

18

Design of an Experiment for Quantitative Assessment of Pair
Programming Practices

Giancarlo Succi Milorad Stefanovic Michael Smith Richard Huntrods
Dept. of Electrical and Computer Engineering

University of Alberta
Edmonton, AB, Canada

+(1-780) 492-7228

Dept. of Electrical and Computer Engineering
University of Calgary
Calgary, AB, Canada
+(1-403) 220-6142

{giancarlo.succi, misha}@ee.ualberta.ca {smith, huntrods}@enel.ucalgary.ca

ABSTRACT
Anecdotal evidence demonstrates success of extreme
programming practices in a portion of the software
industry. It has also been argued that pair programming,
as a part of the extreme programming process, yields
higher quality software products in less time. On the other
hand, these principles are sometimes questioned with
respect to resource allocation and management issues.

Although precise information about benefits and costs of
the extreme programming practice represents a critical
guideline for improvement of software quality, there has
been little work on the subject beyond subjective reports
and a study in an academic environment.

In our work, we propose an exp erimental framework to
quantify benefits and costs of the pair programming
practice and compare design aspects of the resulting
software products and their defect behavior. For this
purpose, we use a set of object-oriented metrics and
software reliability growth models based on occurrence
of service requests.

Keywords
eXtreme programming, software engineering metrics and
models, experimental design

1 INTRODUCTION
Any software development process has to deal with
change in order to satisfy rapidly changing requirements
and technologies. Virtually all companies in today’s
highly competitive industry are putting a lot of effort and
resources in meeting and exceeding customer
expectations. Lightweight software development
methodologies, such as eXtreme Programming (XP),
offer a promising way for successful dealing with
changes.

There is anecdotal evidence of success of the extreme
programming practice in a portion of the software
industry [10]. An important concept in XP methodology
is Pair Programming (PP), which defines software
development as an activity practiced by two developers
working together at one machine [4].

It has also been argued that pair programming, as a part
of the extreme programming process, yields higher
quality software products in less time. In addition, some
reports suggest higher developer satisfaction and
confidence as a result of this software development
process.

On the other hand, these principles are sometimes
questioned with respect to resource allocation and
management issues [4,10].

Just like any other software development methodology,
XP and PP are not equally appropriate for every
environment. Although precise information about benefits
and costs of the extreme programming practice represents
a critical guideline for improvement of software quality,
reduction of development costs, and improvement of both
developers’ and customers’ satisfaction, there is a little
work on the subject beyond subjective reports and a study
in an academic environment [9].

Williams et al. [24] use combination of an experiment
conducted at academic environment and the anonymous
questionnaire to support claims of PP about higher quality
of produced software, faster (at lower price), and with
higher programmers’ confidence. Details about this
experiment ran at the University of Utah are described in
[25].

The challenge is to determine which methodology should,
and can be successfully applied to a specific environment
to achieve best results, i.e., an increased quality at the
same or lower costs. To answer some of these questions
objectively, we propose a framework for an experiment in
an industrial environment, introducing the pair
programming practice to the existing software process.

The software metrics and models are invaluable for
software process characterization and improvement. Our
goal is to set up the environment and select a well-defined
set of product and process metrics to support an objective
assessment of the costs and benefits of the PP practices
and other possible changes to the software development
process in a company.

19

In order to quantify benefits and costs of the pair
programming practice, we compare design aspects of the
resulting software products and their defect behavior. For
this purpose, we use a set of object-oriented metrics to
measure design attributes such as coupling, complexity,
and size. To accurately describe the differences between
the two processes, particularly with respect to occurrence
and types of service requests (SRs) and effort necessary
for fixing them, we use software reliability growth
models (SRGM) [22].

The rest of the paper is organized as follows: Section 2
represents an overview of the background issues relevant
for this study, such as object-oriented metrics and models
and software reliability growth models. Section 3
proposes a framework for experimentation. Section 4
provides more details on data collection process. Finally,
Section 5 concludes this study and provides suggestions
for future work

2 BACKGROUND
XP is a lightweight software development methodology.
It is designed for relatively small teams of up to 10
people [4].

XP is built on few basic principles: simple design, small
releases, continuous restructuring and integration,
aggressive testing, pair programming and collective code
ownership. Proponents of XP insist on the need for its full
adoption to make it work. However, in order to introduce
these principles to an existing software development
process and maintain the control over the process, it is
necessary to adopt these principles in a controlled way,
probably one at a time [4].

Significant part of the XP success could be attributed to
the PP practice. Not only that working in pairs has great
potential to improve the communication within the team,
but it also provides a way for continuous review of both
design and code. Having in mind that cost of correcting a
defect grows exponentially with time when it is detected,
an effective review process clearly helps in reducing
development and maintenance costs. Combined with the
collective ownership component, PP also creates a
positive pressure, helping achieve better software quality.

Another important aspect of PP is the dynamic change of
pairs. This practice leads to the efficient exchange of
knowledge and experience between the team members. In
this way, the risk of turnover is also reduced, since the
knowledge about the system is distributed among the
members of the team.

To objectively determine the effects of pair programming
practice effects in an industrial environment, we propose
a framework for an experiment based on object-oriented
metrics and models and the occurrence of software
service requests.

Issues in Object Oriented Metrics and Models
In this study we use the relatively simple and well-
understood CK metrics suite proposed by Chidamber and

Kemerer [5]. This set of six metrics shows a good
potential as a complete measurement framework in an
object-oriented environment [16].

Based on the set of design metrics, appropriate software
engineering models can be built to link internal design
aspects of the software product with its defect behavior.
Number of defects for a class represents such external
count metrics measured on an absolute scale [12].

Although there is no doubt that some analyses could
provide useful results even though all theoretical
assumptions are not met in reality [5], it is very important
to apply statistical method with assumptions closest to the
empirical system. This is especially important having in
mind that inappropriate methods, such as the common
practice of treating count variables as continuous [11,14],
may result in inefficient and biased models and wrong or
misleading results. Discreteness of the dependent variable
also leads to conservative confidence intervals, resulting
in overestimated significance level for dependent
variables [18].

Software engineering data, such as various object-
oriented metrics for example, are typically of count type,
measured on an absolute scale, and clustered around low
values [7]. This fact requires use of appropriate statistical
models. For this reason the appropriate statistical models
for count type of the data are negative binomial model
and zero inflated models [20].

Reliability Growth Models
An important aspect of software quality is reliability.
Measures of reliability widely used in Software
Engineering include the number of failures discovered
and the rate of discovery [16]. A Software Reliability
Growth Model is a formal equation that describes the
time of discovery of defects.

The literature on SRs has partially overlapped that of
software reliability, since SRs often refer to occurrences
of faults that also affect the reliability of software
systems. Wood [26] evidences that the models used for
describing software reliability can be used also for the
overall analysis of SRs, without any major loss of
precision.

Several reliability growth models have been proposed for
software systems. Table 1 contains a synopsis of selected
models. This table is an extension with modifications of
Table A in [26]. Our variation of the Weibull model (W-S
model) accounts more for the initial learning curve,
having the S-shaped behavior more pronounced.

It is a widely accepted fact that it is not possible to select
a single “best” general software reliability growth model
[16]. For each project, product release, and for each goal
it is necessary to select the most suitable model [23].

3 FRAMEWORK FOR EVALUATION OF PP
PRACTICE

A framework for a controlled experiment is composed of

20

Model Properties

GO S-Shaped (GO-S) S-shaped a(1-(1+bt)e-bt) a≥0,b>0

Goel-Okumoto (GO) Concave a(1-e-bt) a≥0,b>0

Gompertz (G) S-shaped tcba ⋅ a≥0,0≤b≤1,0<c<1

Hossain-Dahiya/GO (HD) S-shaped a(1-e-bt)/(1+ce-bt) a≥0,b>0,c>0

Logistic (L) S-shaped a/(1+be-ct) a≥0,b>0, c >0

Weibull (W) S-shaped)e1(a
ctb⋅−− a≥0,b>0,c>0

Weibull more S-shaped (W-S) S-shaped)e)tb1(1(a
ctbc ⋅−⋅⋅+− a≥0,b>0, c >0

Yamada Exponential (YE) Concave)e1(a)e1(b tc⋅−−−− a≥0,b>0, c>0

Yamada Raleigh (YR) S-shaped)e1(a)e1(b 2

2tc−
−−− a≥0,b>0, c >0

Table 1: SRGM models (extension with modifications of Table A in [26])

the following components: definition, plan, operations,
and interpretation of the experiment [2].

The definition of the experiment is used to set up a clear
motivation of the experiment and to provide details about
the object, purpose perspective, domain, and scope of the
experiment. Motivation of our experiment is assessment
of the possible ways for improvement of the existing
process and assuring high quality of the resulting
products. Consequently, objects of the experiment are the
development process and the resulting products. The
domain and scope of the experiment, including
characteristics of the development environment and the
projects, should also be precisely defined.

With a precise definition of the experiment in place, it is
possible to proceed to the planning phase. Planning
covers issues of experiment design, criteria for
comparison between the testing groups, and methods for
measurement.

The motivation of our experimental framework is to
understand and quantitatively assess the impact of the
pair programming practice to the existing software
development process in the company. This information
could be then used to improve the existing process and
assure high quality of the products.

The software development groups can be relatively big
and geographically distributed. This brings an issue of
internal organization of the group, and breaking it down
to smaller teams. There should be at least two teams in
the experiment, one of which is doing software
development using PP approach, and the other using the
existing process. Tams should have no more than 10
developers.

The characteristics of the teams performing the

experiment and the characteristics of the developed
projects should also be determined. The precise definition
of the environment, development tools, and testing
procedures has to be available for each of the teams. To
determine the scope of the experiment, it is also necessary
to have information about the projects and distribution of
tasks between the teams.

The flowchart of the activities in the experiment is shown
in Figure 1.

Criteria for assessment of the results of the new practice
are based on its effects on the quality of the developed
software and the costs of development. As discussed in
Section 2, the different aspects of the quality and cost can
be assessed using the models built on the CK metrics
suite and external measures such as number and
occurrence of SRs. The results of the experiment can be
analyzed using framework based on multivariate
statistical models applicable for the count data, software
reliability growth For operation of the experiment, the
preparation should provide the company developers and
managers with basic training in pair programming and
extreme programming concepts. Data collection can then
be performed through the development of the projects.
Finally, the quantitative and qualitative analyses are
performed using the established framework.

4 DATA COLLECTION AND ANALYS IS
As mentioned, the set of six object-oriented design
metrics from the CK metrics suite can be used to describe
influence of the new development methodology to the
design decisions.

Depth of inheritance tree (DIT) for a class corresponds to
the maximum length from the root of the inheritance
hierarchy to the node of the observed class. Another

21

Begin
Team and
Project
Selection

Training in
XP and PP

Development
of
Questionnaires

Data
Collection

Analysis of
the Data End

Figure 1: Process flowchart for the experiment.

metrics related to inheritance is the numb er of children
(NOC), representing the number of immediate
descendants of the class in the inheritance tree. Coupling
between objects (CBO) is defined as the number of other
classes to which a class is coupled through method
invocation or use of instance variables. Response for a
class (RFC) is the cardinality of the set of all internal
methods and external methods directly invoked by the
internal methods. We use number of methods (NOM) as a
simplified version of more general weighted methods
count (WMC), as usually done [2]. The number of
internal methods is extracted instead of forming a
weighted sum of methods based on complexity. The lack
of cohesion in methods (LCOM) is defined as the number
of pairs of non-cohesive methods minus the count of
cohesive method pairs, based on common instance
variables used by the methods in a class.

In addition to CK metrics, the count of Lines Of Code
(LOC) can be easily collected. This information can be
used to determine if simpler models, based on size
metrics, could have the same explanatory power. For
code written in C++ and Java, source lines of code can be
counted using semicolons.

The dependent variable in analysis, number of defects or
SRs, is count variable measured on an absolute scale, and
clustered around low values [7]. The appropriate
statistical models for count type of the data are negative
binomial model and zero inflated models [20], derived
from the Po isson distribution.

The most common distributions applied to count data are
based on the Poisson and multinomial distributions [19].
The Poisson distribution is particularly suitable for
counting events occurring over time. In the corresponding
Poisson Regression Model (PRM), the Poisson
distribution determines the probability of a count, where
the mean of the distribution is a function of the
independent variables. PRM has been used in software
engineering for modeling the numb er of faults [13] and
the effort expressed in hours [6].

PRM requires equidispersion, i.e., equality of the
conditional variance and the conditional mean of the
dependent variable. When conditions for the PRM are not
met, e.g., in case of high conditional variance of the
dependent variable, the Negative Binomial (NB)

distribution and the associated NB Regression Model
(NBRM) can be used [19,6].

It is common in software metrics data that the number of
zeros exceeds the prediction of both PRM and NBRM.
Zero-inflated count models explicitly model the number
of predicted zeros [17].

Software Reliability Growth Models (SRGMs) give an
additional insight into the defect behavior of the software
product and the effort necessary for achieving the desired
quality.

The parameters of the SRGMs can be estimated using
least square error regression on the available service
request (SR) data. The statistical tool that we use to tune
the model parameters employs an iterative estimation
algorithm for finding the global minimum of the cost
function. We also use the bootstrap method is used to
determine the confidence intervals for parameters of
models.

The goal of modeling the occurrences of SRs in this paper
is to create an accurate description for assessment,
comparison and improvement.

This goal can be further organized in terms of goodness
of fit, the accuracy of the final point, relative precision of
fit, and coverage of fit.

The goodness of fit represents how well the model fits the
data, and therefore it is a reliable descriptor of the overall
process, to be used for comparison and assessment.

The accuracy of the final point represents whether the
model is able to determine the total final number of SRs.
It is measured with E:

A
A

100E
α−

⋅=

where A and a are respectively the true and estimated
value of the total SRs served.

The relative precision of fit is the size of the bootstrap
95% confidence interval computed over the parameters of
the model and normalized over the size of the interval of
time of SRs arrival.

The coverage of fit is the degree to which the 95%
confidence interval captures the oncoming service

22

requests (shown in the Data Coverage column of Table
2).

Relative precision of fit and coverage of fit measure two
complementary aspects of the fit that must be considered
together to evaluate the value of a model: a very large
95% confidence interval might be able to capture most of
the data, but it would be totally useless.

There are two major classes of mathematical functions
representing SRGMs with different defect-detection rates:
concave and S-shaped. S-shaped models are first convex
and then concave, with a period during which the error-
detection rate increases, reflecting the initial learning
phase, that is, the assumption that later testing is more
efficient than early testing [21].

The observed shape in occurrence of SRs and
consequently the SRGMs that describe this process
provide a way to compare the traditional development
process with the new methodology being introduced.
Potentially increased learning rate in pair programming
would result in shorter initial concave period and steeper
defect detection rate.

5 CONCLUSION
Some anecdotal evidence argues success of the XP in
producing higher quality software in less time.

It was our goal in this paper to set-up a framework and
measurement plan for objective assessment of PP
practices introduced to selected part of a company.

Our goals were also to provide insight into impact of the
new practices to the developer satisfaction and
confidence and related managerial issues.

In order to assess benefits and costs of the pair
programming practice we compare design aspects of the
resulting software products and their defect behavior
using the CK metrics suite. In addition, we use software
reliability growth models to describe the differences
between the two processes with respect to occurrence of
service requests and effort necessary for fixing them.

The work based on the experimental framework
described in this paper is currently in progress in
cooperation with a major North-American
telecommunication company. We will provide
experimental results as soon as they become available.

REFERENCES:
1. Basili V.R., Briand L.C., Melo W.L. “A Validation

of Object-Oriented Design Metrics as Quality
Indicators,” IEEE Transactions on Software
Engineering, 22(10), 1996

2. Basili V.R., Selby R.W., and Hutchens D.H.
“Experimentation in Software Engineering,” IEEE
Transactions on Software Engineering, 12(7), July,
1986

3. Basili V.R., Weiss D.M. “A method for collecting
valid software engineering data” IEEE Trans. on
Software Engineering, 10(6), 728-738, 1984

4. Beck K. Extreme Programming Explained: Embrace
Change , Addison-Wesley Pub Co, 1999

5. Briand L.C., El Emam K., and Morasca S. “On the
Application of Measurement Theory in Software
Engineering,” Journal of Empirical Software
Engineering, 1(1), 1996

6. Briand L.C. and Wüst J. “The impact of Design on
Development Cost in Object-Oriented Systems,”
Technical report,
http://www.iese.fhg.de/network/ISERN/pub/technical
_reports/isern-99-16.pdf, 1999

7. Chidamber, S.R., Darcy D.P., Kemerer C.F.
“Managerial Use of Object-Oriented Software: An
Explanatory Analysis,” IEEE Transactions on
Software Engineering, 24(8), 1998

8. Chidamber S.R. and Kemerer C.F. “A Metrics Suite
for Object Oriented Design,” IEEE Transactions on
Software Engineering, Vol. 20, No. 6, 1994

9. Cockburn A. and Williams L. “The Costs and
Benefits of Pair Programming,” eXtreme
Programming and Flexible Processes in Software
Engineering XP2000 , 2000

10. eGroups email group service
http://www.egroups.com/message/extremeprogramm
ing, 2000

11. Fenton N.E. and Neil M. “A Critique of Software
Defect Prediction Models,” IEEE Transactions on
Software Engineering, 25(5), 675-689, 1999

12. Fenton N.E. and Pfleeger S.L. Software Metrics: A
Rigorous and Practical Approach, Brooks/Cole Pub
Co, 1998

13. Graves T., Karr A.F., Marron J.S., Siy H. “Predicting
Fault Incidence Using Software Change History,”
IEEE Transactions on Software Engineering, Vol.
26, No. 7, July, 2000

14. Gray A.R. and MacDonell S.G. “A comparison of
techniques for developing predictive models of
software metrics,” Information and Software
Technology, 39, 425-437, 1997

15. Humphrey W.S. Managing the Software Process,
Addison-Wesley Pub, 1989

16. Mendonça M. and Basili V. “Validation of an
Approach for Improving Existing Measurement
Frameworks,” IEEE Transactions on Software
Engineering, Vol. 26, No. 6, pp. 484-499, June, 2000

17. Lambert D. “Zero-inflated poisson regression with an
application to defects in manufacturing,”
Technometrics, 34, 1-14, 1990

23

18. Littlewood B. “Stochastic Reliability Growth: A
Model for Fault Removal in Computer Programs and
Hardware Design,” IEEE Transactions on
Reliability, Dec. pp.313-320, 1981

19. Lloyd C.J. Statistical Analysis of Categorical Data,
Wiley-Interscience, 1999

20. Long J.S. Regression Models for Categorical and
Limited Dependent Variables, Advanced
Quantitative Techniques in the Social Sciences, No
7, Sage Publications, 1997

21. Lyu M.R. Handbook of Software Reliability
Engineering, McGraw Hill, 1996

22. Succi G., Pedrycz W., Stefanovic M., Paynter G.,
Sloane D. “Empirical Analysis of Pre-Release
Service Requests for Real Time Software Systems”,
Technical report QUASE-TR-2000-01, Quantitative
Software Engineering Lab, University of Alberta,

2000

23. Succi G., Stefanovic M., Pedrycz W., Musilek P.
“Predicting Software Service Requests,” ASERC
Workshop on Quantitative Software Engineering ,
Banff, 2001

24. Williams L., Kessler R.R., Cunningham W., and
Jeffries R. “Strengthening the Case for Pair
Programming,” IEEE Software, Vol. 17, No. 4,
July/August, 2000

25. Williams L. “The Collaborative Software Process,”
PhD Dissertation,
http://www.cs.utah.edu/~lwilliam/Papers/dissertation
.pdf, 2000

26. Wood A. “Predicting Software Reliability”, IEEE
Computer, Vol. 29, No. 11, November, pp. 69-77,
1996

