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The goal of this note is to show how the notion of occurrence in prob-
ability for subsets of a product of a sequence of probability spaces can be
used to provide a unified framework for transforming properties defined for
sequences into their corresponding stochastic versions. The notions we con-
sider are relative compactness of a sequence, the big O and the small o.

Big O and small o notation can be defined in a natural way for sequences
of real numbers and the notion can be readily extended to sequences taking
values in arbitrary normed spaces simply by replacing the elements of the
sequence with their respective norms. For the theory we develop here the
properties of a norm are actually irrelevant and we could replace normed
spaces with sets endowed with some arbitrary nonnegative real-valued func-
tion that is interpreted as measuring the “size” of the elements of the set.
Such function must be assumed measurable when we consider the stochastic
version of big O and small o. Since we can’t think of a situation in which
such general set up is actually useful, we will consider only spaces endowed
with semi-norms.

By a semi-normed space we mean a real vector space endowed with a
semi-norm. All semi-normed spaces will be endowed with the semi-norm
topology and all topological spaces will be endowed with the Borel σ-algebra.
All semi-norms will be denoted by ∥ · ∥. By a random object we mean
a measurable map defined on a probability space and taking values in a
measurable space. The distribution of a random object X is defined as the
probability measure on its counterdomain given by the push-forward under
X of the probability measure on its domain.

We will always denote by
(
(Ωn,An, Pn)

)
n≥1

a sequence of probability

spaces and random objects carrying an index n will be assumed to be defined
on Ωn, unless otherwise explicitly stated.

Definition 1. Let (Xn)n≥1 and (Yn)n≥1 be sequences of semi-normed spaces
and, for each n ≥ 1, let xn ∈ Xn and yn ∈ Yn be given. We say that the
sequence (xn)n≥1 is large order of the sequence (yn)n≥1, abbreviated as
xn = O(yn), if there exists C ≥ 0 and n0 ≥ 1 such that ∥xn∥ ≤ C∥yn∥ for
all n ≥ n0. We say that the sequence (xn)n≥1 is small order of the sequence
(yn)n≥1, abbreviated as xn = o(yn), if for every η > 0 there exists n0 ≥ 1
such that ∥xn∥ ≤ η∥yn∥ for all n ≥ n0.
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Definition 2. Let (Xn)n≥1 and (Yn)n≥1 be sequences of semi-normed spaces
and, for each n ≥ 1, let Xn be an Xn-valued random object and Yn be a Yn-
valued random object. We say that the sequence (Xn)n≥1 is stochastically of
large order of the sequence (Yn)n≥1, abbreviated as Xn = O(Yn), if for every
ε > 0 there exists C ≥ 0 and n0 ≥ 1 such that Pn(∥Xn∥ ≤ C∥Yn∥) ≥ 1− ε,
for all n ≥ n0. We say that the sequence (Xn)n≥1 is stochastically of small
order of the sequence (Yn)n≥1, abbreviated as Xn = o(Yn), if for every ε > 0
and every η > 0 there exists n0 ≥ 1 such that Pn(∥Xn∥ ≤ η∥Yn∥) ≥ 1 − ε,
for all n ≥ n0.

Clearly Xn = o(Yn) if and only if for all η > 0 we have:

lim
n→+∞

Pn(∥Xn∥ ≤ η∥Yn∥) = 1.

Remark 3. If ∥Yn(ω)∥ = 0 implies ∥Xn(ω)∥ = 0 for all ω ∈ Ωn and all
n ≥ 1 then limC→+∞ Pn(∥Xn∥ ≤ C∥Yn∥) = 1 for all n ≥ 1 and therefore
Xn = O(Yn) if and only if for all ε > 0 there exists C ≥ 0 such that
Pn(∥Xn∥ ≤ C∥Yn∥) ≥ 1− ε for all n ≥ 1.

Remark 4. For each n ≥ 1, let (Ω′
n,A′

n, P
′
n) be a probability space and

ϕn : Ω′
n → Ωn be a measure-preserving map. Clearly Xn = O(Yn) (resp.,

Xn = o(Yn)) if and only if Xn◦ϕn = O(Yn◦ϕn) (resp., Xn◦ϕn = o(Yn◦ϕn)).

Remark 5. If the product Xn × Yn of the semi-normed spaces Xn and Yn

is endowed with the product of the Borel σ-algebras of Xn and Yn and
with the probability measure given by the distribution of the random object
(Xn, Yn) : Ωn → Xn ×Yn then Remark 4 applied to the measure-preserving
maps ϕn = (Xn, Yn) implies that Xn = O(Yn) (resp., Xn = o(Yn)) if and
only if π1

n = O(π2
n) (resp., π

1
n = o(π2

n)), where π
1
n and π2

n denote respectively
the first and the second projection of the product Xn × Yn. In particular,
the conditions Xn = O(Yn) and Xn = o(Yn) depend only on the distribution
of (Xn, Yn) for all n ≥ 1.

Definition 6. Let X be a topological space. A collection P of probability
measures on X is called tight if for every ε > 0 there exists a compact Borel1

subsetK of X such that P (K) ≥ 1−ε, for all P ∈ P. We say that a sequence
(Xn)n≥1 of X -valued random objects is tight if the collection consisting of
the distributions of the random objectsXn is tight. More explicitly, (Xn)n≥1

is tight if for every ε > 0 there exists a compact Borel subset K of X such
that Pn(Xn ∈ K) ≥ 1− ε, for all n ≥ 1.

Note that if X is a normed real finite-dimensional vector space then
(Xn)n≥1 is tight if and only if Xn = O(1) (recall Remark 3).

Remark 7. As in Remark 4, if ϕn : Ω′
n → Ωn are measure-preserving maps

then (Xn)n≥1 is tight if and only if (Xn ◦ ϕn)n≥1 is tight.

1Typically X is Hausdorff so that all compact sets are closed and hence Borel.
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Remark 8. If X is a topological space, (Xn)n≥1 is a sequence of X -valued ran-
dom objects and Xn denotes the probability space given by X endowed with
its Borel σ-algebra and the distribution of Xn then the sequence (Xn)n≥1 is
tight if and only if the sequence of identity maps Id : Xn → X is tight.

Remark 9. There are many relevant classes of topological spaces X such that
every probability measure P on X is tight (meaning that the singleton {P}
is tight). This happens trivially, for instance, if X is a countable union of
compact Borel subsets. A less trivial example consists of topological spaces
that are homeomorphic to a Borel subset of a Polish space, i.e., a complete
separable metric space ([1, Theorem 3.4.20]). Note that if the topological
space X on which the random objects Xn take values is such that every
probability measure on X is tight then (Xn)n≥1 is tight if and only if for
every ε > 0 there exists a compact Borel subset K of X and n0 ≥ 1 such
that Pn(Xn ∈ K) ≥ 1− ε for all n ≥ n0.

Definition 10. We say that a subset B of
∏∞

n=1Ωn occurs in probability
if for every ε > 0, there exists a sequence (An)n≥1 with An ∈ An and
Pn(An) ≥ 1− ε, for all n ≥ 1, such that

∏∞
n=1An ⊂ B.

Proposition 11. The collection of all subsets of
∏∞

n=1Ωn that occur in
probability is a σ-filter, i.e., it is nonempty, closed under countable intersec-
tions and every subset of

∏∞
n=1Ωn that contains a subset in the collection is

also in the collection.

Proof. The only nontrivial statement is the fact that the collection is closed
under countable intersections. Given a sequence (Bk)k≥1 of subsets of∏∞

n=1Ωn that occur in probability and given ε > 0, pick for each k ≥ 1 a

sequence (Ak
n)n≥1 with Ak

n ∈ An and Pn(A
k
n) ≥ 1− ε

2k
for all n ≥ 1 and such

that
∏∞

n=1A
k
n ⊂ Bk. Setting An =

⋂∞
k=1A

k
n we then obtain Pn(An) ≥ 1− ε

for all n ≥ 1 and
∏∞

n=1An ⊂
⋂∞

k=1B
k. □

Lemma 12. Let (Xn)n≥1 and (Yn)n≥1 be sequences of semi-normed spaces
and for each n ≥ 1, let Xn be an Xn-valued random object and Yn be a
Yn-valued random object. Consider the following subsets of

∏∞
n=1Ωn:

BO =

{
(ωn)n≥1 ∈

∞∏
n=1

Ωn : Xn(ωn) = O
(
Yn(ωn)

)}
,

Bo =

{
(ωn)n≥1 ∈

∞∏
n=1

Ωn : Xn(ωn) = o
(
Yn(ωn)

)}
.

We have that Xn = O(Yn) if and only if BO occurs in probability and that
Xn = o(Yn) if and only if Bo occurs in probability.

Proof. Assuming Xn = O(Yn), for any given ε > 0 pick C ≥ 0 and n0 ≥ 1 as
in the definition of Xn = O(Yn) and set An = [∥Xn∥ ≤ C∥Yn∥], for n ≥ n0,
and An = Ωn for n < n0. Clearly Pn(An) ≥ 1 − ε for all n and

∏∞
n=1An
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is contained in BO. Conversely, assume that BO occurs in probability and
assume by contradiction that it is not true that Xn = O(Yn), so that there
exists ε > 0 such that, for all C ≥ 0, we have Pn(∥Xn∥ ≤ C∥Yn∥) < 1−ε for
infinitely many n. We can then obtain a strictly increasing sequence (nk)k≥1

of positive integers such that

(1) Pnk
(∥Xnk

∥ ≤ k∥Ynk
∥) < 1− ε,

for all k ≥ 1. If (An)n≥1 is a sequence of nonempty sets as in the definition
of occurrence in probability for BO then (1) implies that Ank

is not con-
tained in [∥Xnk

∥ ≤ k∥Ynk
∥] and therefore we can obtain a sequence (ωn)n≥1

in
∏∞

n=1An such that ∥Xnk
(ωnk

)∥ > k∥Ynk
(ωnk

)∥ for all k ≥ 1. Clearly
(ωn)n≥1 is not in BO, which contradicts

∏∞
n=1An ⊂ BO.

Assume now that Xn = o(Yn) and let ε > 0 be fixed. We can obtain
a sequence (nk)k≥1 of positive integers such that, for all k ≥ 1, we have
Pn

(
∥Xn∥ ≤ 1

k∥Yn∥
)
≥ 1−ε for all n ≥ nk and we can assume that (nk)k≥1 is

strictly increasing. Setting An = Ωn for n < n1 and An =
[
∥Xn∥ ≤ 1

k∥Yn∥
]

for nk ≤ n < nk+1 and all k ≥ 1, we have that Pn(An) ≥ 1 − ε for all
n ≥ 1 and that

∏∞
n=1An is contained in Bo, proving that Bo occurs in

probability. Conversely, assume that Bo occurs in probability and assume
by contradiction that it is not true that Xn = o(Yn), so that there exists
ε > 0 and η > 0 such that

(2) Pn(∥Xn∥ ≤ η∥Yn∥) < 1− ε,

for infinitely many n. Let (An)n≥1 be a sequence of nonempty sets as in the
definition of occurrence in probability forBo. For those n such that (2) holds,
we have that An is not contained in [∥Xn∥ ≤ η∥Yn∥] and therefore we can
obtain a sequence (ωn)n≥1 in

∏∞
n=1An such that ∥Xn(ωn)∥ > η∥Yn(ωn)∥,

for infinitely many n. This contradicts (ωn)n≥1 ∈ Bo and concludes the
proof. □

Remark 13. If we let Xn × Yn be endowed with the product of the Borel
σ-algebras of the semi-normed spaces Xn and Yn and with the probability
measure given by the distribution of (Xn, Yn) then Remark 5 and Lemma 12
applied to the projections of Xn ×Yn imply that Xn = O(Yn) if and only if
the set {(

(xn, yn)
)
n≥1

∈
∞∏
n=1

(Xn × Yn) : xn = O(yn)

}
occurs in probability and that Xn = o(Yn) if and only if the set{(

(xn, yn)
)
n≥1

∈
∞∏
n=1

(Xn × Yn) : xn = o(yn)

}
occurs in probability.

We recall that a measurable space is called standard Borel if it is isomor-
phic to a Borel subset of a Polish space endowed with its Borel σ-algebra.
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Lemma 14. Let (Ω,A, P ) be a probability space such that (Ω,A) is standard
Borel and ϕ : Ω → X be a measurable map taking values in a topological
space X that is homeomorphic to a Borel subset of a Polish space. For every
A ∈ A, the following inequality holds:

sup
{
P
(
ϕ−1[K]

)
: K ⊂ ϕ[A] compact

}
≥ P (A).

Proof. Let Q be the push-forward of P by ϕ and denote by P and Q the
completions of the measures P and Q, respectively. Clearly ϕ is a measure-
preserving map with respect to such completions. We have that ϕ[A] is
analytic (inside some Polish space containing X ) and thus it belongs to the
domain of Q ([1, Theorem 4.10.12]), so that it has the same probability
as some Borel subset of X contained in ϕ[A]. Since the probability of a
Borel subset of a Polish space equals the supremum of the probabilities of
its compact subsets ([1, Theorem 3.4.20]), we have:

Q
(
ϕ[A]

)
= sup

{
Q(K) : K ⊂ ϕ[A] compact

}
= sup

{
P
(
ϕ−1[K]

)
: K ⊂ ϕ[A] compact

}
.

Finally, the fact that ϕ is measure-preserving with respect to P and Q yields:

Q
(
ϕ[A]

)
= P

(
ϕ−1[ϕ[A]]

)
≥ P (A). □

Lemma 15. Let X be a topological space and (Xn)n≥1 be a sequence of
X -valued random objects. Consider the subset B of

∏∞
n=1Ωn consisting

of those sequences (ωn)n≥1 such that {Xn(ωn) : n ≥ 1} is contained in a
compact subset of X . If (Xn)n≥1 is tight then B occurs in probability. The
converse holds if X is homeomorphic to a Borel subset of a Polish space and
all measurable spaces (Ωn,An) are standard Borel.

Proof. If (Xn)n≥1 is tight, given ε > 0 we pick a compact Borel subset K of
X as in the definition of tight sequences and we set An = [Xn ∈ K], for all
n ≥ 1. Clearly Pn(An) ≥ 1−ε for all n ≥ 1 and

∏∞
n=1An ⊂ B. To prove the

converse, let ε > 0 be given and let (An)n≥1 be a sequence of nonempty sets
with An ∈ An and Pn(An) > 1 − ε, for all n ≥ 1, and with

∏∞
n=1An ⊂ B.

By Lemma 14 there exists a sequence (Kn)n≥1 of compact subsets of X such
that Kn ⊂ Xn[An] and Pn(Xn ∈ Kn) > 1 − ε, for all n ≥ 1. We will show
that there exists a compact subset K of X containing

⋃∞
n=1Kn and this will

conclude the proof that (Xn)n≥1 is tight, as Pn(Xn ∈ K) > 1 − ε for all
n ≥ 1. Since X is metrizable, to prove the existence of K it is sufficient to
show that every sequence in

⋃∞
n=1Kn has a subsequence that is convergent

in X . If a sequence in
⋃∞

n=1Kn has infinitely many terms in Kn for some
n ≥ 1 then it has a convergent subsequence, because Kn is compact. If not,
it contains a subsequence (xk)k≥1 such that xk ∈ Knk

for all k ≥ 1, where
(nk)k≥1 is an injective sequence of positive integers. We can then find a
sequence (ωn)n≥1 ∈

∏∞
n=1An such that xk = Xnk

(ωnk
), for all k ≥ 1. Since

(ωn)n≥1 is in B we obtain that {xk : k ≥ 1} is contained in a compact subset
of X , concluding the proof. □
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Remark 16. If X is a topological space homeomorphic to a Borel subset of
a Polish space and (Xn)n≥1 is a sequence of X -valued random objects then
it follows from Remark 8 and Lemma 15 that (Xn)n≥1 is tight if and only if
the set of sequences{

(xn)n≥1 ∈
∞∏
n=1

Xn : {xn : n ≥ 1} is contained in a compact subset of X

}
occurs in probability, where Xn denotes the probability space given by X
endowed with its Borel σ-algebra and the distribution of Xn.

Though the full precise statement of our next result is large and ugly,
it’s meaning is simple: suppose that we wish to establish some implication
whose antecedent and consequent are statements that certain sequences of
random objects are tight or that they are stochastically of large order or of
small order of some other sequences of random objects. If the number of
sequences involved is countable, our next result says that it is sufficient to
establish the corresponding deterministic version of the implication, i.e., the
implication involving sequences obtained by evaluating the random objects
at particular points of the probability spaces.

Proposition 17. Consider the following set of data:

• countable sets Λ, Λ′ and families

(Xλ,n)λ∈Λ,n≥1, (Yλ,n)λ∈Λ,n≥1, (X ′
λ,n)λ∈Λ′,n≥1, (Y ′

λ,n)λ∈Λ′,n≥1

of semi-normed spaces;

• families (Xλ,n)λ∈Λ,n≥1, (Yλ,n)λ∈Λ,n≥1, (X
′
λ,n)λ∈Λ′,n≥1, (Y

′
λ,n)λ∈Λ′,n≥1

of random objects such that Xλ,n takes values in Xλ,n, Yλ,n takes
values in Yλ,n, X ′

λ,n takes values in X ′
λ,n and Y ′

λ,n takes values in

Y ′
λ,n;

• a countable set Γ, a family (Zγ)γ∈Γ of topological spaces and a family
of random objects (Zγ,n)γ∈Γ,n≥1 with Zγ,n taking values in Zγ;

• sequences (X ′′
n )n≥1, (Y ′′

n)n≥1 of semi-normed spaces;

• sequences (X ′′
n)n≥1 and (Y ′′

n )n≥1 of random objects such that X ′′
n

takes values in X ′′
n and Y ′′

n takes values in Y ′′
n.

Assume that Xλ,n = O(Yλ,n) for all λ ∈ Λ, that X ′
λ,n = o(Y ′

λ,n) for all

λ ∈ Λ′ and that (Zγ,n)n≥1 is tight for all γ ∈ Γ. Assume also that for every
sequence (ωn)n≥1 in

∏∞
n=1Ωn the following condition holds:

(*) if Xλ,n(ωn) = O
(
Yλ,n(ωn)

)
for all λ ∈ Λ, X ′

λ,n(ωn) = o
(
Y ′
λ,n(ωn)

)
for all λ ∈ Λ′ and the set {Zγ,n(ωn) : n ≥ 1} is contained in a
compact subset of Zγ for all γ ∈ Γ then X ′′

n(ωn) = O
(
Y ′′
n (ωn)

)
(resp.,

X ′′
n(ωn) = o

(
Y ′′
n (ωn)

)
).

Under such conditions, we have that X ′′
n = O(Y ′′

n ) (resp., X
′′
n = o(Y ′′

n )).
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Proof. Denote by B the set of sequences (ωn)n≥1 in
∏∞

n=1Ωn such that:

Xλ,n(ωn) = O
(
Yλ,n(ωn)

)
, for all λ ∈ Λ,

X ′
λ,n(ωn) = o

(
Y ′
λ,n(ωn)

)
for all λ ∈ Λ′ and

{Zγ,n(ωn) : n ≥ 1} is contained in a compact subset of Zγ for all γ ∈ Γ.

Since Λ, Λ′ and Γ are countable, the fact that Xλ,n = O(Yλ,n) for all λ ∈ Λ,
X ′

λ,n = o(Y ′
λ,n) for all λ ∈ Λ′ and (Zγ,n)n≥1 is tight for all γ ∈ Γ imply, by

Lemmas 12, 15 and Proposition 11, that B occurs in probability. As assump-
tion (*) holds for every (ωn)n≥1 ∈

∏∞
n=1Ωn, we have that B is contained in

the set of sequences (ωn)n≥1 ∈
∏∞

n=1Ωn such that

X ′′
n(ωn) = O

(
Y ′′
n (ωn)

)
(resp., X ′′

n(ωn) = o
(
Y ′′
n (ωn)

)
),

so that the latter set also occurs in probability. This yields X ′′
n = O(Y ′′

n )
(resp., X ′′

n = o(Y ′′
n )) by Lemma 12. □

Remark 18. In the statement of Proposition 17 it is clearly sufficient to
assume that condition (*) holds for all sequences (ωn)n≥1 in a subset of∏∞

n=1Ωn that occurs in probability. Thus, for instance, it suffices to assume
that (*) holds for all sequences in

∏∞
n=1An, where An ∈ An is such that

Pn(An) = 1, for all n ≥ 1.

Remark 19. One can easily obtain a version of Proposition 17 whose thesis
states that a certain sequence (Un)n≥1 of random objects is tight. To this
aim, delete the sequences (X ′′

n)n≥1, (Y
′′
n )n≥1, (X ′′

n )n≥1 and (Y ′′
n)n≥1 from the

statement of Proposition 17, add a topological space U that is homeomorphic
to a Borel subset of a Polish space and a sequence of U-valued random objects
(Un)n≥1. Assume that all (Ωn,An) are standard Borel and replace condition
(*) with:

• if Xλ,n(ωn) = O
(
Yλ,n(ωn)

)
for all λ ∈ Λ, X ′

λ,n(ωn) = o
(
Y ′
λ,n(ωn)

)
for

all λ ∈ Λ′ and {Zγ,n(ωn) : n ≥ 1} is contained in a compact subset
of Zγ for all γ ∈ Γ then {Un(ωn) : n ≥ 1} is contained in a compact
subset of U .
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