

136

A great challenge: XP in a typical dot-com

 Ye Yongqing Winston Wolff
 IT department, Europeloan Bank IT department, Europeloan Bank
 Gulledelle 92 Gulledelle 92
 1200 Brussels, Belgium 1200 Brussels, Belgium
 +32 2 4020120 +32 2 4020119
 yongqing.ye@europeloan.com winston.wolff@europeloan.com

ABSTRACT
This paper describes the implementation of XP in a
young, dynamic, growing global web bank, and an
environment with rapid changing user requirements. This
paper typically describes the problems, challenges and
solutions we encountered during the period we implement
XP.

Keywords
WebBank, XP,Test-First Programming, Pair-
Programming, Velocity, J2EE

1 INTRODUCTION OF EUROPELOAN BANK
EuropeLoan Bank is a young, dynamic and rapidly
growing global web bank. It was created in November
1999, with only three people and one office located in
Brussels. This company has been growing very quickly:
currently we operate on five countries, with different
offices in each country and about 50 direct and indirect
employees. Its capital reaches 3,000,000million
BELGIUM FRANCS. EuropeLoan Bank is offering
residential mortgage loans at very competitive rates. This
is possible because we have designed our company to be
more flexible, more efficient through computerization of
all areas of our business, and timelier through use of the
Internet to communicate with customers and suppliers.
All of this means reduced costs for us and therefore lower
interest rates and initial costs for the customers too.

2 WHAT IS SPECIAL ABOUT EUROPELOAN
EuropeLoan Bank is a new growing bank and we have to
continue opening business in more and more countries.
This means that we have to continue launching our
website in more and more countries. At the end of last
year, we were operating in 5 countries. This is a
historical event: there has never been a bank that has
opened branches in 5 countries during one year. Some of
these countries have several languages, and different
countries have different special situations. For example
the type of the offered products and the way the
conditions for the products are calculated differs for each
country.

Because EuropeLoan Bank started from scratch, we didn't
even have a BackOffice in the beginning. Currently, we
only have a very simple BackOffice, which provides only
some functionality. There’s enough functionality present

that the customers can do their job, but there are great
possibilities to improve it. We have different types of
BackOffice end user: we have helpcenter users who
answer customer's phone and email and help the
customers fill in their application, etc. We have account
managers who are in charge of the account information of
the customers and who keep in touch with the customers.
We have country managers who are responsible for the
operation in one country and who make the underwriting
criterion decision. We have approval committee persons,
who make the final decision for applications. And finally
we have system administrators.

We do have BackOffice end user on team, but the
different types of BackOffice end user have different
needs, and therefore we still have to communicate with
people who are working in other countries.

Because it is a new online bank, none of us know very
well about everything. We cannot predict requirements.
We have a very strong feeling of being stuck in a circle:
we encounter a problem, solve this problem and find a
new problem, solve the new problem... User requirements
change very rapidly. There are always a lot of
requirements from different countries and different
roles.... This is a typical dot-com situation.

Also technology changes very rapidly. We use a lot of
new technology in our system: Java, Jsp, Weblogic, EJB,
XML, and Dcom.

3 BEFORE XP IN EUROPELOAN

We started the development of our system in the
beginning of January 2000. At that time, we let a
consulting company start the development of the system
for us. The consultants knew XP, they developed the
system in the most simple and quick way, and also wrote
test cases for our system. We released our first version in
February 2000.The system did go online on 17 February
2000 (!). This first production version did have a minimal
number of features. After that time, our system has
become bigger and bigger. Each release, more features
are being implemented and brought into production. The
development team expands: more and more programmers
are recruited in order to keep on develop and maintain the
system. Currently, we have 11 programmers, and 3 of

137

those are working in another country. The consultant is
planning to quit; she reduces work time at EuropeLoan
Bank to 2 days a week.

At that time, we decided to adapt XP methodology, and
the consultant helped us to become familiar with the code
and to teach us XP.

4 IMPLEMENT XP NOW

Description of a development cycle
We fix our development cycle as three weeks (21 days).
At the beginning of the development cycle, the different
end users (country manager, account manager, helpcenter
etc.) will send their function requirements and brief
description to our team leader. We collect all the
requirements; write them one by one on cards. Then we
set up a conference meeting with the CEO and the
country managers (some of them work in a different
country). At that time, we try to understand exactly what
they want, what the story is. Then we organize a
development meeting, all the developers will attend this
meeting. All of us will estimate the amount of perfect
days on the cards. The next day, we have another
meeting, and let the CEO and the country managers
prioritize the cards, and to choose the card with the
limitation of our velocity. Later, each programmer
chooses one card. We start our implementation. At this
moment, the person who picks up the card will be
responsible for contacting the person who proposed this
task.

All the members of development team and HQ officer
and Belgium Management group work in a big room on
the fifth floor. This really makes life easier, because we
can exchange information very quickly. Programmer can
change pairs very easy; we can ask each other for help
easier because all of us are face-to-face.

There are a few developers, however, who are working a
different country. Also, most (but not all) the customers
work in another office, in the different countries. We do a
lot of conference meetings to keep in touch with them.

When we make a big change, which will affect our
database, architecture or other people's work, we always
have a short meeting, which all the developers will
attend. All of us will discuss the design. So every one will
remember and understand the change.

Before Jan 2001, we make the last week of the iteration is
our testing period. All of us should stop coding. We start
to test and fix bugs. But soon, we realize it is not a good
idea to test at the end of release cycle, we always get a lot
of bugs during the test, we always are busy on fixing the
highest priority bugs, we always leave other bugs into
next cycle and always forget to fix it in next cycle. Now
we hire a tester to responsible for testing. Whenever we
finish one part of story, we will ask the tester to test it. So
the story will be fully tested when it is done.

Statistics analysis about our velocity

Normally, when system becomes bigger and bigger, it
will take more time on maintaining and development
speed will be slow down rapidly. But because we
implement XP, developers get more and more familiar
with code and confidence on refactoring code. So the
actual perfect days still stay on a stable level.

(Only show recent period)

Index
Start date
-- end
date

Estimated
perfect days

Actual
perfect
days

1
27/09 --
18/10

25 20

2
19/10 --
15/11 20 13

3
16/11 --
06/12 20 21

4
07/12 –
28/12

21 20

What problems do we encounter?
XP is new for EuropeLoan Bank, and we have
encountered some problems:

Overall architecture
The overall architecture is probably too complex. The
very first iterations were very TTSTTCPW(Do The
Simplest Thing That Could Possibly Work) and
YAGNI(You Aren't Going to Need It). Unfortunately,
this happened for the wrong reasons: because of simple
deadline pressure. After a few iterations, things started to
slow down, and we got the idea that we needed to ‘clean
up’ some of those ‘obviously too simple’ things. That’s
probably where it went wrong. In this period, we
developed some things that were much more complex
than they should have been. Note that at this time we
weren’t doing the Planning Game. Luckily, we were test-
infected from the beginning, so that all our code is Unit
Tested well. Lately, we’ve been throwing out some of
this ‘legacy’ code. Currently, we’re talking about
refactoring out the EJBs, because it would simplify the
whole thing enormously.
Modifications to the overall architecture
Modifications to the overall architecture are in some
places a big chunk of work. Some simplifications have
been postponed for a long time, because there’s the
feeling that it would cost too much time to clean it up.
This is a shame, because in reality this unnecessary
complexity consumes a lot of time too.

Few senior developers
Most of the developers don’t have a lot of experience in a
business environment. And they always would like to add

138

more code in existing system instead of refactoring and
simplifying existing system first. As a consequence, we
don’t always have the courage to simplify the code if we
think that it’s unnecessarily complex.

Stories too big
Stories too big. Sometimes, a story is too big to
implement in one cycle, but we have difficulties splitting
them up.

Prioritize stories badly
It happened a few times that, at the beginning of iteration,
all of us start with their stories simultaneously. Therefore
some of the stories were not finished in time. The stories
that were finished were not the most important ones.

Not enough knowledge about stories
Business people don't always provide necessary
information in time. It has happened several times that
they propose a story that seems simple, and that’s
estimated as a simple story. When the implementation
starts, the story turns out to be much more complicated
than we originally thought it would be. This is about bad
communication with the customers. The customers
themselves don’t know enough about the details of these
stories up front.

Problems finishing stories
Besides the coding, there are other aspects needed to
finish the stories. For example, when we develop a
website for a new country, we need translation texts for
all the different languages. Usually, we get the translation
texts only the last minute.

Deadline pressure
Because of the pressure of the deadlines, some developers
tend to quickly finish their task instead of refactoring the
existing code into something really clean. As a
consequence, some of the code has become big and
messy. In the end, we have to arrange some days for
fixing.

Pair Programming
Some people do pair programming a lot, but some people
seem not to pair a lot, they still think that pair-
programming will waste time.

Ownership of tasks
Some people have the feeling that they give up their own
tasks, when they pair and help other people to finish their
task first.

Acceptance tests
No automated acceptance tests. This is a big problem.
Functionality increases rapidly, so the amount of work
needed to test the entire system also increases. Currently,
we foresee part of the iteration simply for testing and bug
fixing.

Presentation layer
No testing of the presentation layer. We have Junit to test
java code and Httpunit to test Jsp pages. But we cannot
test presentation layer.

How do we solve these pr oblems?
Few senior developers and overall architecture: We hire

three senior programmers; they have several years’
experiences. One of them is architector in his
previous job. They don’t know XP at the beginning,
but they know design very well. Now, whenever we
start to do task, to add new feature in existing
system, these experience programmer really do a lot
help to simplify design, refractor legacy code. We
feel coding better now.

Modifications to the overall architecture: We adapt J2EE
(java 2 enterprise edition) architecture, and make
clear distinction for each layer. We also make the
name convention for each layer. Now, we are slowly
recapturing the existing application to this goal
architecture.

Stories too big: when stories are too big, we have the
feeling that we don’t understand the user
requirements very well. So we go to end-user, talk
with them, try to identify the requirements. Now, we
do find that stories can be split into several small
stories if we understand the user requirement well.

Prioritize stories badly: now, we start with the most
important story first, split it into several small tasks,
programmers will pick these small tasks and works
in pair. So we ensure the most important tasks done
first. But we still have one problem: if there are two
many dependence between the tasks, we cannot
distribute it to different pairs.

Problems finishing stories: We give deadline to business
people; ask them to provide the necessary document
before certain date. But they don’t respect this
deadline very much. So we have to force them to do
it.

Pair programming: we do pair programming a lot now,
because we really get the benefit of leaning
knowledge from other programmers. Coding become
better and better.

Presentation layer Test: We ask end-user to do the test.
But it is really not enough. If there are some tools
which can be used to test Presentation layer, it really
will be great helpful.

Deadline pressure: We honestly tell business owner that
we cannot finish the story before the deadline, ask
them to drop some stories. We really need coverage
to do it, because business owner don’t like to hear it.

What benefits do we gain from XP

Define development cycle. Business people can see
clearly what tasks have been done. They can see the

progress of development. They can estimate the cost,
and do cost benefit analysis.

There’s more focus on import tasks

139

All the java classes and methods have their test case.
Code quality is ensured.

We prioritize tasks to ensure the most import ones will be
finished before deadline.

Prioritize tasks: developers have a clear idea about the
things to focus on

Speed up the learning.

We do better information from business people, because
we force them to prepare themselves for the planning
meeting. We force them to get more organized,
because they can only ask stories in the beginning of
cycle.

We organize 10'oclock meeting. This implies that we
always know what the other people are working on,
and what problems they encounter.

We have automated a lot of the build and release
procedure

Refactoring is seen as an important part of the
development process, instead of a loss of time.

5 CONCLUSTION

We already enjoy a lot of benefit from implementing
XP in our company, but we still encounter a lot of
problem. It is a long way to go.

REFERENCES

1. Extreme Programming Explained (Kent Beck
2000)

