

14

Teaching XP for Real: some initial observations and plans

Mike Holcombe

University of Sheffield,
Regent Court, Portobello Street,

Sheffield, S1 4DP, UK,
+44 114 222 1802

m.holcombe@dcs.shef.ac.uk

Marian Gheorghe
University of Sheffield,

Regent Court, Portobello Street,
Sheffield, S1 4DP, UK,

+44 114 222 1843
marian@dcs.shef.ac.uk

Francisco Macias
University of Sheffield,

Regent Court, Portobello Street,
Sheffield, S1 4DP, UK,

+44 114 222 1800
f.macias@dcs.shef.ac.uk

ABSTRACT

Fourth year students run their own software house which
involves them in carrying out real projects for real
business clients. This year we have introduced them to
extreme programming and we examine the initial impact
that this has had on their business. The philosophy has
been adopted with much enthusiasm and seems to have
delivered in a variety of contexts, including maintenance
and new projects. Some plans for a more rigorous
experiment looking at the possible benefits of XP are also
described.

Keywords
Real projects, computing curriculum, empirical software
engineering, extreme programming

1. INTRODUCTION

Teaching computer science and software engineering
students is greatly enhanced if they can be introduced to
the real issues relating to software design through the
mechanism of projects for real business clients. For more
than 10 years we have required students to take part in
team projects in their second year where the teams
compete with each other to produce a solution for a
business person’s current problem. Each student is
required to work for 100 hours on this project during the
semester. This equates to 9- 10 hours per week on the
project for each student over 12 weeks. Typically there
are 80 students in the class and there are three business
clients each with a specific problem relating to their
business. The student teams are each allocated to one of
these clients. The teams comprise 5 students and each
client deals with 5 or 6 teams. At the end of the Semester
the client evaluates all of the software solutions produced
and selects the best one for use in their organis ation. The
winning students receive a prize.

This framework really transforms the students’ learning
because it emphasises two of the most problematical

issues when teaching software design, how to
communicate with a client and capture the real
requirements and how to deliver a really high quality, bug
free system.

It is very hard to introduce either of these dimensions into
the curriculum using projects specified by academics.
Students know that once the software has been marked it
is usually thrown away. With our approach which we call
the Software Hut, students are much more motivated
because they know that someone wants their work and
will use it . They also learn quite a lot about the way
businesses work. It is always the most popular course and
the one that they say teaches them the most!

More details can be found in[1], [2] and [3].

A recent extension of this approach occurs in the 4th year
where the students run their own software company and
spend approximately one third of their time working in it.
The company, they call it Genesys Solutions, [5], [7]
(formerly called VICI), has a wide variety of clients
requiring database systems and e-commerce applications.
About 25 students work in the company. The students run
the company, take all major decisions, operate their own
premises and network, and carry out R & D as well as
specific industrial projects. As part of this the students
negotiate the details of a contract with a client - cost,
delivery as well as the detailed requirements
specification. As one might expect, estimation and
planning is a major issue in running the company and one
of things that we are trying to do is to collect suitable data
on projects that would help us to do this better. The
estimation of resources for XP- driven projects needs to
be considered in a different way to traditional projects so
we are starting from a position where we need to think
about things rather differently. We believe that this
student-run company is a unique innovation but one
which the students are incredibly enthusiastic about. As
an aside, a number of former members of this company
have successfully set up their own real software houses.

15

2 PROBLEMS THAT MOTIVATED CHANGING
TO EXTREME PROGRAMMING

These sort of projects are not without their problems, we
do not want clients coming back with complaints about
software quality and inappropriate functionality, and we
cannot afford to spend all our time in maintenance.
Consequently we must ensure that we deliver extremely
high quality solutions. The Genesys comp any can do
some maintenance, particularly where the client wants
some new functionality, but we have to focus very hard
on the software quality and, in particular, the thorough
testing of the product. The students are steeped in the
conventional software engineering methodologies by the
time they reach the 4th year but it is clear that these have
not been able to guarantee the level of quality that we
need and in many cases these methods seem to get in the
way!

This year we decided to introduce the 4th year class to
Extreme Programming, none of them had heard of it
before. The response was overwhelmingly positive and
they decided to apply the ideas, as far as they could, to all
their projects.

3 INTRODUCING XP INTO THE COMPANY

There were two types of current project when we started,
some major testing and debugging of existing projects
and some new developments.

In past projects we had organised ourselves in such a way
that the teams would test each other’s software, relying
on the view of many test experts that independent testing
is the most effective approach. This didn’t really work
since the teams’ main priority was to their own project
and, with deadlines fast approaching, they would
concentrate on their own development work at the
expense of testing another team’s system. Coupled with
the problem of teams trying too hard to satisfy their
client’s late requirements changes this was a clear recipe
for disaster. Thus, we were unable to deliver, when the
academic year ended, software of an appropriate quality.
(After the end of the year the students graduate and leave
so we do not have the flexibility of extending deadlines or
of the benefits of continuity in the teams since next year’s
company come from the next cohort of students.) We
discussed these problems with the next cohort when they
arrived in September 2000 and then looked at the ideas
behind Extreme Programming, primarily using [4] and
the main XP websites. It was immediately clear to them
that this new technique could be a big improvement on
what they had done before. They therefore decided to
adopt this way of doing things as far as possible.

The idea of pair programming was very well received and
has proved extremely effective in debugging code, the
construction of functional test sets from the requirements
also had a big impact on the process. It highlighted the
need for suitable testing software, so both test generation
and test application tools had to be built for the specific
applications, since these tools were based on generic
concepts they can be adapted to other projects. We
describe some work on developing extremely powerful
test case generators in another paper [8]. However, we
still have problems estimating the amount of time and
effort needed to complete projects and this is an area that
needs further research.

The other important influence was in the management of
client expectations and this is now realised to be a vital
factor, delivering a high quality basic system rather one
with lots of extra, mainly unnecessary, features, was very
instructive. These students are very enthusiastic about
satisfying their client’s requirements and sometimes they
can try too hard and the project is then put at risk because
they cannot deliver it all in time and of a high quality.

For the projects that involved brand new projects we
introduced the students to a new approach for organising
stories and for the creation of provably powerful test sets.
This approach was tried out on a web-based project and
immediately produced excellent results, being both
simple to use and very powerful in its ability to capture
the essence of the system. However, the projects are still
on-going and so it is perhaps too early to make any firm
conclusions.

Risk management

Part of any successful company activity is the
management of risk. In both Genesys and the Software
Hut these are important activities. XP raises a number of
different issues to the traditional design-led approaches.
We have, in the past, carried out two phases of risk
analysis. Initially at the start of the project the teams are
asked to carry out a risk analysis for their project and to
record the results and create their workplan in the light of
these results. After 7 weeks there is a second risk analysis
exercise, which is clearly informed by the problems and
successes of their project over the intervening period. The
plan is then altered to suit the circumstances. At this stage
the scope of the project is usually reduced due to the
original plans being downgrading some of the desirable
requirements to optional. With XP this process may need
to be rather more continuous and is an area we wish to
consider.

16

4 FUTURE EXPERIMENTS

This coming semester (February 2001) will see the start
of the next Software Hut exercise. There are, as usual 3
clients each dealing with between 4 and 6 teams and what
we plan to do is to divide the teams into two groups, one
of which will be given some reinforcement in traditional
software design techniques and the other will get a crash
course in Extreme Programming. We will then monitor
the progress of the two cohorts of students, some using
XP others not, as they attempt to build their solutions.
This will be done by studying the way they manage their
projects. Each team has to produce and maintain realistic
plans, keep minutes of all their project meetings, and by
interviewing them weekly. We will also get all of their
working documents, requirements documents, analysis,
test cases, designs, code and test reports. These will
provide many further opportunities for measuring
attributes of their output, ranging from function and
object point analysis to bug densities. The XP
experiments suggested by Ron Jeffries on [6] will be
helpful in this respect.

At the end of the Semester, the clients evaluate and mark
all the delivered solutions, they use a structured marking
scheme that we construct for them and this provides a
final level of measurement relating to how well the
solutions did - usability, installability, functionality,
robustness etc. These are the key attributes since they will
be applicable to all the solutions no matter how built. We
will use this information in a statistical analysis to see
whether there are any significant differences in the
quality of the final products between XP and traditional
“heavyweight” methods.

Finally we will require each student to give both a team
evaluation and a personal commentary on how the project
went, the strengths and weakness of what they did and
how they did it. In the past this has proved to be very
useful in identifying issues and problems with approaches
to software development.

After delivery we will be able to track the performance of
the delivered systems to gain further information about
their quality in their working environment.

The three clients are as follows:

Client A is an organisation which brokers waste. A waste
exchange provides a facility for industrial companies to
offer their waste products to other companies who might
be able to reclaim something of value from it. The waste
exchange maintains a database of current waste products
and arranges for the exchange and payment of deals in
waste. The project is to build a web based system that
interfaces to the existing database and allows clients the
opportunity to browse the database.

Client B is a small start up company in the Bioinformatics
industry requiring software for data analysis. Various new
algorithms for processing and analysing genomic and
protonomic data has been developed by the company and
what they now require is a set of programs that can
automatically apply these algorithms to data which is
continually being placed on sites on the web directly from
the scientific experiments.

Client C is an organisation, a legal practice centre, that
provides specialist training for the legal profession, that
aspect that is post academic qualifications and deals with
the experiential learning related to legal practice in
solicitors’ offices. The system required is a computerised
assessment system to provide a mechanism for tracking
and evaluating individual student’s performance on the
course.

The overall arrangements are described in Figure 1.

In all of this the students will be basing their approach on
what they have learnt in the course so far. In the first year
they will have taken part in a group project which
involves them building a small software system specified
by the course lecturers. The students do this as one-sixth
of their work over the year and it integrates what they
have been taught in formal lectures dealing with
requirements and specification; Java programming;
Systems analysis and design (essentially UML). This
exercise helps them to start understanding some of the
issues relating to working in teams, keeping accurate
records and producing high quality documents, some of
the problems of dealing with clients (a role played by
their academic tutors) and the problems of delivering
quality, and the need for thorough review and testing
activities.

Before they get started on the Software Hut projects they
attend a practical course on team work organised by the
University’s Careers Services Department.

17

They will then be split into two cohorts, the XP teams and
the Trad teams, for further specific training in
methodology and approach to software construction.

One area that we have to address concerns the advice we
give about the form of the project plan. Clearly the XP-
based plans will be very different to the traditional
approach and it will be a new phenomenon for the tutors
to be managing a set of projects which are at very
different stages at any one time. The students will also
compare notes to some extent and I hope that the teams
using XP will be discreet about what they are doing so as
not to influence the other teams too much. we have found,
in the past, that the competitive element has minimised
this.

Part of this trial run will be learning about the sorts of
metric and data we need to enable us to carry out proper
comparisons. We will then be able to run better
experiments subsequently.

5 CONCLUSIONS AND FURTHER WORK

Clearly, it is early days and there is much work to be
done. What is different about our approach is that the
student teams are building real systems for real clients.
Thus they face, immediately, the issues of
communicating with their client and of trying to
understand the client’s business context as well as their
problem. This is vital . Normal student project
experiments are rarely valid because the whole exercise is
something of a sham and everyone knows this. Nobody
really wants the products to use in real life. The Software
Hut approach also creates the desire amongst nearly all
the students to do it properly as they realise that
delivering software full of bugs, or with an unusable
interface just will not do. They have some professional
pride and don’t want to let the University down. We are
convinced that this means that we can really carry out
legitimate empirical experiments in controlled conditions
and that the results will be meaningful.

This is just the start. We are bound to see, as XP evolves,
the emergence of different ways of doing it, using
different tools, methods and notations. This will give us
further opportunities to test out the ideas in what we call

our Software Engineering Observatory: the Software Hut
for detailed comparative experiments and Genesys where
we are investigating how new ideas and methods can be
introduced into a working software company.

ACKNOWLEDGEMENTS

We would like to acknowledge our colleagues, Tony
Simons, Tony Cowling, Gerald Luettgen and Kirill
Bogdanov for many useful discussions and suggestions.
We would als o like to thank our clients who agreed to
working with our students on their problems.

REFERENCES

1. A. Stratton, M. Holcombe and P. Croll "Improving
the quality of software engineering courses through
university based industrial projects." in "Projects in
the Computing Curriculum", (eds.) M. Holcombe, A.
Stratton, S. Fincher, G. Griffiths, Springer, (1998),
47-69.

2. M. Holcombe and A. Stratton. "VICI: experiences
and proposals for student run software companies." in
"Projects in the Computing Curriculum", (eds.) M.
Holcombe, A. Stratton, S. Fincher, G. Griffiths,
Springer, (1998),103-114.

3. M. Holcombe & Helen Parker, “Keeping our Clients
Happy: Myths and Management Issues in "Client-led"
Student Software projects.” Computer Science Educa-
tion, 9 (3), 230-241, 1999.

4. K. Beck, Extreme Programming Explained: Embrace
Change , Addison Wesley, 1999.

5. http://www.genesys.shef.ac.uk

6. XProgramming Web site, On-line at
<http://www.XPro gramming.com/ >

7. Genesys Solutions Web site, On-Line at <http://
www.genesys.shef.ac.uk/ >

8. M. Holcombe, K. Bogdanov & M. Gheorghe, “Func-
tional test generation for extreme programming”,
Proc. XP2001, Sardinia, Italy, (to appear), 2001.

