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ABSTRACT 
Test generation and the engineering, including 
maintenance, of the set of test cases are a key part of the 
Extreme Programming approach. Since so much depends 
on the viability of these test sets it is therefore important 
that methods for constructing them make use of the best 
available techniques. Total testing provides a mechanism 
whereby test sets are created which can detect ALL 
possible faults in an implementation, provided that a 
number of key conditions are satisfied. This paper 
describes how total testing can be used in Extreme 
Programming and illustrates the concepts with a simple 
case study. The methods proposed here are being used in 
a number of industrial projects and some interim 
conclusions from these are presented. 
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1 INTRODUCTION 

All software systems are subject to testing - for some of 
them testing is the major activity in the project. In 
Extreme Programming [4], [5] the production of test 
cases is now a vital part of the initial phases of a project. 
Testing, however, rarely gets the attention it deserves 
from researchers and developers, partly because its 
foundations are very weak and ill-understood. The 
principal purpose of testing is to detect (and then 
remove) faults in a software system. A number of 
techniques for carrying out testing, and in particular, for 
the generation of test sets exist. Many sophisticated (and 
expensive) tools are available on the market and many 
developers look to these to provide a solution to the 
problems of building fault-free systems. We consider the 
problem of fault detection and note that few, if any, of 
the existing methods really address the real issues. In 
particular no methods allow us to make any statement 
about the type or number of faults that remain undetected 
after testing is completed. Thus we cannot really measure 
the effectiveness of our testing activities in any rigorous 
way.  

Emphasis is usually placed on coverage measures, which 
really indicate effort rather than effectiveness. However, 
by considering testing from a straightforward, theoretical 
point of view we demonstrate that a new method for 
generating test cases can provide a more convincing 
approach to the problem of detecting ALL faults and 
allows us to make sensible claims about the level and 
type of faults remaining after the testing process is 
complete. We can then integrate this approach into XP in 
a simple and designer-friendly way. The approach is 
outlined in the following section, illustrated by an 
example in section 3 and conclusions made in section 4. 

2 THE FUNDAMENTALS OF TOTAL TESTING 

The basis of the testing method is that of computational 
modelling with X-machines (these date from the mid 
70s) which are a simple and elegant way of visualising 
the dynamics of a software system. They are similar to 
what are known as extended finite state machines. 

The model identifies the set of events and inputs that 
produce observable change, these are mouse clicks, data 
entry, sensor inputs etc. and the observable outputs such 
as screen displays, commands to peripheral devices etc. 
Alongside these are a model of - essentially a global - 
memory which describes what the system knows and 
needs to know in order to permit effective operation of 
the key functions of the system, examples might be a 
database or various internal variables.  

The concept of a key or basic function is one that takes a 
pair of parameters consisting of the current input and the 
current state of the memory and produces an output 
whilst updating the memory. We call these basic 
functions business processes in [1]. These business 
processes are then integrated into a state-based machine 
model, the stream X- machine. This then provides us 
with a mechanism for building extremely powerful test 
strategies, [1], [2], [3]. Note that the machine constructed 
above could itself be regarded as a basic function for a 
higher level system thus providing the hierarchical leap 
that makes the method work so well. Essentially the 
approach allows us to manage the test process, we start at 
the bottom and test the lowest level basic functions. The 
method then lets us test the integration of these into the 
lowest level machine in such a way that, under suitable 
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assumptions (see below) we can detect ALL faults in an 
implementation. Now we can repeat the process at a 
higher level until we are able to test the full integration 
of the system. This hierarchical approach significantly 
reduces the size of the test data set without  affecting its 
fault finding properties, [3]. 

Design for test 
Not many software developers realise that the design can 
affect the effectiveness of testing and the issue of design 
for test is one that should be considered more, [7]. 
Organising the system in a particular way can make an 
enormous difference; some systems are almost 
impossible to test properly if this is not done. 

The two key issues are controllability and observability . 
By controllability we mean putting in enough 
functionality so that we can drive the system to any state 
and apply any basic function from that state under all the 
necessary conditions needed. This is usually done by 
designing in special test inputs that can set up the system 
in a suitable way, these would not be used in normal 
operation and, in some situations can be removed or 
commented out without disrupting the software. 
Observability simply means arranging for enough 
information to be output that we can distinguish between 
the various basic functions that might have fired. We 
achieve this by making suitable data available as outputs, 
for example printing out appropriate variable values at 
appropriate times, these need to be disabled at delivery. 
This is a process that can be a source of error but one 
that, if done in a controlled and careful way, can 
significantly increase the effectiveness of testing. 

We need to assume that the system satisfies these designs 
for test requirements. There are a couple of other 
conditions, firstly we need to be sure that the basic 
functions are correct, this can be done by a separate 
functional testing method, using category partition and 

boundary values is an effective way of doing this, or 
maybe you are using tried and trusted components, for 
example, functions that take keyboard input and echo it 
to a screen or put it in a register or perhaps a function 
that accesses a cell in a database table  

The final condition is some sort of estimate of how many 
extra states there might be in the implementation, 
compared to the model, usually there are few extra states 
but one can be pessimistic at the cost of larger test sets. 
The test generation algorithm, itself, is best described 
using an example.  

3 A SIMPLE EXAMPLE 

Suppose that we are building a simple customer and 
orders database. We might identify a number of stories 
such as the following: 
1. Customer details are entered customer by customer. 

2. Customer details can be edited. 

3. Orders are placed by a customer 

4. Orders can be edited when necessary. 

The details of the structure of the customer and orders 
details are not described at this level of detail. We try to 
build an abstract model of the user interface and then 
refine it. The test approach permits us to generate an 
abstract high level test strategy and to refine the test 
cases  in parallel with the design [1], [2], thus saving 
enormously in test case size for large examples - a recent 
case study, involving 3 million transitions, demonstrated 
this, [6]. In other industrial projects requirements have 
been split down into small functional elements, 
implemented and tested separately and the integration 
guided by the stream X-machine testing strategy. 

Story function input current memory output Updated memory change risk 

1 click(customer) customer button click - new customer screen - Low 

1 Enter(customer) customer details entered current customer 

database 

confirmation details 

screen 

- medium (nature of 

details liable to change) 

1 confirm(customer) customer confirm button 

clicked 

current customer 

database 

OK message and start 

screen button 

updated customer 

database 

Low 

3 click(order) orders button clicked - new orders screen - Low 

3 enter(order) new order details entered current orders database confirmation orders 

screen 

- high (nature of details of 

orders liable to change) 

3 confirm(order) orders confirm button 

clicked 

current orders database Ok message and start 

screen button 

updated orders database Low 

3 quit() click on return to start 

button 

- start  screen - Low 
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Now we try to identify from these stories, what is 
prompting change (inputs), what internal knowledge is 
needed (memory), what is the observable result (output) 
and how the memory changes after the event. We also try 
to identify the risk that the story will be changed during 
the course of the project as a means of trying to manage 
its evolution this might be used to help decide which 
aspect could be addressed at first. 

The table above describes some of the functions from the 
stories in this form. 

From the diagram (Fig.1) one can see how the basic 
functions are organised. Each state, in this example, has 
associated with it an appropriate screen with buttons, text 
fields etc. Of course, the model is simple and crude, there 
is no distinction between entering a new customer’s 
details and editing an existing one but it is enough to 
explain the method. These refinements are, what they say 
they are, refinements that can be dealt with later and the 
work we do on test set generation here is built on them. 
Tests are refined with the functions and this leads to 
much smaller test sets ([3]). 

Test set generation 

Assuming that the basic functions in the table are correct 
and the design for test conditions are satisfied the test set 
is generated in the following way. 

We start at the state start with the initial state of the 
internal memory, probably in some basic initialised state, 
and the aim is to visit every state in turn. When we have 
reached a state we need to confirm that it is the correct 
state and this is done by following more simple paths 

(without cycles) from that state until we get outputs that 
tell us, unambiguously, what the state was. Then we 
repeat the path to that state and check what happens if we 
try to apply every basic function from that state, some 
will succeed but some should fail. Have the correct ones 
passed and failed? This is then repeated for every state. 
Some example functions sequences are: 

click(customer)::enter(customer); 

click(customer)::enter(customer)::click(order) 

(Here :: means concatenation or sequence connector.)  

The first test has tried to access the state confirm 
customer correctly and should pass, the second has tried 
to apply an incorrect function from that state and should 
fail.] 
The test generation, which is fully automated, will 
generate all the sequences needed to establish whether the 
implementation is correct, i.e. agrees with the model. 

Now, this test set is not quite what we want since it is 
based on the set of functions which we cannot access 
directly, it needs to be converted to a sequence of inputs. 
So we choose suitable inputs that will trigger the correct 
functions as we trace through the diagram along the paths 
of functions generating sequences of inputs which are our 
actual tests. The design for test conditions allow this to 
happen, the mathematical details and proof of correctness 
are in [1] and [2]. 

Thus we have the following test sequences corresponding 
to the sequences above: 

customer_button_click::customer_details_entered 
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customer_button_click::customer_details_entered:: 
orders_button_clicked 

where customer_button_click is the event (or input) 
corresponding to the clicking of the customer button on 
the start screen, this should trigger the first function in the 
sequence. 

Of course, as this is a high level test set, the input 
customer_details_entered represents a more complex 
series of activities. If the customer screen was structured 
with a number of data slots representing different 
parameters, eg. customer_name, customer_address, etc., 
then this will be modelled with a lower level machine 
involving more lower level, basic functions which need to 
be tested first. What this amounts to is that the code 
associated with the screen for customer data entry needs 
to be written and tested first.  

The memory structure now needs to be discussed. 
Essentially we need to think about this in terms of what 
basic types of memory structure is relevant at the 
different levels. At the top level, for example we could 
represent it as a small vector or array of compound types 
of the form: 

customer_details X ?order_details  

filling in the actual details later. It may be, for example, 
that these will represent part of a structured database with 
a set of special fields which relate to the design of the 
screens associated with these operations. So 
customer_details would involve name, address etc. which 
would be represented as some lower level compound data 
structure, perhaps and there would be basic functions 
which insert values into the database table after testing 
for validity etc. 

Fault detection 

Since detecting faults is a major aspect of testing and a 
key ingredient in any process attempting to improve the 
quality of the final software product it is worth looking at 
the way in which typical faults are trapped using these 
test sets.  

Suppose that click(order) did something unwanted when 
the orders button was clicked whilst in state confirm 
customer. This would be exposed in the testing if the 
output observed was not an error, signifying that from 
that particular state click(order) does something 
undesired.  

Another type of fault might be a missing transition, 
which, again would be exposed since the response to the 
test would be an error instead of the expected output. 

A key aspect of this method is that the test sets generated 
fully test the system, not just establishing that it does 

what it should do but that it also doesn’t do what it 
shouldn’t . 

4 CONCLUSIONS AND FURTHER WORK 

Thee are still many aspects of the relationship between 
XP and testing to explore. Ultimately we need to build 
smart test tools which interface naturally with the XP 
process. Traditionally testing has been left to the end of 
the coding, the V model tries to encourage designers to 
derive their unit tests from unit specifications, their 
system (or function) tests from system specifications and 
requirements but, unfortunately, this is rarely done since 
these specifications are rarely stable or suitable and the 
methodology doesn’t force you to focus on the test sets in 
the way that XP does. 

In XP we focus much more on the iterative progression 
from metaphors and stories to test sets to code and this 
presents many new challenges. There are incredible 
savings in time and gains in quality by using smart test 
strategies in XP. This paper is an attempt to explain how 
one of the most powerful test generation approaches 
could be put to use. 

We are currently building some test tools to support our 
work on using XP in industrial contracts. Descriptions of 
these developments and their consequences will follow in 
further papers. 
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