

118

A Practical Application of XP

 Kevan Dunsmore Charles Wiemann Gabriel Wolosin
 Trilogy Trilogy Trilogy
 6034 West Courtyard Drive 6034 West Courtyard Drive 6034 West Courtyard Drive
 Austin Austin Austin
 Texas 78730 USA Texas 78730 USA Texas 78730 USA
 +1 512 532 5903 +1 512 532 5714 +1 512 532 5221
 kevan.dunsmore@trilogy.com charles.wiemann@trilogy.com gabriel.wolosin@trilogy.com

ABSTRACT
This paper outlines the conclusions drawn from the
Trilogy project team’s experience from an on-going
consulting engagement employing Trilogy’s Fast Cycle
Time (FCT) methodology.

Some XP [1] practices are difficult to instigate in a “time
and materials” consulting engagement. This document
provides alternatives to these practices that preserve the
spirit of XP. We describe requirements gathering, user
interface development and general development practices
that we have found to work well.

Through our experience on this project, we have gained
the following insights: It is possible to gather
requirements effectively without having the entire project
team located at the customer site. A dedicated Human
Computer Interaction (HCI) team helps boost User
Interface (UI) quality and reduces cost. Three-week
cycles provided the best balance between release
administration and system development. Finally,
employing a full-time Quality Engineer (QE) ensures the
quality level that required for frequent software releases.

Keywords

XP, extreme programming, FCT, Fast Cycle Time, HCI,
requirements, database, DB, software development,
quality.

1 INTRODUCTION
Trilogy [13] was awarded the contract to design and
implement a new call center application for one of the
largest retail catalog merchants in the United States. The
merchant started with a strategic vision of incorporating
customer intelligence into every step of the ordering
process to provide the optimal customer experience
across all channels. Trilogy’s role was to assist in the
business value modeling, scope the functional
requirements, develop the functionality and user interface
and implement and test the new functionality. Some
examples of the types of functionality include search
techniques for products, easier side-by-side product
comparisons and new pricing techniques that are simpler
for customers and more profitable for the merchant.

All Trilogy projects are managed via the FCT
methodology. FCT is a lightweight methodology similar
to eXtreme Programming (XP). It promotes delivery of
business-aligned solutions by employing multiple
development and delivery cycles of two to four weeks in
duration. These cycles are analogous to XP’s iterations.
FCT encourages continuous feedback and constant
business prioritization of requirements to allow customers
to realize Return On Investment (ROI) as quickly as
possible. FCT also offers the added benefit of tracking
specific professional service costs to specific
functionality. This allows both Trilogy and our
customers to evaluate ROI for specific functionality as
opposed to an overall project.

2 REQUIREMENTS GATHERING WITHOUT
AN ONSITE CUSTOMER

We have found that it is possible to gather requirements
successfully without an onsite customer with a small
requirements team stationed at the customer site.
Communication between the parties involved is vital. We
have found that the requirements gathering process works
best when it is sequenced at least one cycle ahead of
development.

The concept of an “onsite customer” is valuable but can
often be impractical. Clients are often unwilling to spare
key individuals for remote efforts and the cost of
prolonged travel can have severe impact on the budget of
a project. In order to address these issues, a small
requirements team works at the client’s base of
operations. This practice requires good communication
between the requirements team and the development
team. The requirements team has to be able to respond to
questions quickly and the development team has to
provide prompt feedback on the generated requirements.

On our project, requirements are gathered in cycles with
the requirements team working one or more cycles ahead
of the development team. This ensures that there are
requirements available and ready to be built at the
beginning of each cycle.

119

Prioritized high-level functional requirements provide a
“road map” from which work is scheduled. In each
session, a “use case” [4] is produced, similar in form to a
“user story” [1]. These use cases are employed to
provide the context for gathering functional and technical
requirements. During development, the assigned
programmer determines the details of each use case in
conjunction with a member of the requirements team and
a designated customer domain expert.

FCT allows the customer to reprioritize and change
requirements to meet varying needs. In our experience,
the reprioritization of requirements usually has little
impact on work under development or on the use cases
already in the one-cycle-ahead “pipeline.” When
development is affected, it is affected in one of two ways.
In the first situation, a change affects previously
completed work. In this instance, new requirements are
gathered and fed into the pipeline with the appropriate
customer-designated priority. The development team
estimates the time required for the change and the
customer decides if the new feature is financially viable.
In the second situation, a change affects requirements in
the pipeline. In this scenario, it is possible that
development “stalls” at the beginning of the next cycle
Typically, this “stall” happens at the beginning of a
project, when there are relatively few use cases. In this
situation, the impact of the missing cycle is
communicated to the client. The customer must then
decide if the change is worth the schedule slippage.

On this project, the development cycle stalled on two
occasions. In an attempt to create a solution that could be
used across several channels, our client included
representatives from several business areas in the use case
development process. On both occasions, competing
business needs prevented the group from reaching
consensus. This situation occurred early in the project,
before a backlog of use cases had been produced. The
result was a work stoppage. Strong executive
sponsorship was required to break these deadlocks and
prevent development cycle stalls.

In conclusion, it is possible to gather requirements
without an onsite customer successfully. By stationing a
specialized requirements team at the customer site,
similar benefits can be realized. This strategy requires
excellent communication between the development team,
the requirements team and the customer. The process
works best if requirements are gathered at least one cycle
ahead of development and a strong executive sponsor
serves as the arbitrator of functionality disputes.

3 USER INTERFACE DEVELOPMENT
Under FCT, the development of a cohesive, intuitive user
interface poses some difficult questions. As with XP,
system functionality is often developed in “verticals”; a
particular application function is known in great detail but

there is often less application knowledge in breadth,
particularly at the beginning of development. Since this
breadth of knowledge on the part of the designer is key to
the production of a cohesive interface, this causes
difficulty.

Our approach has been to delay the development of a
cohesive interface and instead concentrate on developing
intuitive interfaces for each functional vertical. There are
often obvious areas of commonality between the
interfaces of each vertical that can be refactored to
increase cohesiveness in the short term. For example,
ensuring that buttons labeled with the same text perform
the same function and that dialog layout is consistent.
However, the major UI design work has been postponed
until there is sufficient application knowledge and, more
importantly, there is a pressing business need for UI
cohesiveness.

On our project, we have a separate HCI team that works
closely with the requirements team. As with
requirements, HCI works one or more cycles ahead of
development. Our HCI team consists of two people. One
person works on determining common system usage
patterns and works closely with the requirements team.
The second person designs the UI and works closely with
the system developers.

The first step in designing the UI is to build wire frame
models using commercially available software. Our
project’s choice of software is Microsoft’s PowerPoint.
PowerPoint facilitates creating graphics quickly and
provides the ability to build “slides” which detail the
progression of an interaction. The PowerPoint
presentations are used to guide the client through an
interaction before any code is written. The development
of each feature’s UI takes several iterations. Each
iteration includes feedback from the client and the
development team. At the end of the HCI cycle, the slides
represent a UI that is acceptable to the client and is
technically feasible to build.

Postponing as many HCI decisions regarding interface
cohesiveness and focusing on intuitive interfaces for
functional verticals allows a UI of fair quality to be
developed. This approach means that a UI refactoring
cycle at a later point in the project is likely. The inclusion
of an experienced HCI team has reduced a large amount
of UI rework on the part of the system developers. The
reduction in rework depends on the HCI cycles taking
place at least one cycle ahead of development.

4 DEVELOPMENT
In order to achieve the desired results, the development
team must work closely with the requirements, HCI and
customer teams. Estimates are developed during group
sessions with established ground rules to ensure
efficiency and accuracy. A modified Classes

120

Responsibilities and Collaborations [2] (CRC) process is
used for design. The CRC cards are modified to
communicate which aspects of the system design map to
particular business requirements. The difficulty of
persuading a client of the benefits of pair programming
was overcome by implementing a two-stage code review
policy.

After experimenting with several cycle lengths, the
development process was organized into 3-week cycles.
The first week is reserved for addressing requirements
questions and fixing any problems from the previous
cycle discovered during end-to-end system and load
testing. The second and third weeks are reserved for
development.

In the first week of the cycle, developers review the target
use cases and compile a list of questions jointly. The
onsite requirements team and the client work to resolve
these questions as a team. Often, some of the questions
are answered over the phone during the meeting. When
all questions are answered, the development team breaks
the use cases into tasks and estimates each feature
collectively. Some basic rules apply to the estimation
process. No task can be estimated at less than 0.5 days.
Estimates must include the time required for design and
testing. When estimation is complete, each developer
volunteers to implement one or more tasks. No developer
may sign up for more days of development effort than
there are working days in weeks two and three, ensuring
that the team doesn’t over-commit.

The first week of a cycle also provides an opportunity for
developers to address any problems found in end-to-end
system testing. See section 5 for an explanation of end-to-
end system testing.

The second and third weeks are reserved for writing code
for both system features and tests. Tests are written and
executed automatically by an internal tool similar to JUnit
[5] and optimized for execution within the Trilogy
product suite.

The first development cycles were two weeks in duration.
The amount of time spent creating and running end-to-
end tests and packaging the application for delivery in
proportion to the amount of time spend developing the
system was impractical and cost prohibitive. The 3-week
cycle strikes a good balance between the time spent
supporting frequent deployments and developing the
system features.

System design is performed with a modified CRC
process. At least two developers attend each session.
CRC cards are used to describe the classes and the
relationships required for each feature. On each card,
collaborators and responsibilities are assigned a number
corresponding to a use case task number. When the

design is complete, the card contents are added to a
document called the “Cycle Design Report” (CDR),
which is sent to the client. The CDR allows client’s
technical staff to follow the system design and trace each
major class to a particular business requirement, ensuring
accountability. Each design element must correspond to
a business requirement.

In a “time and expenses” engagement, pair programming,
a staple of XP, is controversial. We have found it difficult
to persuade clients to pay two people to write the same
piece of code, regardless of the proven benefits of the
practice. In order to preserve the spirit of pair
programming, we have implemented a two-stage code
review process at different stages of development.

Code reviews take place at two levels. The first level, a
“code read”, is used whenever a developer checks code
into the source control system. Before code can be
checked in, the developer will request another team
member to review the code. The developer will explain
the changes made and, using a differencing utility, show
the changes to the previous versions of each source file.
The reader examines the code to detect deviations from
the project coding standards, obviously inefficient
algorithms, re-factoring opportunities and documentation
improvement opportunities. A code read can varies in
length from 5 to 60 minutes. Code reads are most
effective when a small number of files are being
submitted.

Formal code reviews are the next level in the process.
The entire development team reviews the previous
cycle’s code before the next cycle begins. The
development team collectively determines whether the
code base implements the feature set correctly and to the
necessary level of efficiency. The team checks the code
for design efficiency, correctness, thread safety, etc. A list
of improvement suggestions is compiled and
implemented after the review. A considerable investment
of time, from a few hours to a day, is required for this
process.

Although this two-stage code review process is not as
comprehensive as pair programming, we have found it to
be an acceptable compromise between the cost perceived
by the client and code integrity.

In summary, 3-week cycles provide an ideal balance
between the administration costs of frequent software
releases and development time. The development team
must work closely with requirements, HCI and customer
teams. Group estimation sessions with established ground
rules improve accuracy. Finally, client concerns with the
cost of pair programming can be dispelled by a two-stage
code review policy that approximates the benefits of pair
programming.

121

5 ENSURING QUALITY REL EASES
Staffing the project with a full-time Quality Engineer
(QE) has provided many project benefits. The QE
relieves much of the administrative burden of the quality
process from the rest of the project team. Several best
practices have been identified to ensure acceptable
quality. Well-defined quality metrics are required and the
QE must have the authority to block releases if these
metrics are not met. An appropriate set of software tools
is also essential to the quality process. Software delivery
is aided by an automatic build and test system that
ensures the readiness of application for release.

Each developer is responsible for the quality of the code
produced. The primary quality assurance mechanism is
the creation of Application Programming Interface (API)
tests that can be executed automatically. The Quality
Engineer (QE), however, is ultimately responsible for the
quality of the overall system release. The QE is
responsible for creating and running end-to-end system
tests and performance tests. End-to-end system testing is
accomplished by using Segue’s [11] SILK [12]. SILK
scripts are created to simulate user interaction by
executing use cases. Over time, a regression test suite is
built. The SILK scripts are also used for system stress
testing.

NuMega’s [7] TrueCoverage [14] is employed to
determine “code coverage,” the percentage of
delivered code exercised by the API tests written by
the developers and the end-to-end SILK tests. The
project targets of 80% function coverage and 70%
line coverage are enforced by the QE. Failure to
meet these targets prevents software release

The QE works within the development cycle
timeframes. In the first week, the QE runs system
tests and collects results. Issues are prioritized,
communicated to the development team, and fixed
during that week. Code delivery for the previous
cycle is scheduled at the end of the first week of the
new cycle. The second week is reserved for
collection of issues raised by the client’s User
Acceptance Test (UAT) team. The third week is
divided between UAT issues and the creation of
SILK tests.

Although the combination of the end-to-end tests and
system API tests reduces the number of issues discovered
during UAT, the process isn’t perfect. Rational’s [10]
ClearQuest [3] is used to manage both UAT and internal
issues. The QE holds a triage meeting at the beginning of
each week to discuss open issues. Resolved issues are
updated and the status is communicated to the client.

Each resolved issue must have an API or SILK test that
proves the issue can be closed.

Another aspect of our quality process is the daily build.
At 4am every day, the application is extracted from the
source control system, Perforce Software’s [13] Perforce
[14]. The system is built from scratch and automatically
installed on a clean testing machine. All API and end-to-
end tests are executed automatically. This process e-mails
a detailed report and a summary of the testing process to
the QE automatically. This procedure ensures that the
software is always ready for release.

The full-time QE ensures that each release has acceptable
quality. The QE manages issue tracking, system delivery,
and end-to-end testing for the development team. The
selection of the right project management tools aids the
quality process. We have found that defining measurable
quality metrics and granting release-blocking authority to
the QE have imp roved overall quality and acceptance
rates. An automated build and test system ensures that the
software is always ready for release.

REFERENCES
1. Beck, Kent, “Extreme Programming Explained,”
Addison-Wesley, 0201-61641-6.
2. Beck, Kent and Cunningham, Ward, “A Laboratory
For
Teaching Object-Oriented Thinking,” presented at
OOPSLA 89, available online at
http://c2.com/doc/oopsla89/paper.html.
3. ClearQuest information available online at
http://www.rational.com/products/clearquest/index.
4. Jacobson, Ivar, “Object-Oriented Software
Engineering:
A Use Case Driven Approach,” Addison-Wesley, 0201-
54435-0.
5. JUnit, open source testing framework, available online
from http://www.junit.org.
7. NuMega, a subsidiary of Compuware Corp, online at
http://www.numega.com.
8. Perforce information available online at
http://www.perforce.com/perforce/loadprog.html.
9. Perforce Software Inc web site, available online at
http://www.perforce.com.
10. Rational Software Corporation, online at
http://www.rational.com.
11. Segue Software Inc web site. Online at
http://www.segue.com.
12. SILK information available online at
http://www.segue.com/html/s_solutions/silk/s_family.htm
13. Trilogy web site. Online at http://www.trilogy.com.
14.TrueCoverage information available online at
http://www.numega.com/products/cover/tc_java.shtm.

