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The goal of this note is to show how the notion of occurrence in prob-
ability for subsets of a product of a sequence of probability spaces can be
used to provide a unified framework for transforming properties defined for
sequences into their corresponding stochastic versions. The notions we con-
sider are relative compactness of a sequence, the big O and the small o.

Big O and small o notation can be defined in a natural way for sequences
of real numbers and the notion can be readily extended to sequences taking
values in arbitrary normed spaces simply by replacing the elements of the
sequence with their respective norms. For the theory we develop here the
properties of a norm are actually irrelevant and we could replace normed
spaces with sets endowed with some arbitrary nonnegative real-valued func-
tion that is interpreted as measuring the “size” of the elements of the set.
Such function must be assumed measurable when we consider the stochastic
version of big O and small 0. Since we can’t think of a situation in which
such general set up is actually useful, we will consider only spaces endowed
with semi-norms.

By a semi-normed space we mean a real vector space endowed with a
semi-norm. All semi-normed spaces will be endowed with the semi-norm
topology and all topological spaces will be endowed with the Borel o-algebra.
All semi-norms will be denoted by || - ||. By a random object we mean
a measurable map defined on a probability space and taking values in a
measurable space. The distribution of a random object X is defined as the
probability measure on its counterdomain given by the push-forward under
X of the probability measure on its domain.

We will always denote by ((Qn,An,Pn))n>1 a sequence of probability
spaces and random objects carrying an index n will be assumed to be defined
on {2, unless otherwise explicitly stated.

Definition 1. Let (X),),>1 and (Yy,)n>1 be sequences of semi-normed spaces
and, for each n > 1, let z,, € X, and y, € )V, be given. We say that the
sequence (Tp)p>1 is large order of the sequence (yn)n>1, abbreviated as
Ty, = O(yn), if there exists C' > 0 and ng > 1 such that ||z,| < C||ly,| for
all n > ng. We say that the sequence (zp,)n>1 is small order of the sequence
(Yn)n>1, abbreviated as x,, = o(y,), if for every n > 0 there exists ng > 1
such that ||z,|| < nllyn|| for all n > ng.
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Definition 2. Let (X),),>1 and (Yy,)n>1 be sequences of semi-normed spaces
and, for each n > 1, let X, be an X,,-valued random object and Y;, be a Y,,-
valued random object. We say that the sequence (X,,)n>1 is stochastically of
large order of the sequence (Y},)n>1, abbreviated as X,, = O(Y,,), if for every
e > 0 there exists C' > 0 and ng > 1 such that P, (|| X,| < C||Y,]|) > 1 —¢,
for all n > ng. We say that the sequence (X, )n>1 is stochastically of small
order of the sequence (Y;,)n>1, abbreviated as X, = o(Y,,), if for every ¢ > 0
and every n > 0 there exists ng > 1 such that P, (|| X,| < n[|Ya|) > 1 —¢,
for all n > ny.

Clearly X,, = o(Y},) if and only if for all n > 0 we have:
lim By ([| X[ < 7| Yal[) = 1.

n——+
Remark 3. If ||Y,(w)|| = 0 implies || X, (w)|| = 0 for all w € Q,, and all
n > 1 then lime_qoo Po(||Xn]] < C||Yn]]) = 1 for all n > 1 and therefore
X, = O(Y,) if and only if for all £ > 0 there exists C' > 0 such that
P,(IXnl] < CYa|]) > 1 —¢ for all n > 1.

Remark 4. For each n > 1, let (Q),, A, P}) be a probability space and
¢n : Q) — Q, be a measure-preserving map. Clearly X,, = O(Y,,) (resp.,
X, =o(Y,)) if and only if X, 0¢, = O(Y,00¢,) (resp., X,0¢, = o(Y,00,)).

Remark 5. If the product X, x ),, of the semi-normed spaces X,, and ),
is endowed with the product of the Borel o-algebras of &, and ), and
with the probability measure given by the distribution of the random object
(Xn,Yn) : Q, = X, x ), then Remark 4 applied to the measure-preserving
maps ¢n, = (Xp,Y,) implies that X,, = O(Y;,) (resp., X,, = o(Y},)) if and
only if 7} = O(n2) (resp., 7} = o(n2)), where 7} and 72 denote respectively
the first and the second projection of the product X, x )V,. In particular,
the conditions X,, = O(Y},,) and X,, = o(Y},) depend only on the distribution

of (X,,,Yy) for all n > 1.

Definition 6. Let X be a topological space. A collection P of probability
measures on X is called tight if for every e > 0 there exists a compact Borel
subset K of X such that P(K) > 1—¢, for all P € P. We say that a sequence
(Xn)n>1 of X-valued random objects is tight if the collection consisting of
the distributions of the random objects X, is tight. More explicitly, (X, )n>1
is tight if for every € > 0 there exists a compact Borel subset K of X such
that P, (X, € K) > 1—¢, for all n > 1.

Note that if X is a normed real finite-dimensional vector space then
(Xn)n>1 is tight if and only if X, = O(1) (recall Remark 3).

Remark 7. As in Remark 4, if ¢,, : Q) — ,, are measure-preserving maps
then (X,,)p>1 is tight if and only if (X, o ¢y )n>1 is tight.

1Typically X is Hausdorff so that all compact sets are closed and hence Borel.
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Remark 8. If X is a topological space, (X, )n>1 is a sequence of X'-valued ran-
dom objects and X, denotes the probability space given by X endowed with
its Borel o-algebra and the distribution of X, then the sequence (Xp,)p>1 is
tight if and only if the sequence of identity maps Id : X, — X is tight.

Remark 9. There are many relevant classes of topological spaces X such that
every probability measure P on X is tight (meaning that the singleton {P}
is tight). This happens trivially, for instance, if X is a countable union of
compact Borel subsets. A less trivial example consists of topological spaces
that are homeomorphic to a Borel subset of a Polish space, i.e., a complete
separable metric space ([1, Theorem 3.4.20]). Note that if the topological
space X on which the random objects X,, take values is such that every
probability measure on X is tight then (X, ),>1 is tight if and only if for
every € > 0 there exists a compact Borel subset K of X and ng > 1 such
that P, (X, € K) > 1— ¢ for all n > ny.

Definition 10. We say that a subset B of [[ 7, Q, occurs in probability
if for every ¢ > 0, there exists a sequence (A,),>1 with A4, € A, and
P,(An) > 1—¢, for all n > 1, such that [[77, A, C B.

Proposition 11. The collection of all subsets of [[,2 |y, that occur in
probability is a o-filter, i.e., it is nonempty, closed under countable intersec-
tions and every subset of []77 1 Qy, that contains a subset in the collection is
also in the collection.

Proof. The only nontrivial statement is the fact that the collection is closed
under countable intersections. Given a sequence (BF)g>1 of subsets of
[1,2, Q2 that occur in probability and given € > 0, pick for each £ > 1 a
sequence (AF),>1 with A% € A, and P, (AF) > 1— o for all n > 1 and such
that [[°2, Ak C B*. Setting A,, = 72, AX we then obtain P,(A,) >1—¢
for all n > 1 and [[0°; A, C N, B O
Lemma 12. Let (X;,)n>1 and (Vn)n>1 be sequences of semi-normed spaces

and for each n > 1, let X, be an X,-valued random object and Y, be a
Yn-valued random object. Consider the following subsets of [[o2 | Qn:

Bo = {(wn)n>1 e [ : Xnlwn) = O(Yn(wn))},

n=1

n=1
We have that X,, = O(Yy,) if and only if Bo occurs in probability and that
X, = o(Yy,) if and only if B, occurs in probability.

Proof. Assuming X,, = O(Y,,), for any given € > 0 pick C > 0 and ny > 1 as
in the definition of X,, = O(Y,,) and set A,, = [|| X,| < C||Y,]|], for n > no,
and A, = Q, for n < ng. Clearly P,(A,) > 1—¢ for all n and [][;7, A4,
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is contained in Bp. Conversely, assume that Bo occurs in probability and
assume by contradiction that it is not true that X, = O(Y,,), so that there
exists € > 0 such that, for all C' > 0, we have P, (|| X,| < C||Yx||) < 1—e¢ for
infinitely many n. We can then obtain a strictly increasing sequence (ng)r>1
of positive integers such that

(1) Py ([ Xy | < El[Yn[]) <1 =,

for all k£ > 1. If (Ay)n>1 is a sequence of nonempty sets as in the definition
of occurrence in probability for Bo then (1) implies that A,, is not con-
tained in [|| X, || < k||Y, ||] and therefore we can obtain a sequence (wy)n>1
in [[;2; An such that || X, (wn,)|| > kY, (wn,)| for all & > 1. Clearly
(wn)n>1 is not in B, which contradicts 77, A, C Bo.

Assume now that X, = o(Y,,) and let ¢ > 0 be fixed. We can obtain
a sequence (ny)r>1 of positive integers such that, for all k£ > 1, we have
Po(IXnll < £11Yall) = 1—¢ for all n > ny, and we can assume that (ng)g>1 is
strictly increasing. Setting A, = Q, for n < ny and A, = [||X,| < 2[|Yal]
for ny < n < ngy1 and all & > 1, we have that P,(A4,) > 1 — ¢ for all
n > 1 and that [[°2; A, is contained in B,, proving that B, occurs in
probability. Conversely, assume that B, occurs in probability and assume
by contradiction that it is not true that X,, = o(Y,,), so that there exists
€ > 0 and n > 0 such that

(2) Po([Xull < nllYall) <1 -,

for infinitely many n. Let (A;),>1 be a sequence of nonempty sets as in the
definition of occurrence in probability for B,. For those n such that (2) holds,
we have that A,, is not contained in [|| X, || < 7||Y,||] and therefore we can
obtain a sequence (wy)p>1 in [[72; Ay, such that || X, (wy)| > nl|Ya(wn)]l,
for infinitely many n. This contradicts (wn)n>1 € B, and concludes the
proof. O

Remark 13. If we let X, x )V, be endowed with the product of the Borel
o-algebras of the semi-normed spaces X,, and ), and with the probability
measure given by the distribution of (X, Y,,) then Remark 5 and Lemma 12
applied to the projections of &;, x ), imply that X,, = O(Y,,) if and only if
the set

{((xmyn))n21 € H(Xn X yn) P Tp = O(yn)}

n=1

occurs in probability and that X,, = o(Y},) if and only if the set

{((xn,yn))n>l e [T xVn) 1 2 = o(yn)}

n=1

occurs in probability.

We recall that a measurable space is called standard Borel if it is isomor-
phic to a Borel subset of a Polish space endowed with its Borel o-algebra.
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Lemma 14. Let (2, A, P) be a probability space such that (2, A) is standard
Borel and ¢ : @ — X be a measurable map taking values in a topological
space X that is homeomorphic to a Borel subset of a Polish space. For every
A € A, the following inequality holds:

sup {P(¢ '[K]) : K C ¢[A] compact} > P(A).

Proof. Let Q be the push-forward of P by ¢ and denote by P and @ the
completions of the measures P and @), respectively. Clearly ¢ is a measure-
preserving map with respect to such completions. We have that ¢[A] is
analytic (inside some Polish space containing X') and thus it belongs to the
domain of @ ([1, Theorem 4.10.12]), so that it has the same probability
as some Borel subset of X' contained in ¢[A]. Since the probability of a
Borel subset of a Polish space equals the supremum of the probabilities of
its compact subsets ([1, Theorem 3.4.20]), we have:

Q(¢[A]) =sup {Q(K) : K C ¢[A] compact}
=sup {P(¢'[K]) : K C ¢[A] compact}.

Finally, the fact that ¢ is measure-preserving with respect to P and Q yields:
Q(slA]) = P(¢'[s]A]]) = P(A). 0

Lemma 15. Let X be a topological space and (X,)n>1 be a sequence of
X-valued random objects. Consider the subset B of [[,2, Qn consisting
of those sequences (wn)n>1 such that {Xp(wn) : n > 1} is contained in a
compact subset of X. If (Xp)n>1 is tight then B occurs in probability. The
converse holds if X is homeomorphic to a Borel subset of a Polish space and
all measurable spaces (S, Ay,) are standard Borel.

Proof. If (X,,)n>1 is tight, given € > 0 we pick a compact Borel subset K of
X as in the definition of tight sequences and we set A4,, = [X,, € K], for all
n > 1. Clearly P,(A,) > 1—cforalln > 1and [[72, A, C B. To prove the
converse, let € > 0 be given and let (A,),>1 be a sequence of nonempty sets
with A, € A, and P,(A,) > 1 —¢, for all n > 1, and with [[>° | A, C B.
By Lemma 14 there exists a sequence (K, )p>1 of compact subsets of X such
that K,, C X,[A,] and P,(X,, € K,,) > 1—¢, for all n > 1. We will show
that there exists a compact subset K of X’ containing J;- ; K, and this will
conclude the proof that (X,),>1 is tight, as P, (X, € K) > 1 — ¢ for all
n > 1. Since X is metrizable, to prove the existence of K it is sufficient to
show that every sequence in | J77 ; K, has a subsequence that is convergent
in X. If a sequence in |J;”; K, has infinitely many terms in K, for some
n > 1 then it has a convergent subsequence, because K, is compact. If not,
it contains a subsequence (xj)r>1 such that x, € K, for all £ > 1, where
(ng)k>1 is an injective sequence of positive integers. We can then find a
sequence (wn)n>1 € [[o; An such that z = X, (wp, ), for all £ > 1. Since
(wn)n>11s in B we obtain that {z) : £ > 1} is contained in a compact subset
of X, concluding the proof. ([
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Remark 16. If X is a topological space homeomorphic to a Borel subset of
a Polish space and (X,,)n>1 is a sequence of X-valued random objects then
it follows from Remark 8 and Lemma 15 that (X,,),>1 is tight if and only if
the set of sequences

o0

{(mn)n>1 € H X i {xp : n > 1} is contained in a compact subset of X}
n=1

occurs in probability, where &), denotes the probability space given by X

endowed with its Borel g-algebra and the distribution of X,,.

Though the full precise statement of our next result is large and ugly,
it’s meaning is simple: suppose that we wish to establish some implication
whose antecedent and consequent are statements that certain sequences of
random objects are tight or that they are stochastically of large order or of
small order of some other sequences of random objects. If the number of
sequences involved is countable, our next result says that it is sufficient to
establish the corresponding deterministic version of the implication, i.e., the
implication involving sequences obtained by evaluating the random objects
at particular points of the probability spaces.

Proposition 17. Consider the following set of data:

e countable sets A, A’ and families

(Banhreanz1, Pandream>1,  (An)rearm>1,  (Van)rerarn>1
of semi-normed spaces;

. , ,
o families (Xxn)rean>1, (Yan)rean>1, (X3 )aen n>1, (Y ) renr n>1
of random objects such that X, takes values in X),, Y\, takes
values in Yxn, X, tokes values in X3, and Yy, takes values in

y;\ n’.
e a countable setI', a family (Z),er of topological spaces and a family
of random objects (Zn)yer n>1 With Z.,, taking values in Z.,;
o sequences (X )n>1, (V)n>1 of semi-normed spaces;
o sequences (X)) )p>1 and (Y, )n>1 of random objects such that X!
takes values in X! and'Y,! takes values in Y.
Assume that Xy, = OY\y) for all X € A, that X, = o(Y{,) for all
A€ N and that (Zyn)n>1 is tight for all v € T'. Assume also that for every
sequence (wp)n>1 in [ Oy the following condition holds:

(*) if Xon(wn) = O(Yan(wn)) for all X € A, X3 plwn) = o(Yy ,(wn))
for all X € A and the set {Zyn(wp) : n > 1} is contained in a
compact subset of Z., for ally € T then X,/(wn) = O(Y;! (wn)) (resp.,
X;{(WN) = O(Yr;/(wn))}

Under such conditions, we have that X]) = O(Y,)) (resp., X]! = o(Y,))).
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Proof. Denote by B the set of sequences (wp)n>1 in [[77; @, such that:
Xan(wn) = O(Yan(wn)), for all X € A,
X} (wn) = o(Y5 ,,(wn)) for all A € A" and
{Zyn(wpn) : n > 1} is contained in a compact subset of Z, for all v € T".

Since A, A" and T are countable, the fact that X , = O(Y) ) for all A € A,
X4, =o(Y{,) for all A € A" and (Z,,,)n>1 is tight for all v € T" imply, by
Lemmas 12, 15 and Proposition 11, that B occurs in probability. As assump-
tion (*) holds for every (wp)n>1 € [52; Qn, we have that B is contained in
the set of sequences (wp)n>1 € [[,—; Qn such that

Xg(wn) = O(Yri/(wn)) (resp., Xg(wn) = O(Yri/(wn))%

so that the latter set also occurs in probability. This yields X/ = O(Y,))
(resp., X/ = o(Y)”)) by Lemma 12. O

Remark 18. In the statement of Proposition 17 it is clearly sufficient to
assume that condition (*) holds for all sequences (wp)n,>1 in a subset of
[, Q, that occurs in probability. Thus, for instance, it suffices to assume

that (*) holds for all sequences in [][>7; A,, where A, € A, is such that
P,(A,) =1, for all n > 1.

Remark 19. One can easily obtain a version of Proposition 17 whose thesis
states that a certain sequence (Up)n>1 of random objects is tight. To this
aim, delete the sequences (X/),>1, (Y, )n>1, (X))n>1 and (V)))n>1 from the
statement of Proposition 17, add a topological space U that is homeomorphic
to a Borel subset of a Polish space and a sequence of U-valued random objects
(Un)n>1. Assume that all (€2, A,,) are standard Borel and replace condition
(*) with:

o if Xy n(wn) = O(Yan(wn)) forall X € A, X4 p(wn) = o(Y/\’vn(wn)) for
all A € A" and {Z, ,(wy,) : n > 1} is contained in a compact subset
of Z, for all v € I' then {Uy(wy) : n > 1} is contained in a compact
subset of U.
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