random vector
is determined by its mean and variance. Using this observation one checks
easily4 that a V -valued random vector X is Gaussian with nondegenerate
variance if and only if its density with respect to a Lebesgue measure5 is
proportional to f(x) = exp

(
−1

2∥x− µ∥2
)
, where µ ∈ V is the mean of X

and ∥ · ∥ is the norm associated to the inner product in V induced by the
variance of X.

In the following propositions we assume that X is a Gaussian V -valued
random vector with a nondegenerate variance, where V is a real finite-
dimensional vector space. We also assume V to be endowed with the inner
product induced by the variance of X.

Whenever V is a real finite-dimensional vector space endowed with an
inner product and W is a subspace of V , we will denote by PW : V → W
the orthogonal projection onto W .

Proposition 2. If V =
⊕k

i=1 Vi is an orthogonal direct sum decomposition
then the random vectors PVi(X), i = 1, . . . , k, are independent.

3The characteristic function φX : V ∗ → C of a V -valued random vector X is defined by
φX(α) = E

[
exp

(
iα(X)

)]
, for all α ∈ V ∗. Up to a multiplicative constant and replacement

of α with −α, this is just the Fourier transform of the distribution of X seen as a tempered
distribution (in the sense of Schwartz).

4To see that a random vector with such a probability density is Gaussian with the
corresponding mean and variance, write a linear functional α ∈ V ∗ as a constant times
a coordinate functional corresponding to an orthonormal basis of V with respect to the
inner product to which the norm is associated.

5By a Lebesgue measure on V we mean any measure that corresponds to the Lebesgue
measure of Rn through some linear isomorphism between V and Rn. Equivalently, a
Lebesgue measure on V is any locally finite translation invariant measure. Two Lebesgue
measures on V are always constant multiples of each other.
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Proof. Note that when we identify V with the cartesian product
∏k

i=1 Vi,
the probability density of X with respect to a Lebesgue measure becomes a

product of functions of the coordinates of x = (xi)
k
i=1 ∈

∏k
i=1 Vi. □

Definition 3. Given a positive integerm, we say that a random variable has
a chi-squared distribution with m degrees of freedom if it has the same dis-
tribution as the sum of m squares of independent standard normal random
variables.

Clearly, the expected value of a random variable having a chi-squared
distribution with m degrees of freedom is m.

Proposition 4. If W is a nonzero subspace of V and if the orthogonal pro-
jection PW annihilates the mean of X then the random variable ∥PW (X)∥2
has a chi-squared distribution whose number of degrees of freedom is the
dimension of W .

Proof. Pick an orthonormal basis of V that extends a basis of W and note
that the coordinates of X corresponding to the elements of the basis of
W are independent and standard normal random variables. Moreover, the
squared norm ∥PW (X)∥2 is the sum of the squares of such coordinates of
X. □

3. Abstract theory of linear models in five minutes

Let V be a real finite-dimensional vector space and Y be a V -valued
Gaussian random vector with nondegenerate variance. We use here the
letter Y instead of X because in the context of the theory of linear models
the letter X is more often used for the explanatory variables, while here we
think of Y as the response variable. We assume that the mean of Y is known
to be a linear function of some unknown parameter. More specifically, we
consider some real finite-dimensional vector space Θ as a parameter space
and some known linear map L : Θ → V such that the mean µ = E(Y ) of Y
is equal to L(θ) for some unknown θ ∈ Θ. The linear map L is assumed to
be injective so that the unknown parameter is identifiable.

In this section we will only present the abstract theory and it will be
convenient to use the map L to identify the parameter space Θ with the
image of L, so we assume from now on the parameter space to be a subspace
W of V and L : W → V to be the inclusion map. The unknown parameter
is then just the mean µ of Y which is assumed to belong to W . We also
need to assume that W is a proper subspace of V . When discussing practical
applications (notably, in Subsection 4.3) the identification of Θ with W will
be revoked as it tends to cause confusion.

The variance of Y is assumed to be known up to a multiplicative constant,
so we assume V ∗ to be endowed with a known inner product ⟨·, ·⟩ such that
the variance of Y is σ2 times ⟨·, ·⟩ for some unknown constant σ > 0. We
let V be endowed with the inner product induced by ⟨·, ·⟩, which will also
be denoted by ⟨·, ·⟩. The inner product on V induced by the variance of
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Y is then 1
σ2 times ⟨·, ·⟩. We denote by ∥ · ∥ the norms corresponding to

both inner products ⟨·, ·⟩. Note that for matters regarding orthogonality
and orthogonal projections, a multiplicative constant on the inner product
is irrelevant.

We need to recall the definitions of some basic probability distributions.

Definition 5. Given a positive integer m, a random variable is said to
have a Student’s t distribution with m degrees of freedom if it has the same
distribution as the quotient

Z√
U
m

,

where Z and U are independent random variables such that Z has a standard
normal distribution and U has a chi-squared distribution with m degrees of
freedom.

Definition 6. Given positive integers m1 and m2, a random variable is said
to have a Snedecor’s F distribution with degrees of freedom m1 and m2 if it
has the same distribution as the quotient

1
m1

U1

1
m2

U2
,

where U1 and U2 are independent random variables such that U1 has a chi-
squared distribution with m1 degrees of freedom and U2 has a chi-squared
distribution with m2 degrees of freedom.

Denote by W⊥ the orthogonal complement of W in V . Since the mean µ
of Y is in W , we have PW⊥(µ) = 0 and thus Proposition 4 yields that the
random variable 1

σ2 ∥PW⊥(Y )∥2 has a chi-squared distribution with dim(W⊥)
degrees of freedom. Keeping in mind that the expected value of a chi-squared
distributed random variable is equal to the number of degrees of freedom,
such observation yields the following result.

Proposition 7. Under the assumptions above, the random variable S de-
fined by

S =
∥PW⊥(Y )∥√
dim(W⊥)

is such that S2 is an unbiased estimator of σ2, i.e., σ2 is the expected value
of S2. Moreover, the random variable

dim(W⊥)
S2

σ2

has a chi-squared distribution having dim(W⊥) degrees of freedom. □

Note that since µ ∈ W we have PW (µ) = µ and therefore

µ̂ = PW (Y )
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is a linear unbiased estimator of the paramater µ, i.e., µ̂ is a linear function
of the data Y whose expected value is µ. In a certain sense µ̂ is the best
linear unbiased estimator of µ, as we now explain. Let α ∈ W ∗ be a linear
functional on W . We can think of α(µ) as a “coordinate” of the unknown
mean µ of Y . Given a linear functional α̂ ∈ V ∗, we have that the expected
value of α̂(Y ) is α̂(µ) and thus α̂(Y ) is an unbiased estimator of α(µ) — in
the sense that the expected value of α̂(Y ) is α(µ) for every possible µ ∈ W
— if and only if α̂ is an extension of α. Since the variance of α̂(Y ) is
σ2∥α̂∥2, we have that the linear extension α̂ of α such that α̂(Y ) has the
least variance is the one having the least possible norm. This minimum is
clearly attained at the linear extension of α that vanishes on W⊥, i.e., at the
linear functional α̂ given by α̂ = α ◦ PW . For such α̂, the random variable
α̂(Y ) = α(µ̂) is known as the best linear unbiased estimator (BLUE) of the
parameter α(µ). From now on, α̂ always denotes α ◦ PW . Clearly

α̂(Y )− α(µ)

σ∥α̂∥
is a standard normal random variable. Moreover, since α̂(Y ) is a function
of the orthogonal projection PW (Y ) and S2 is a function of the orthogonal
projection PW⊥(Y ), it follows from Proposition 2 that α̂(Y ) and S2 are
independent. The next result then immediately follows from the definition
of Student’s t distribution using Proposition 7.

Proposition 8. Under the assumptions above, if α ∈ W ∗ and α̂ ∈ V ∗ is
the linear extension of α that vanishes on W⊥ then the random variable

α̂(Y )− α(µ)

S∥α̂∥
has a Student’s t distribution whose number of degrees of freedom is the
dimension of W⊥. □

Proposition 8 can be used to construct confidence intervals for the pa-
rameter α(µ). Recall that, for γ ∈ [0, 1], a γ-confidence set for a certain
parameter is a random subset6 of the parameter space that contains that
parameter with probability γ.

Corollary 9. Under the assumptions of Proposition 8, given γ ∈ ]0, 1[, we
have that

[α̂(Y )− cS∥α̂∥, α̂(Y ) + cS∥α̂∥]
is a γ-confidence interval for the parameter α(µ), where c > 0 is chosen in
such a way that a random variable having a Student’s t distribution with
dim(W⊥) degrees of freedom has a probability γ of belonging to the interval
[−c, c]. □

6If M is a set, we can identify the set ℘(M) of all subsets of M with the product
{0, 1}M and this turns ℘(M) naturally into a measurable space. A random subset of M
is then a ℘(M)-valued random object.
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Recall that in order to test a certain null hypothesis about an unknown
parameter of interest we can define a p-value7 by considering the probability
under the null hypothesis that a certain real-valued statistic T (i.e., a mea-
surable function of the observed data Y ) has a value greater than or equal to
the observed value of T . The statistic T should be chosen in such a way that
larger values of T are “more incompatible” with the null hypothesis than
smaller values of T and in such a way that the distribution of T under the
null hypothesis is known. For example, in order to test the null hypothesis
α(µ) = 0, we can let T be the absolute value of

α̂(Y )

S∥α̂∥

and Proposition 8 tells us that under the null hypothesis the statistic T
has the distribution of the absolute value of a Student’s t distribution with
dim(W⊥) degrees of freedom.

In order to test more general null hypotheses about µ we need another
statistic.

Proposition 10. Under the assumptions above, if W0 is a proper subspace
of W containing the mean µ and W1 denotes the orthogonal complement of
W0 in W then

(4)

1
dim(W1)

∥PW1(Y )∥2

S2

has a Snedecore’s F distribution whose degrees of freedom are dim(W1) and
dim(W⊥).

Proof. Under µ ∈ W0 we have PW1(µ) = 0 and thus 1
σ2 ∥PW1(Y )∥2 has a

chi-squared distribution with dim(W1) degrees of freedom by Proposition 4.
Moreover, since W1 and W⊥ are orthogonal, Proposition 2 implies that
PW1(Y ) and S2 are independent. The conclusion then follows from Propo-
sition 7. □

Proposition 10 can be used to test the null hypothesis that the mean µ
of Y belongs to a certain proper subspace W0 of W . Namely, one simply
defines a p-value by computing the probability that a random variable with
a Snedecore’s F distribution with degrees of freedom dim(W1) and dim(W⊥)
is greater than or equal to the observed value of the statistic (4).

7More formally, if P0 denotes probabilities under the null hypothesis and if we set
F (t) = P0(T ≥ t) for all t ∈ R then the p-value is defined by p = F (T ). It is a simple
exercise to check that P0(p ≤ γ) ≤ γ for all γ ∈ [0, 1], so if we use p ≤ γ as the rejection
criterion for the null hypothesis then we have a probability of at most γ of committing a
type I error, i.e., incorrectly rejecting the null hypothesis. It is also easy to check that if
the distribution of T under the null hypothesis is continuous (i.e., if P0(T = t) = 0 for all
t ∈ R) then actually P0(p ≤ γ) = γ for all γ ∈ [0, 1].
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4. Concrete applications

Let us now look into some concrete applications of the theory of Section 3.
We start with the simplest case.

4.1. Single sample t test. Let Y = (Y1, . . . , Yn) be an independent and
identically distributed (i.i.d.) sample of size n ≥ 2 from a normal distribu-
tion with mean µ and standard deviation σ > 0, i.e., (Yi)

n
i=1 is an indepen-

dent family of random variables and all Yi have a normal distribution with
mean µ and standard deviation σ. The parameters µ and σ are regarded as
unknown. We have that Y is an Rn-valued Gaussian random vector with
mean µ1n and variance equal to σ2 times the canonical inner product ⟨·, ·⟩
of Rn∗, where 1n ∈ Rn denotes the vector whose coordinates are all equal
to 1 and the canonical inner product of Rn∗ is the one for which the dual of
the canonical basis is orthonormal. The inner product induced by ⟨·, ·⟩ on
Rn is just the canonical inner product of Rn.

The subspace W of Rn in which we know that the mean of Y lies is the
one-dimensional subspace spanned by 1n and the orthogonal complement
W⊥ is the subspace consisting of vectors with zero sum. If α ∈ W ∗ is
the linear functional defined by α(µ1n) = µ, for all µ ∈ R, then the linear
extension α̂ of α toRn that vanishes onW⊥ is the linear functional that gives
the arithmetic mean of a vector. The BLUE for the parameter α(µ1n) = µ
is therefore

α̂(Y ) = Y ,

where Y is the sample mean defined by:

Y =
1

n

n∑
i=1

Yi.

The orthogonal projections PW : Rn → W and PW⊥ : Rn → W⊥ satisfy

PW (Y ) = Y 1n, PW⊥(Y ) = Y − Y 1n = (Y1 − Y , . . . , Yn − Y )

and therefore the unbiased estimator S2 of σ2 is the sample variance defined
by:

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

Since ∥α̂∥ = 1√
n
, Proposition 8 says that the random variable

Y − µ
1√
n
S

has a Student’s t distribution with n− 1 degrees of freedom. Using this fact
one can construct confidence intervals for µ and test hypotheses about µ.
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4.2. Two samples t test (with equal variances). Let Y 1 be an i.i.d.
sample of size n1 ≥ 1 from a normal distribution with mean µ1 and standard
deviation σ > 0 and Y 2 be an i.i.d. sample of size n2 ≥ 1 from a normal
distribution with mean µ2 and the same standard deviation σ. Assume
also that Y 1 and Y 2 are independent. The parameters µ1, µ2 and σ are
regarded as unknown. We have that Y = (Y 1, Y 2) is a Gaussian V -valued
random vector with V = Rn1 ×Rn2 . The mean of Y is (µ11n1 , µ21n2) and
the variance of Y is σ2 times the canonical inner product of V ∗ ∼= Rn1+n2∗.
The subspace W of V in which we know that the mean of Y lies is the
two-dimensional subspace spanned by (1n1 , 0) and (0,1n2). The orthogonal
complement W⊥ is the space of pairs of zero-sum vectors. The orthogonal
projections PW and PW⊥ satisfy

PW (Y ) = (Y 11n1 , Y
21n2), PW⊥(Y ) = (Y 1 − Y 11n1 , Y

2 − Y 21n2)

and therefore the unbiased estimator of σ2 is given by

S2 =
1

n1 + n2 − 2

( n1∑
i=1

(Y 1
i − Y 1)2 +

n2∑
i=1

(Y 2
i − Y 2)2

)
,

assuming n1 + n2 ≥ 3. Note that S2 is the mean of the sample variances of
Y 1 and Y 2 with weights given by the degrees of freedom n1 − 1 and n2 − 1.
The statistic S2 is often called the pooled sample variance.

In the context of a two samples problem the parameter that one normally
wishes to estimate is the difference µ1 − µ2 of the means of the two normal
distributions from which one is sampling. Thus let α ∈ W ∗ be the linear
functional defined by α(µ11n1 , µ21n2) = µ1 − µ2 and note that the BLUE
α̂(Y ) is given by:

α̂(Y ) = Y 1 − Y 2.

Since ∥α̂∥ =
√

1
n1

+ 1
n2
, Proposition 8 yields that the random variable

(Y 1 − Y 2)− (µ1 − µ2)

S
√

1
n1

+ 1
n2

has a Student’s t distribution with n1+n2−2 degrees of freedom. This fact
can be used to construct a confidence interval for µ1 − µ2 and to test the
null hypothesis that µ1 = µ2.

Remark 11. If the variances of the normal distributions from which one is
sampling are different then to test the null hypothesis µ1 = µ2 one uses
the so called Welch’s t test. This test is only approximate and it is not a
particular case of the theory of Section 3.

4.3. Multiple linear regression. We consider a random variable Y , which
we think of as a response variable, and we wish to account for the value of Y
in terms of some explanatory variable X. We assume that X takes values in
some arbitrary set X and that Y is normal with mean L(θ,X) and unknown
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standard deviation σ > 0, where θ is some unknown parameter belonging to
some real-finite dimensional vector space Θ and L : Θ×X → R is a known
map that is linear in the variable θ. Note that since X is an arbitrary set,
the explanatory variable X could actually correspond to something that in
practical applications we would regard as “multiple variables”, as “multiple
variables” is really the same thing as a single variable taking values in a
cartesian product. For simplicity, we choose to focus on the case in which
the response variable Y is real-valued, though the case in which Y is a
Gaussian random vector could also be easily handled using the theory of
Section 3 as long as we assume the variance of Y to be known up to a
multiplicative constant.

The model considered above is the “population model”, i.e., the model
for some generic individual sampled from a (possibly idealized) population
of data. In concrete applications, the empirical data used to make estimates
about the unknown parameters is a sample of that population. So consider
an independent sample Y = (Y1, . . . , Yn) of size n for the response variable
and a corresponding sample X = (X1, . . . , Xn) of size n for the explanatory
variable. We will regard here X as a fixed point of X n instead of as a
random object. The case of a random explanatory variable X can be easily
handled as a corollary of the theory we develop in this subsection by using
conditional probabilities and it will be discussed in Subsection A.1. For each
i = 1, . . . , n, we assume that Yi is normal with mean L(θ,Xi) and standard
deviation σ > 0 for some unknown parameter θ ∈ Θ. Hence Y is a Gaussian
Rn-valued random vector whose variance is σ2 times the canonical inner
product of Rn∗ and whose mean µ is L(θ), where L : Θ → Rn is the linear
map given by:

(5) L(θ) =
(
L(θ,X1), . . . ,L(θ,Xn)

)
.

We assume L to be injective so that the parameter θ is identifiable and we
denote by W the image of L. As before, W must be a proper subspace of Rn.
For the development of the abstract theory in Section 3 it was convenient
to identify Θ and W using L, but here it is not.

Let θ̂ be the Θ-valued random vector such that:

L(θ̂) = PW (Y ) = µ̂.

Clearly θ̂ is an unbiased estimator for θ. Moreover, for any α ∈ Θ∗, the
BLUE for the parameter α(θ) = α

(
L−1(µ)

)
is α

(
L−1(µ̂)

)
= α(θ̂) = α̂(Y ),

where α̂ = α ◦ L−1 ◦ PW .
Let us find a convenient formula for θ̂ and for its variance. Denote by

R : Rn → Rn∗ the linear isomorphismR(y) = ⟨y, ·⟩ induced by the canonical
inner product of Rn and by L∗ : Rn∗ → Θ∗ the adjoint of the linear map L.
Since the kernel of L∗ ◦ R is W⊥, we have:

(6) (L∗ ◦ R)
(
Y − L(θ̂)

)
= 0.
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Now L∗ ◦R◦L has the same kernel as L and thus it is an isomorphism from
Θ onto Θ∗. Therefore (6) yields the following formula for θ̂:

(7) θ̂ = (L∗ ◦ R ◦ L)−1
(
(L∗ ◦ R)(Y )

)
.

Using formula (3), the identification of Var(Y ) : Rn∗ × Rn∗ → R with the
linear map σ2R−1 from Rn∗ to Rn and keeping in mind that R∗ = R we
then obtain:

(8) Var(θ̂) = σ2(L∗ ◦ R ◦ L)−1.

Since Var
(
α̂(Y )

)
= σ2∥α̂∥2 and α̂(Y ) = α(θ̂), equality (8) yields:

∥α̂∥2 = α
(
(L∗ ◦ R ◦ L)−1(α)

)
.

Proposition 8 says that

(9)
α̂(Y )− α(θ)

S∥α̂∥
has a Student’s t distribution with dim(W⊥) degrees of freedom, where the
unbiased estimator S2 of σ2 is given by:

S2 =
∥Y − L(θ̂)∥2

dim(W⊥)
.

This fact can be used to make tests and to construct confidence intervals for
the parameter α(θ). In order to test a more general null hypothesis that θ
belongs to some proper subspace Θ0 of Θ, we simply use the F statistic given
by Proposition 10 with W0 = L[Θ0]. The projection PW1(Y ) appearing in
the numerator of (4) can often be conveniently computed as the difference

PW (Y )−PW0(Y ), noting that PW0(Y ) = L(θ̂0) with θ̂0 given by the formula
obtained from (7) by replacing L with its restriction to Θ0.

Remark 12. One might naively think that a “linear model” for the response
variable Y should be a model that is linear in the explanatory variable X,
but the linearity that matters is actually the linearity with respect to the
parameter θ. The linearity of L(θ,X) in X plays no role in the development
of the theory and in fact one can easily transform the explanatory variable
X into a new variable X ′ in order to force the model to be linear in the
new explanatory variable X ′. Namely, let X ′ denote the dual space Θ∗ of Θ
and set X ′ = L(·, X), so that L(θ,X) = L′(θ,X ′) where L′ : Θ × X ′ → R

is the bilinear map given by simple evaluation L′(θ, α) = α(θ) of a linear
functional α ∈ Θ∗ on a parameter θ ∈ Θ.

Remark 13. Consider the linear map

(10) Θ ∋ θ 7−→ L(θ, ·) ∈ RX ,

where RX denotes the vector space of all real-valued functions on the set
X . The linear map (10) has to be assumed injective in order for the map
(5) to be injective. We note that the substance of the model is in the finite-
dimensional subspace of RX given by the image of the injective linear map
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(10). Namely, such injective linear map gives an isomorphism between the
parameter space Θ and its image and changing this isomorphism amounts
to making a linear reparametrization of the model. Though often the choice
of a particular concrete parametrization for the model is convenient, one
might also in some cases prefer to avoid the choice of some parametrization
altogether, letting Θ be a finite-dimensional subspace of RX and setting
L(θ,X) = θ(X) for all θ ∈ Θ and X ∈ X .

Remark 14. The theory developed above is readily adaptable to the case of
a multiple linear regression with weights. This is the model in which the i-th
element Yi of the sample of the response variable is assumed to have variance
σ2

wi
for some known positive real numbers w1, . . . , wn. In this case one

simply replaces the canonical inner product of Rn∗ with the inner product
whose matrix with respect to the dual of the canonical basis is diagonal with
diagonal elements 1

wi
. The induced inner product on Rn is then the one

whose matrix with respect to the canonical basis is diagonal with diagonal
elements wi. The linear isomorphism R : Rn → Rn∗ appearing on all the
formulas should of course be replaced with the isomorphism induced by the
latter inner product.

4.4. ANOVA. The acronym ANOVA, which stands for “analysis of vari-
ance”, is just a bad name for the particular case of the linear model consid-
ered in Subsection 4.3 in which the value set X for the explanatory variable
X is finite. It can also be seen as a generalization of the theory of two
samples t tests (Subsection 4.2) to the case of a finite number of samples.
The parameter space Θ can be regarded as the space RX of finite fami-
lies (µx)x∈X and the map L : RX × X → R is just the evaluation map
L
(
(µx)x∈X , x

)
= µx.

Given samples X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) of the explanatory
variable and the response variable, respectively, we denote by nx the number
of coordinates of X that are equal to x, for each x ∈ X , and we assume all
nx to be positive. It is more convenient here to think of Y as taking values
in the product space

V =
∏
x∈X

Rnx ,

which means that we regard Y as an independent finite family (Y x)x∈X , with
each Y x being an i.i.d. random sample of size nx from a normal distribution
with unknown mean µx and unknown standard deviation σ > 0. We then
have that Y is a Gaussian random vector with mean

µ = L
(
(µx)x∈X )

)
= (µx1nx)x∈X

and variance given by σ2 times the canonical inner product of V ∗ ∼= Rn∗.
The subspace W of V given by the image of the linear map L : RX → V
consists of the families whose x-th coordinate is a scalar multiple of 1nx , for
all x ∈ X . The orthogonal complement W⊥ is then the space of families
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whose coordinates are zero-sum vectors and the orthogonal projections PW

and PW⊥ satisfy:

PW (Y ) = (Y x1nx)x∈X and PW⊥(Y ) = (Y x − Y x1nx)x∈X .

The dimension of W⊥ is n − |X |, where |X | denotes the cardinality of X .
Assuming n > |X |, the unbiased estimator S2 of σ2 is given by:

S2 =
1

n− |X |
∑
x∈X

∥Y x − Y x1nx∥2.

Note that S2 is just the mean of the sample variances of the samples Y x

weighted by the corresponding degrees of freedom nx − 1.
The standard goal of the ANOVA procedure is to test the null hypothesis

that all means µx are equal. One could ask why not simply use several
two samples t tests to compare the means µx pairwise. The answer is that
doing multiple comparisons inflates the probability of type I error, i.e., the
probability of committing a type I error in at least one comparison gets
larger as the number of comparisons grows. It’s best therefore to use a
single test. To this aim, we consider the one-dimensional subspace Θ0 of
Θ = RX consisting of families whose coordinates are all equal and we use the
F statistic from Proposition 10 with W0 = L[Θ0]. We assume the cardinality
of X to be at least 2. The space W0 is the one-dimensional space spanned
by (1nx)x∈X and the orthogonal projection PW0 satisfies

PW0(Y ) = (Y 1nx)x∈X ,

where Y is the grand mean given by:

Y =
1

n

∑
x∈X

nx∑
i=1

Y x
i =

1

n

∑
x∈X

nxYx.

If W1 denotes the orthogonal complement of W0 in W then

PW1(Y ) = PW (Y )− PW0(Y ) =
(
(Y x − Y )1nx

)
x∈X

and therefore the numerator of the F statistic (4) is given by:

1

dim(W1)
∥PW1(Y )∥2 = 1

|X | − 1

∑
x∈X

nx(Y x − Y )2.

Proposition 10 then says that, under the null hypothesis that all means µx

are equal, the statistic

1

S2(|X | − 1)

∑
x∈X

nx(Y x − Y )2

has a Snedecore’s F distribution with degrees of freedom |X |−1 and n−|X |.

Remark 15. The standard literature names the procedure described above as
“one-way ANOVA”. The procedure usually referred to as “two-way ANOVA”
corresponds to the same model, but with “two explanatory variables” in-
stead of “one explanatory variable”. Of course this simply means that the
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finite set X is taken as a cartesian product X1×X2 of two finite sets and no
additional theory needs to be developed. The only additional thing worth
mentioning here is that by regarding the explanatory variable X as a pair
of variables (X1, X2) we can test for the absence of interaction between
the two variables. Absence of interaction here means that the parameter
(µ(x1,x2))(x1,x2)∈X1×X2

belongs to the subspace Θ0 of the parameter space

Θ = RX1×X2 consisting of maps that are the sum of a function of the first
projection with a function of the second projection, i.e., µ(x1,x2) = µ1

x1
+µ2

x2

for µ1 ∈ RX1 and µ2 ∈ RX2 . To test the null hypothesis of absence of
interaction one can then use the F statistic given by Proposition 10 with
W0 = L[Θ0].

Appendix A. Conditional probability

The conditional probability P(A|B) of an event A conditioned on an event
B such that P(B) > 0 is defined by:

(11) P(A|B) =
P(A ∩B)

P(B)
.

More generally, one is interested in conditional probabilities of the form
P(Y ∈ A|X = x), where X and Y are random objects, A is a measurable
subset of the counterdomain Y of Y and x is a point of the counterdomain
X of X. Though [Y ∈ A] = Y −1[A] and [X = x] = X−1(x) are events, one
often has P(X = x) = 0, so the simple definition (11) does not apply.

In order to define this more general notion of conditional probability, the
following definition is useful.

Definition 16. Given measurable spaces X and Y, by a kernel with source
X and target Y we mean a map K that assigns a probability measure Kx

on Y to each point x ∈ X in such a way that for every measurable subset A
of Y the map X ∋ x 7→ Kx(A) ∈ R is measurable.

Given a probability measure P on X and a kernel K with source X and
target Y we define a probability measure P ⋆K on the product space X ×Y
by setting8

(P ⋆ K)(C) =

∫
X
Kx(Cx) dP(x),

for every measurable subset C of X × Y, where Cx =
{
y ∈ Y : (x, y) ∈ C

}
.

When the map K is constant, i.e., if Kx does not depend on x then P ⋆ K
is simply the standard product of the measure P by the measure Kx.

We note that if X is an X -valued random object and Y is a Y-valued
random object and if P ⋆ K is the distribution of (X,Y ) then P is the
distribution of X, i.e., P is the image of P ⋆ K under the first projection of

8One has to show first that the map X ∋ x 7→ Kx(Cx) is measurable for every mea-
surable subset C of the product X × Y. This is done as in standard proofs of Fubini’s
Theorem, by noting that the class of sets C for which the thesis holds contains the mea-
surable rectangles and is closed under certain set operations.
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the product X × Y. A good way of intuitively understanding the meaning
of the probability measure P ⋆ K is in terms of the corresponding sampling
strategy for a value (x, y) for the random object (X,Y ) having P ⋆ K as its
distribution: first sample the value x of X using P as the distribution of X
and then sample the value y of Y using Kx as the distribution of Y .

Definition 17. Given an X -valued random object X and a Y-valued ran-
dom object Y , by a regular conditional probability of Y given X we mean
any kernel K with source X and target Y such that the distribution of the
random object (X,Y ) is equal to PX ⋆K, where PX denotes the distribution
of X.

Since a probability measure on X×Y is characterized by its value on mea-
surable rectangles B×A, we have that K is a regular conditional probability
of Y given X if and only if

(12) P
(
[Y ∈ A] ∩ [X ∈ B]

)
= P

(
(X,Y ) ∈ B ×A

)
=

∫
B
Kx(A) dPX(x),

for every measurable subset A of Y and every measurable subset B of X . In
other words, a kernel K is a regular conditional probability of Y given X if
and only if for every measurable subset A of Y, the map X ∋ x 7→ Kx(A) is
a Radon–Nikodym derivative of the measure B 7→ P

(
[Y ∈ A]∩ [X ∈ B]

)
on

X with respect to the distribution PX of X. In particular, if K and K ′ are
two regular conditional probabilities of Y given X then for every measurable
subset A of Y we have that Kx(A) = K ′

x(A), for PX -almost every x ∈ X . It
follows that if the σ-algebra of Y is countably generated, then Kx = K ′

x for
PX -almost every x ∈ X .

Even though a regular conditional probability K of Y given X is not
unique, it is almost unique in the sense explained above and we thus write

(13) P(Y ∈ A|X = x) = Kx(A),

for every x ∈ X and every measurable subset A of Y. Unfortunately, there
are pathological situations in which a regular conditional probability does
not exist because one cannot choose all the relevant Radon–Nikodym deriva-
tives in such a way that the map A 7→ Kx(A) is countably additive for all
x ∈ X . However, existence holds under fairly general conditions, for exam-
ple, it holds if the measurable space Y is a standard Borel space, i.e., if it is
isomorphic as a measurable space to a Borel subset of a complete separable
metric space endowed with its Borel σ-algebra9.

9It is a standard result on basic descriptive set theory that two uncountable standard
Borel spaces are isomorphic, so it is sufficient to prove existence if Y is the real line endowed
with its Borel σ-algebra. In this case, one first defines the conditional cumulative distri-
bution function Fx(y) = P(Y ≤ y|X = x) for x ∈ X and y ∈ Q using Radon–Nikodym
derivatives. Since Q is countable, we have that for PX -almost every x ∈ X the map Fx

is increasing, right-continuous and satisfies limy→−∞ Fx(y) = 0 and limy→+∞ Fx(y) = 1.
We can then uniquely extend each Fx to an increasing right-continuous function defined
on the entire real line and obtain using the standard theory of extensions of measures a
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Using the more familiar notation (13) for conditional probabilities, for-
mula (12) becomes

P
(
[Y ∈ A] ∩ [X ∈ B]

)
=

∫
B
P(Y ∈ A|X = x) dPX(x)

and it is known as the law of total probability. It follows that

P(Y ∈ A) =

∫
X
P(Y ∈ A|X = x) dPX(x)

and that

P(Y ∈ A|X ∈ B) =
1

PX(B)

∫
B
P(Y ∈ A|X = x) dPX(x)

if PX(B) = P(X ∈ B) is positive.
If Z = f(Y ) is a measurable function of Y then a regular conditional prob-

ability of Z givenX can be obtained from a regular conditional probability of
Y given X by taking the images of the probability measures P(Y ∈ ·|X = x)
under f , i.e., by setting

P(Z ∈ A|X = x) = P
(
Y ∈ f−1[A]|X = x

)
,

for every measurable subset A of the counterdomain of Z and every x ∈ X .
More generally, if Z = f(X,Y ) is a measurable function of X and Y , a
regular conditional probability of Z given X is obtained as

P(Z ∈ A|X = x) = P
(
Y ∈ f−1

x [A]|X = x
)
,

where fx denotes the function fx = f(x, ·).

A.1. Multiple linear regression with a random explanatory vari-
able. In Subsection 4.3 we developed the theory of multiple linear regres-
sion assuming that the sample (X1, . . . , Xn) for the explanatory variable X
was a fixed element of the set X n instead of a random object. Using con-
ditional probabilities, it is straightforward to generalize such theory to the
case of a random explanatory variable. In this context, we need to assume
that the set X in which the explanatory variable takes values is endowed
with some σ-algebra and that the map L : Θ × X → R is such that L(θ, ·)
is measurable for every θ ∈ Θ.

For the “population model” we assume that Y is a random variable, that
X is an X -valued random object and that the distribution of (X,Y ) is such
that, for every x ∈ X , the conditional distribution of Y given X = x is
normal with mean L(θ, x) and standard deviation σ > 0, where θ ∈ Θ
and σ are unknown parameters. No assumptions are needed about the
distribution of X. The empirical data consists of a sample Y = (Y1, . . . , Yn)
of size n and a corresponding sample X = (X1, . . . , Xn), where X is an
arbitrary X n-valued random object and for every x ∈ X n we have that,
conditionally on X = x, the variables Y1, . . . , Yn are independent and Yi

unique probability measure A 7→ P(Y ∈ A|X = x) on the Borel σ-algebra of R such that
P(Y ≤ y|X = x) = Fx(y), for all y ∈ R.
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has a normal distribution with mean L(θ, xi) and standard deviation σ, for
all i = 1, . . . , n. We do not need to assume that the coordinates of X are
independent. Clearly, for every x ∈ X n, the distribution of Y conditioned
on X = x is that of a Gaussian Rn-valued random vector with mean

Lx(θ) =
(
L(θ, x1), . . . ,L(θ, xn)

)
and variance given by σ2 times the canonical inner product of Rn∗. Here
Lx : Θ → Rn is a linear map for every x ∈ X n and LX (i.e., the composition
of x 7→ Lx with X) is a random linear map from Θ to Rn, i.e., a random
object taking values in the space of linear maps from Θ to Rn.

The development of the theory now goes through exactly as in Subsec-
tion 4.3, but with everything conditioned on X = x for some x ∈ X n.
We will then obtain, for instance, that the random variable (9) has a Stu-
dent’s t distribution with dim(W⊥) degrees of freedom, conditionally on
X = x. Similarly, the statistic obtained from Proposition 10 will have a
Snedecore’s F distribution under the appropriate null hypothesis, condition-
ally on X = x.

The important point is that confidence intervals and p-values obtained
from the theory of Subsection 4.3 will have the correct properties also un-
conditionally. For example, if CI(X,Y ) is a γ-confidence interval for some
parameter α(θ) conditionally on X = x, i.e., if

(14) P
(
CI(X,Y ) ∋ α(θ)|X = x) = γ

for all x ∈ X n then also:

(15) P
(
CI(X,Y ) ∋ α(θ)

)
= γ.

Namely, (15) follows directly from (14) by integrating in x with respect
to the distribution of X. There is, however, one caveat: the theory of
Subsection 4.3 requires the linear map (5) to be injective, so CI(x, Y ) is
only defined and equality (14) holds only if x ∈ X n is such that Lx is
injective. Thus we obtain (15) only if the random linear map LX is injective
with probability 1. In the general case, we have the equality

P
(
CI(X,Y ) ∋ α(θ)|LX is injective

)
= γ,

assuming that LX is injective with positive probability.
Similar remarks are valid for p-values. For instance, if we use the theory

of Subsection 4.3 to obtain a p-value p(X,Y ) satisfying

P
(
p(X,Y ) ≤ γ|X = x

)
= γ

for all γ ∈ [0, 1] under some null hypothesis then integrating over x with
respect to the distribution of X we obtain

P
(
p(X,Y ) ≤ γ|LX is injective

)
= γ
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for all γ ∈ [0, 1] under the same null hypothesis.
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