

122

Qualitative Studies of XP in a Medium Sized Business

 Robert Gittins Sian Hope Ifor Williams
 School of Informatics School of Informatics Secure Trading
 University of Wales Bangor University of Wales Bangor E-commerce Business Solutions

 Dean Street Dean Street Parc Menai Business Park

 Bangor LL57 1UT UK Bangor LL57 1UT UK Bangor LL57 4BF UK
 +44(0)1248 382724 +44(0)1248 2729 +44(0)148672000
 rgittins@informatics.bangor.ac.uk sian@informatics.bangor.ac.uk ifor.Williams@securetrading.com

ABSTRACT
Qualitative Research Methods [5] are used to discover the
effects of applying eXtreme Programming (XP) in a
software development business environment. Problems
dominating staff development, productivity and
efficiency are parts of a complex human dimension
uncovered in this approach. The interpretation and
development of XP’s ‘Rules and Practices’ are reported,
as well as the interlaced communication and human
issues affecting the implementation of XP in a medium
sized business. The paper considers the difficulties of
applying XP in a changing software requirements
environment, and reports on early deployment successes,
failures and discoveries, and describes how management
and staff adapted during this period of change. The paper
examines the benefits of a flexible management approach
to XP methodology, and records the experiences of both
management and staff, as initial practices matured and
new practices emerged.

Keywords: Extreme Programming, Qualitative methods,
Software Methodology.

1 RELATED WORK
Previous qualitative research [11] [12] [3], has
concentrated on non-judgmental reporting, with the intent
of provoking discussion within the culture being studied
by providing observations and evidence, collaborators
deciding for themselves whether any changes were
required. This fieldwork study follows the format of [6],
whereby the researcher is immersed for a period in the
software developer team; thereby the active researcher
becomes instrumental in the development and
improvement of XP. In [11] Seaman describes an
empirical study that addresses the issue of
communication among members of a software
development organization. Sharp et al. [12] use
combined ethnography and discourse analysis, to
discover implicit assumptions, values and beliefs in a
software management system. In [3], Cockburn and
Williams investigate ‘The cost benefits of pair
programming’. In [13] Sharp, Robinson and Woodman
describe a ‘cross-pollination’ approach, to a deeper
understanding of implicit values and beliefs.

XP developed recently from [1] Kent Beck and [2] Beck
and Fowler and more recently in [9] Jeffries et al. In[14],
Williams and Kessler study lone and paired programmers,
and in [15] Williams et al., the cost effectiveness of
pairing

2 THE STUDY
Secure Trading, the focus of this paper, is a medium sized
software company committed to implementing XP, and
comprises a team of nine developers. Secure Trading
decided to implement XP in a progressive manner,
conscious of minimising disruption to the business
process. Reference material from other companies, not
specifically named in this paper, will only be used in
general terms to highlight some typical problems facing
established, and highly traditional companies, sensitive
to their developer environment, and to the cost of
disruption that change would incur on staff and
production.

Secure Trading, had recently moved to larger offices.
When research started, their involvement with XP
consisted of some intermittent attempts at ‘pairing’
developers. Their move presented opportunities for
improving ‘pairing’ proficiency, and the selective
adoption of XP practices.

3 QUALITATIVE RESEARCH WORK
This research adopts some of the techniques historically
developed in the Social Sciences [5], ethnography,
qualitative interviews and discourse analyses, an
understanding of ‘grounded theory’ was particularly
important. Grounded theory can provide help in
situations where little is known about a topic or problem
area, or to generate new ideas in settings that have
become static or stale. Developed by Barney Glaser and
Anselm Strauss [7] in the 60's, grounded theory deals
with the generation of theory from data. Researchers
start with an area of interest, collect data, and allow
relevant ideas to develop. Rigid pre-conceived ideas are
seen to prevent the development of research. To capture
relevant data, qualitative research techniques are
employed [6] that include the immersion of the researcher
within the developer environment, qualitative data
analyses, guided interviews, and questionnaires.

123

3.1 Qualitative Data: Qualitative evaluation allows the
researcher to study selective issues in detail, without the
pre-determined constraints of >categorised= analyses.
The researcher is instrumental in the gathering of data
from open-ended questions. Direct quotations are the
basic source of raw materials, revealing the respondent’s
depth of concern. This contrasts with the statistical
features of quantitative methods, recognised by their
encumbrance of predetermined procedures.

3.2 Qualitative Interviews : In [10] Patton suggests three
basic approaches to collecting qualitative data through
interviews that are open-ended. The three approaches are
distinguished by the extent to which the questions are
standardised and predetermined, each approach having
strengths and weaknesses, dependant upon the purpose of
the interview:

1) ‘Informal conversational’ interviews, are a
spontaneous flow of questions where the subject may not
realise that the questions are being monitored. 2) The
‘General interview guide’ approach, adopted extensively
for this study, predetermines a set of issues to be
explored. 3) The ‘Standardised open-ended interview’
pursues the subject through a set of fixed questions that
may be used on a number of occasions, with different
subjects.

In a series of interviews, data was collected using
‘Informal conversation’ and verbatim transcripts taken
from ‘General guided interviews’.

3.3 Questionnaires: In an extensive questionnaire
consideration was given to the ‘Rules and Practices’ of
XP. Questions targeted the software development
process, XP practices, and both managerial and
behavioural effectiveness. Behavioural questions were
based upon Herzberg’s ‘Hygiene and Motivation Factors’
[8]. Ample provision was provided for open comments on
each of the topics, and a developer floor plan provided for
a respondent to suggest improvements to the work area.
Repeating the questionnaire at three monthly intervals
will help research and management by matching the
maturing XP practices, as they progress, against
developer responses.

4 RULES AND PRACTICES
4.1 Pair Programming: (See[1][2]) XP advances
what has been reported for some time [3][14][15];
Two programmers working together generate an
increased volume of superior code, compared with
the same two programmers working separately.
Secure Trading management, discussed the
implementation of ‘Pairing’ with the development
team, who unanimously agreed to ‘buy-in’ to the
practice. The first questionnaire showed some of
the team were unhappy with pairing. 28% of
developers preferred to work independently, 57%
didn’t think they could work with everyone, and

57% stated that pair programmers should spend on
average 50% of their time alone. XP practices
recommend no more than 25 % of a conditional 40-
hour week be paired. Two developers summed up
the team’s early attitude to pair programming: “I
feel that pair programming can be very taxing at
times, although I can see the benefits of doing it
some of the time.”
“Not everyone makes an ideal pair. It only really
works if the pair is reasonably evenly matched. If
one person is quiet, and doesn't contribute, their
presence is wasted. Also, if a person is really
disorganised and doesn't work in a cooperative way,
the frustration can (disturb) the other participant!”

Developers estimated that they spent approximately 30%
of their time pairing, with partner changes occurring only
upon task completion, changes being agreed and
established ad hoc. Frequent partner swapping, and
partner mixing, commands great merit in XP. Pairing
practices matured with the introduction of a team ‘Coach’
and later a ‘Tracker’[1]. Maintenance tasks were another
problem which routinely disrupted pairing. Here control
was reviewed and tasks better ordered to minimise this
problem. In time, the impact of pairing activity upon
developers will translate into evidence, returned in the
periodic questionnaire reviews, and in the timeliness and
quality of code producted.

4.2 Planning Games:(See[9]) Planning games were
introduced soon after pairing practices were established.
The ‘customer’ duly chooses between having more
stories, requiring more time; against a shorter release,
with less scope. Customers are not permitted to es timate
story or task duration in XP and developers are not
permitted to choose story and task priority. Where a
story is too complex or uncertain to estimate, a ‘Spike’ is
created. Spike solutions provide answers to complex and
risky stories. Secure Trading succeeded well in
developing Planning games, utilising ‘Spike solutions’ by
logging a ‘spike’ as a fully referenced story to quickly
attack the problem, reducing a complex, inestimable story
to a simple, and easily understood, group of stories.
Results were very effective; ‘spike solutions’ proved easy
to develop and derived estimates for completion proved
consistently accurate. It was common practice to have
the essential elements of both iteration and release
Planning games combined into one meeting. This
practice worked for them in the context of the jobs they
were planning.

4.3 Client On-site: (See [1]) Secure Trading rarely had
this luxury. When required the ‘Client’ role was
undertaken by a client’s representative, co-opted from the
Customer services department by staff who had worked
closely with the client and were able to accept that
responsibility. Developer Manager: “The inclusion of a
representative from Customer services has proven to be

124

hugely beneficial, providing immediate feedback of the
system’s successes and failures on a day-to-day basis.”

4.4 Communication: (See [1]) A great deal of attention
is necessary in providing an XP environment in keeping
with the practices to support XP. Key factors in
communication are: the use of white boards, positioning
and sharing of desk facilities to facilitate pair
programmers, ‘stand-up’ meetings, developers ‘buying-in
to the concepts of the ‘rules and practices’ of XP, and
‘collective code ownership’. Interviews and
questionnaires revealed many areas of concern among
developers. For example, 86% of developers disagreed
that meetings were well organized; “Agreements at
meetings are not set in concrete” and, “Confidence is lost
with meeting procedures, when agreed action or tasks are
later allowed to be interpreted freely by different
parties.” Management were quick to address these
concerns by concentrating on the development of XP
story card practices. Developers were encouraged to
agree, and finalise with the client, the task description and
duration estimates at timely Planning Game meetings.
Story cards were fully referenced and signed by the
accepting developer, thereby becoming the responsibility
of the initiating developer until completion. Only the
responsible creator of a Card was authorized to amend it.

The use and placement of White boards is said to be an
essential supporting means of good communication in XP
practices [1]. Mobile whiteboards were introduced by
Secure Trading soon after pair programming practices
gained momentum and used to record the story details
agreed at Planning Game meetings. At one point, story
cards were physically stuck to the boards in prioritised
order with adjacent notes written on the board. This
proved unpopular and developed into cards being retained
but not stuck on the white board. Stories were written on
the boards. Referenced stories contained ownership,
estimation, as well as iteration and priority, which were
displayed in columned format. On completion, the owner
added the actual task duration. The information served to
improve personal proficiency in estimation and in
providing feedback towards establishing project
‘velocity’ data, for future Planning Game meetings.

Stand-up meetings promote communication throughout
the team. Secure Trading introduced this practice from
day one. At ten o’clock every morning, a meeting
allowed everyone to briefly state (standing promotes
brevity) their work for the day, and discuss problems
arising from the previous days activity. Anyone was free
to comment, offer advice or volunteer co-operation. The
benefits of adopting stand-up meetings were far-reaching
and seen by developers and management as an effective
way to broadcast activities, share knowledge and
encourage collaboration amongst and between team
members and management. Secure Trading meetings
tended to degrade when reports migrated to topics of
yesterday’s activity, rather than those planned for the day.
This activity persists and may remain or need to be

resolved and modified as their particular brand of XP
develops.

4.5 Simple Design: Beck [1] summarises simple
design in ‘Say everything once and only once.’
However a comment by one developer interviewed
revealed a common concern, “Sometimes, it is a bit
too simplistic, and issues seem to be avoided”. XP
states that it is important to produce a simple system
quickly, and that ‘Small Releases’ are necessary to
gain feedback from the client. Secure Trading
didn’t see themselves in a position to implement this
practice so early in their XP programme. XP allows
companies to cherry-pick those practices they regard
suitable for implementation, in the order they see fit.

4.6 Tests: Unit tests are written in XP before main code
and give an early and clear understanding of what the
program must do. This provides a more realistic scenario,
as opposed to ‘after-the-code testing,’ that could, for
many reasons, neatly match completed code. Time is
saved both at the start of coding, and again at the end of
development. Latent resistance to early unit testing
became manifest, when the perceived closeness of a
deadline loomed. This activity is perhaps the hardest to
implement and requires commitment from developers.
An early questionnaire revealed that 71% of Secure
Trading developers regarded unit-testing practices in
general to be ‘very poor’. Developer Manager on early
introduction of unit testing: “ If you already have a large
complex system, it is difficult to determine to what extent
testing infrastructure is to be retrospectively applied.
This is the most difficult aspect in our experience.
Starting from scratch it is much easier to make stories
and code testable.”

4.7 Refactoring: (See[4]). ‘The process of improving the
code’s structure while preserving its function.’ The use
and reuse of old code is deemed costly, often because
developers are afraid they will break the software. XP
indicates that refactoring throughout the project life cycle
saves time and improves quality. Refactoring reinforces
simplicity by its action in keeping code clean and
reducing complexity. Secure Trading had not developed
refactoring activities in line with XP at that time. Many
developers expressed concern with refactoring, more
commonly reported by traditional companies: “ … with
more people, we could spend more time refactoring and
improving the quality of our existing code base.” The
questionnaire revealed that 45% of developers considered
refactoring sporadic or very poor.

4.8 Collective Code Ownership: (See[1][2]). This
concept states “Every programmer improves any
code anywhere in the system at any time if they see
the opportunity.” Collective code ownership has
many merits: It prevents complex code entering the
system, developed from the practice that anyone can

125

look at code and simplify it. It may sound
contentious, but XP Test procedures should prevent
poor code entering the system. Collective Code
Ownership also spreads knowledge of the system
around the team. Secure Trading experienced
growing pains in developing this principle, revealed
by the comments of two developers: “I have
conflicting interests in collective code ownership. I
think it is very good when it works, but there are
times when some code I have written seems to just
get worse when others have been working on it.”
“I like the idea of collective code ownership, but in
practice I feel that I own, am responsible for, some bits of
code.” From the traditional perspective of individual
ownership, it will be important to record how attitudes
change, as XP practices mature.

4.9 Metaphor: A metaphor in XP is a simple shared
story to encompass and explain what the application
is ‘like’, communicating a mental image, so that
everyone involved can grasp the essence of the
project in a term universally understood. This may
seem to be a rela tively easy, or lightweight, activity
to adopt. However, the value of this practice was
not immediately evident to developers, early
difficulties developing and applying suitable
metaphors were experienced and this practice was
reluctantly abandoned for future consideration.

5 COMPANIES STARTING FROM SCRATCH
 Long established and traditional companies, considering
adopting XP, have, unlike Secure Trading, many more
difficulties to overcome. They mostly comprise
traditional teams of developers, who are comfortably
established, working in small offices, in prohibitively
cloistered environments. Management is often aware that
legacy software in circulation is in the ‘ownership’ of one
or two heroic developers, at the cutting edge of their
business. Some teams were reported as badly under-
performing and in some circumstances management had
resorted to consultants to resolve their problems with no
significant success reported. Often with great reluctance,
management allowed the research team to visit developer
offices. Tension was evidently high. In these companies,
‘Risks’[1]are high, quality is compromised,
communication difficult, and control largely ineffective.
There are other considerations when starting from
scratch; The Secure Trading developer manager reflecting
upon attempts at implementing XP in his early projects
stated: “ One of the key ‘discoveries’ has been the
relative ease to which XP has been employed on an all-
new project, and the difficulty in applying XP
retrospectively on an established system.”

6 CONCLUSIONS
A combination of qualitative and quantitative methods
has helped identify uncertainties in applying XP practices

in a medium sized software development company. How
particularly one company interpreted and developed their
brand of XP, mounded from their successes and failures.
Successes in such areas as the use and development of
‘spike solutions’, and Customer role-play within
‘Planning Game’ activity, and from failures, as in
developer reluctance to ‘buying-in’ to ‘collective code
ownership’, and the difficulties of implementing the
practice of ‘simple design’, and in the use of ‘metaphors’.
Partial success was seen in ‘Pair programming’, that
having posed early problems, showed improvement in
maturity. Future work will monitor the complex factors
in the development of XP within small and growing
companies at various levels of maturity. By
acknowledging the characteristic unsharp boundaries of
qualitative data sets, future work will investigate the use
of fuzzy logic for data analyses.

ACKNOWLEDGEMENTS
This paper acknowledges the funding and support of the
EPSRC (Award No. 99300131).

REFERENCES
1. Beck, K. ‘Extreme Programming Explained:

Embrace change’. Addison Wesley. 2000
2. Beck, K. and Fowler, M. ‘Planning Extreme

Programming’. Addison Wesley 2000.
3. Cockburn, A. and Williams, L. ‘The cost benefits of

pairprogramming’.http://members.aol.com/humansan
dt/papers/pairprogrammingcostbene/pairprogrammin
gcostbene.htm .

4. Fowler, M., ‘Refactoring: Improving the design of
existing code’, Addison Wesley. July 1999.

5. Gittins, R.G., ‘Qualitative Research: An investigation
into methods and concepts in qualitative research.
Technical Paper: via
www.sesi.informatics.bangor.ac.uk/english/home/res
earch/technical-reports/sesi-020.htm

6. Gittins, R.G., Bass, M,J., ‘Qualitative Research
Fieldwork: An empirical study of software
development in a small company, using guided
interview techniques’, TechnicalPaper: via
www.sesi.informatics.bangor.ac.uk/english/home/res
earch/technical-reports/sesi-021.htm

7. Glaser, B.G., and Strauss, A.L. ‘The discovery of
grounded theory: strategies of qualitative research’
Chicago: Aldine Publications.1967

8. Herzberg, F. ‘Work and the Nature of Man’, Granada
Publications Ltd.1974

9. Jeffries, R. Anderson, A. and Hendrickson,
C.‘Extreme Programming Installed’ Addison Wesley
2000.

10. Patton, M.Q.>Qualitative Evaluation and Research
Methods= (2nd Edit.).SAGE Publications

11. Seaman, C.B. ‘Qualitative methods in empirical
studies of software engineering’, IEEE Trnsctns on
Software Engineering, Vol.25 (4):557-572 Jul/Aug
99.

12. Sharp,H., Woodman,M., Hovenden,F. & Robinson,

126

H. >The role of >culture= in successful software
process improvement.= EUROMICRO:1999 Vol.2,
p17.

13. IEEE Computer Society. Sharp,H.,Robinson,H., and
Woodman, M. ‘Software Engineering: Community
and Culture’ IEEE Software, Vol. 17, No.1, Jan
/Feb2000

14. Williams, L. A. and Kessler, R.R. ‘All I Really
Wanted to Know About Pair Programming I Learned
in Kindergarten’. Communications of the ACM. May
2000 Vol.43,No5.

15. Williams, L.A.,Kessler, R.R.,Cunningham, W., and
Jeffries,R.‘Strengthening the Case for
PairProgramming’.IEEE Software, Vol. 17, No. 4:
July/August,2000,pp19-25.

