

109

Functional Test Generation for Extreme Programming

Mike Holcombe

University of Sheffield,
Regent Court, Portobello Street,

Sheffield, S1 4DP, UK,
+44 114 222 1802

m.holcombe@dcs.shef.ac.uk

Kirill Bogdanov
University of Sheffield,

Regent Court, Portobello Street,
Sheffield, S1 4DP, UK,

+44 114 222 1847
k.bogdanov@dcs.shef.ac.uk

Marian Gheorghe
University of Sheffield,

Regent Court, Portobello Street,
Sheffield, S1 4DP, UK,

+44 114 222 1843
marian@dcs.shef.ac.uk

ABSTRACT
Test generation and the engineering, including
maintenance, of the set of test cases are a key part of the
Extreme Programming approach. Since so much depends
on the viability of these test sets it is therefore important
that methods for constructing them make use of the best
available techniques. Total testing provides a mechanism
whereby test sets are created which can detect ALL
possible faults in an implementation, provided that a
number of key conditions are satisfied. This paper
describes how total testing can be used in Extreme
Programming and illustrates the concepts with a simple
case study. The methods proposed here are being used in
a number of industrial projects and some interim
conclusions from these are presented.

Keywords
Extreme programming, test set generation, general (X-)
machines, extended finite state machines, total testing,
test refinement.

1 INTRODUCTION

All software systems are subject to testing - for some of
them testing is the major activity in the project. In
Extreme Programming [4], [5] the production of test
cases is now a vital part of the initial phases of a project.
Testing, however, rarely gets the attention it deserves
from researchers and developers, partly because its
foundations are very weak and ill-understood. The
principal purpose of testing is to detect (and then
remove) faults in a software system. A number of
techniques for carrying out testing, and in particular, for
the generation of test sets exist. Many sophisticated (and
expensive) tools are available on the market and many
developers look to these to provide a solution to the
problems of building fault-free systems. We consider the
problem of fault detection and note that few, if any, of
the existing methods really address the real issues. In
particular no methods allow us to make any statement
about the type or number of faults that remain undetected
after testing is completed. Thus we cannot really measure
the effectiveness of our testing activities in any rigorous
way.

Emphasis is usually placed on coverage measures, which
really indicate effort rather than effectiveness. However,
by considering testing from a straightforward, theoretical
point of view we demonstrate that a new method for
generating test cases can provide a more convincing
approach to the problem of detecting ALL faults and
allows us to make sensible claims about the level and
type of faults remaining after the testing process is
complete. We can then integrate this approach into XP in
a simple and designer-friendly way. The approach is
outlined in the following section, illustrated by an
example in section 3 and conclusions made in section 4.

2 THE FUNDAMENTALS OF TOTAL TESTING

The basis of the testing method is that of computational
modelling with X-machines (these date from the mid
70s) which are a simple and elegant way of visualising
the dynamics of a software system. They are similar to
what are known as extended finite state machines.

The model identifies the set of events and inputs that
produce observable change, these are mouse clicks, data
entry, sensor inputs etc. and the observable outputs such
as screen displays, commands to peripheral devices etc.
Alongside these are a model of - essentially a global -
memory which describes what the system knows and
needs to know in order to permit effective operation of
the key functions of the system, examples might be a
database or various internal variables.

The concept of a key or basic function is one that takes a
pair of parameters consisting of the current input and the
current state of the memory and produces an output
whilst updating the memory. We call these basic
functions business processes in [1]. These business
processes are then integrated into a state-based machine
model, the stream X- machine. This then provides us
with a mechanism for building extremely powerful test
strategies, [1], [2], [3]. Note that the machine constructed
above could itself be regarded as a basic function for a
higher level system thus providing the hierarchical leap
that makes the method work so well. Essentially the
approach allows us to manage the test process, we start at
the bottom and test the lowest level basic functions. The
method then lets us test the integration of these into the
lowest level machine in such a way that, under suitable

110

assumptions (see below) we can detect ALL faults in an
implementation. Now we can repeat the process at a
higher level until we are able to test the full integration
of the system. This hierarchical approach significantly
reduces the size of the test data set without affecting its
fault finding properties, [3].

Design for test
Not many software developers realise that the design can
affect the effectiveness of testing and the issue of design
for test is one that should be considered more, [7].
Organising the system in a particular way can make an
enormous difference; some systems are almost
impossible to test properly if this is not done.

The two key issues are controllability and observability .
By controllability we mean putting in enough
functionality so that we can drive the system to any state
and apply any basic function from that state under all the
necessary conditions needed. This is usually done by
designing in special test inputs that can set up the system
in a suitable way, these would not be used in normal
operation and, in some situations can be removed or
commented out without disrupting the software.
Observability simply means arranging for enough
information to be output that we can distinguish between
the various basic functions that might have fired. We
achieve this by making suitable data available as outputs,
for example printing out appropriate variable values at
appropriate times, these need to be disabled at delivery.
This is a process that can be a source of error but one
that, if done in a controlled and careful way, can
significantly increase the effectiveness of testing.

We need to assume that the system satisfies these designs
for test requirements. There are a couple of other
conditions, firstly we need to be sure that the basic
functions are correct, this can be done by a separate
functional testing method, using category partition and

boundary values is an effective way of doing this, or
maybe you are using tried and trusted components, for
example, functions that take keyboard input and echo it
to a screen or put it in a register or perhaps a function
that accesses a cell in a database table

The final condition is some sort of estimate of how many
extra states there might be in the implementation,
compared to the model, usually there are few extra states
but one can be pessimistic at the cost of larger test sets.
The test generation algorithm, itself, is best described
using an example.

3 A SIMPLE EXAMPLE

Suppose that we are building a simple customer and
orders database. We might identify a number of stories
such as the following:
1. Customer details are entered customer by customer.

2. Customer details can be edited.

3. Orders are placed by a customer

4. Orders can be edited when necessary.

The details of the structure of the customer and orders
details are not described at this level of detail. We try to
build an abstract model of the user interface and then
refine it. The test approach permits us to generate an
abstract high level test strategy and to refine the test
cases in parallel with the design [1], [2], thus saving
enormously in test case size for large examples - a recent
case study, involving 3 million transitions, demonstrated
this, [6]. In other industrial projects requirements have
been split down into small functional elements,
implemented and tested separately and the integration
guided by the stream X-machine testing strategy.

Story function input current memory output Updated memory change risk

1 click(customer) customer button click - new customer screen - Low

1 Enter(customer) customer details entered current customer

database

confirmation details

screen

- medium (nature of

details liable to change)

1 confirm(customer) customer confirm button

clicked

current customer

database

OK message and start

screen button

updated customer

database

Low

3 click(order) orders button clicked - new orders screen - Low

3 enter(order) new order details entered current orders database confirmation orders

screen

- high (nature of details of

orders liable to change)

3 confirm(order) orders confirm button

clicked

current orders database Ok message and start

screen button

updated orders database Low

3 quit() click on return to start

button

- start screen - Low

111

Now we try to identify from these stories, what is
prompting change (inputs), what internal knowledge is
needed (memory), what is the observable result (output)
and how the memory changes after the event. We also try
to identify the risk that the story will be changed during
the course of the project as a means of trying to manage
its evolution this might be used to help decide which
aspect could be addressed at first.

The table above describes some of the functions from the
stories in this form.

From the diagram (Fig.1) one can see how the basic
functions are organised. Each state, in this example, has
associated with it an appropriate screen with buttons, text
fields etc. Of course, the model is simple and crude, there
is no distinction between entering a new customer’s
details and editing an existing one but it is enough to
explain the method. These refinements are, what they say
they are, refinements that can be dealt with later and the
work we do on test set generation here is built on them.
Tests are refined with the functions and this leads to
much smaller test sets ([3]).

Test set generation

Assuming that the basic functions in the table are correct
and the design for test conditions are satisfied the test set
is generated in the following way.

We start at the state start with the initial state of the
internal memory, probably in some basic initialised state,
and the aim is to visit every state in turn. When we have
reached a state we need to confirm that it is the correct
state and this is done by following more simple paths

(without cycles) from that state until we get outputs that
tell us, unambiguously, what the state was. Then we
repeat the path to that state and check what happens if we
try to apply every basic function from that state, some
will succeed but some should fail. Have the correct ones
passed and failed? This is then repeated for every state.
Some example functions sequences are:

click(customer)::enter(customer);

click(customer)::enter(customer)::click(order)

(Here :: means concatenation or sequence connector.)

The first test has tried to access the state confirm
customer correctly and should pass, the second has tried
to apply an incorrect function from that state and should
fail.]
The test generation, which is fully automated, will
generate all the sequences needed to establish whether the
implementation is correct, i.e. agrees with the model.

Now, this test set is not quite what we want since it is
based on the set of functions which we cannot access
directly, it needs to be converted to a sequence of inputs.
So we choose suitable inputs that will trigger the correct
functions as we trace through the diagram along the paths
of functions generating sequences of inputs which are our
actual tests. The design for test conditions allow this to
happen, the mathematical details and proof of correctness
are in [1] and [2].

Thus we have the following test sequences corresponding
to the sequences above:

customer_button_click::customer_details_entered

112

customer_button_click::customer_details_entered::
orders_button_clicked

where customer_button_click is the event (or input)
corresponding to the clicking of the customer button on
the start screen, this should trigger the first function in the
sequence.

Of course, as this is a high level test set, the input
customer_details_entered represents a more complex
series of activities. If the customer screen was structured
with a number of data slots representing different
parameters, eg. customer_name, customer_address, etc.,
then this will be modelled with a lower level machine
involving more lower level, basic functions which need to
be tested first. What this amounts to is that the code
associated with the screen for customer data entry needs
to be written and tested first.

The memory structure now needs to be discussed.
Essentially we need to think about this in terms of what
basic types of memory structure is relevant at the
different levels. At the top level, for example we could
represent it as a small vector or array of compound types
of the form:

customer_details X ?order_details

filling in the actual details later. It may be, for example,
that these will represent part of a structured database with
a set of special fields which relate to the design of the
screens associated with these operations. So
customer_details would involve name, address etc. which
would be represented as some lower level compound data
structure, perhaps and there would be basic functions
which insert values into the database table after testing
for validity etc.

Fault detection

Since detecting faults is a major aspect of testing and a
key ingredient in any process attempting to improve the
quality of the final software product it is worth looking at
the way in which typical faults are trapped using these
test sets.

Suppose that click(order) did something unwanted when
the orders button was clicked whilst in state confirm
customer. This would be exposed in the testing if the
output observed was not an error, signifying that from
that particular state click(order) does something
undesired.

Another type of fault might be a missing transition,
which, again would be exposed since the response to the
test would be an error instead of the expected output.

A key aspect of this method is that the test sets generated
fully test the system, not just establishing that it does

what it should do but that it also doesn’t do what it
shouldn’t .

4 CONCLUSIONS AND FURTHER WORK

Thee are still many aspects of the relationship between
XP and testing to explore. Ultimately we need to build
smart test tools which interface naturally with the XP
process. Traditionally testing has been left to the end of
the coding, the V model tries to encourage designers to
derive their unit tests from unit specifications, their
system (or function) tests from system specifications and
requirements but, unfortunately, this is rarely done since
these specifications are rarely stable or suitable and the
methodology doesn’t force you to focus on the test sets in
the way that XP does.

In XP we focus much more on the iterative progression
from metaphors and stories to test sets to code and this
presents many new challenges. There are incredible
savings in time and gains in quality by using smart test
strategies in XP. This paper is an attempt to explain how
one of the most powerful test generation approaches
could be put to use.

We are currently building some test tools to support our
work on using XP in industrial contracts. Descriptions of
these developments and their consequences will follow in
further papers.

ACKNOWLEDGEMENTS

We would like to thank our colleagues Francisco Macias,
Tony Simons and Mike Stannett for many helpful
suggestions and comments on this paper.

REFERENCES

1. M. Holcombe & F. Ipate, "Correct systems - building
a business process solution", Springer, Applied
Computing Series, 1998.

2. F. Ipate & M. Holcombe, "Specification and testing
using generalised machines: a presentation and a case
study", SoftwareTesting, Verification and Reliability,
8, 61-81, 1998.

3. F. Ipate & M. Holcombe, "A method for refining and
testing generalised machine specifications", Int. Jour.
Comp. Math. 68, 197-219, 1998.

4. K. Beck, "Extreme Programming Explained:
Embrace Change", Addison Wesley, 1999.

5. XProgramming Web site, On-line at
<http://www.XPro gramming.com/ >

6. K. Bogdanov & M. Holcombe, "Test generation for a
statechart with a relatively large number of states",
submitted.

113

7. Robert V. Binder, "Design for testability in object-
oriented systems", Communications of the ACM,

37(9):87- 101, September 1994

