

24

Integrating Extreme Programming and Contracts

 Hasko Heinecke Christian Noack
 Daedalos Consulting AG Daedalos Consulting GmbH
 Seestrasse 510 Postfach 3113
 8038 Zürich, Switzerland 58422 Witten, Germany
 +41 1 4810720 +49 2302 9790
 heinecke@daedalos.com noack@daedalos.com

ABSTRACT
Extreme Programming1 (XP) is a light-weight software
engineering methodology conceived by KENT BECK with
a strong focus on business value. Design by Contract is a
software design technique defined by BERTRAND MEYER
that stresses stability and maintainability of large systems.
The two are regarded as incompatible by many of their
respective followers.

In this paper, the authors describe why contracts can
nonetheless offer benefits to XP, and how they can be
used in an XP environment. Contracts are particularly
helpful in large systems development, an area that is not
yet well investigated by the XP community. The authors
describe how applying Design by Contract in an XP
project can work, and what benefits can be expected.

Keywords
Extreme Programming, XP, Design By Contract, System
Documentation, Object-Oriented Software Development

1 EXTREME PROGRAMMING
This paper assumes a working knowledge of standard
Extreme Programming concepts. We will therefore not
explain the various aspects of XP here. A good reference
can be found in [1, 2, 3].

XP is designed to address the specific needs of software
development conducted by small teams. It is less well
understood how it applies to large systems development.
The ideas described in this paper are an attempt integrate
one well-known technique for this with XP.

2 DESIGN BY CONTRACT
A full tutorial on Design by Contract is beyond the scope
of this paper. The following paragraphs give a very brief
introduction to the basic concepts and the purpose of
Contracts. Readers who are familiar with those concepts
may want to skip them.

Pre- and Postconditions
The basic components of Design by Contract are
Preconditions and Postconditions. Both are sets of logical

1 XP advocates usually prefer the fancier spelling
“eXtreme Programming”. The authors, despite their
affection to orthographic idiosyncrasies, have decided to
stick with the more conventional way.

(Boolean) expressions with no side-effects2, that are
attached to individual methods. They describe semantic
properties that are required to hold when the respective
method is executed.

Preconditions describe the required conditions for the
method to return a reasonable result. They are checked
before the actual method is executed. Postconditions
describe to some extend the expected result of the
method, provided the preconditions were kept.
Postconditions are checked after method execution, but
before returning to the calling context.

Invariants
Class Invariants are contracts attached to a class, that are
to be checked both as Preconditions and Postconditions,
and that are checked for every public method of a class.
Therefore, most of what is said about either of the other
two kinds of contracts is also valid for Class Invariants.

The remaining paper will therefore in most cases only
address Preconditions and Postconditions. Class
Invariants will only be discussed where they differ from
the other two.

Inheritance
Contracts are, by definition (see [4, 5]), inheritance-
aware: A subclass' methods must obey the rules given by
its superclass. When class A's method m is overwritten in
subclass B, then the contracts for A.m must also
automatically be checked for B.m.

Furthermore, subclasses must require no more than their
superclass, i.e. they can only weaken preconditions.
Conversely, they must promise at least what their
superclass does. So they can only strengthen
postconditions. This is usually implemented by
combining all preconditions for a method in an
inheritance chain with a logical or and all postconditions
with a logical and.

2 As a recent discussion in some newsgroups showed, the
concept of side-effect freeness is somewhat hard to
define. We will not discuss it in this paper but only give
an intuitive definition: Pre - and Postconditions must not
alter the state of the system they describe.

25

Implementing Contracts
A detailed discussion of different implementations is
beyond the scope of this paper. Instead, we point the
reader to existing products such as iContract for Java or
the Eiffel language.3

An implementation of Design by Contract should provide
some tools for formulating contracts, either in a
repository or inlined in the method and class code. It
should allow switching on and off contract checking for
performance reasons. It should offer additional constructs
beyond the standard logical operators, e.g.:

old in postconditions, provides access to the state of a
variable at the time of the method call, i.e. when the
precondition was checked. This is necessary to
compare the old vs. new state of the variable.

forall in pre - and postconditions, checks a condition
against all elements of a collection.

exists in pre- and postconditions, checks whether at
least one element of a collection satisfies a condition.

Why Contracts?
In their article [6], JEAN-MARC JÉZÉQUEL and BERTRAND
MEYER comment on the Ariane 5 disaster, where a $500
million rocket exploded about 40 seconds after take-off
due to a software failure. They cite the official analysis
of that incident, stating that a piece of software reused
from the predecessor Ariane 4 was called in a situation
that violated it's implicit preconditions, crashing the
system. They claim that having the routine's contract
stated explicitly would have made finding this violation
much easier, and would probably have prevented the
system crash.

While not all software defects cause so spectacular
crashes, contracts do give a means to tell a developer
about the constraints and promises of a piece of code.
Particularly when reusing existing code that has been
around for a while, or that was developed by third parties,
this can give quality assurance teams a hint at what to
look out for. Sometimes, contracts may even help to
discover defects nobody was expecting, simply because
they are enforced automatically.

Contracts vs. Assertions
The logical expressions that constitute Pre- and
Postconditions are frequently referred to as assertions.
For this reason, they sometimes mistaken as assertions as
known from C and similar programming languages.
However, they are both more and less powerful than
those: They are more powerful in that they are aware of
inheritance and polymorphism. They are also less
powerful because they can only be attached to method
invocations and returns, while assertions can be
interspersed in a method's code. We have therefore
mostly avoided the term “assertion” in this paper.

3 See www.reliable -systems.com and www.eiffel.com.

Contracts can be implemented using assertions, but it
takes additional effort besides writing down the plain
assertions themselves. The additional operators have to be
provided, and – more important – their behavior with
respect to inheritance has to be simulated.

3 SIMPLICITY VS. CONTRACTS
The central coding practice of Design by Contract is the
addition of contracts, expressed through preconditions,
postconditions, and invariants to classes and methods. On
the other hand, two of the most important coding
practices in Extreme Programming are “Do The Simplest
Thing” and “You Ain't Gonna Need It”. The crucial
question when discussing Design by Contract from an XP
perspective is:

Why would you want to add the complexity of
contracts to your system?
In XP, only User Stories can justify raising the
complexity of a system. So the question can be restated
as: What User Stories require the addition of contracts to
a system? In many software projects two such stories
could be:

User Story 1: We have several teams working on
different subsystems and we want to protect their
interfaces against mistakes and misinterpretations. Also,
our corporate quality assurance strategy requires such
protection.

User Story 2: We want to automatically generate some
documentation on the semantics of the interfaces of each
subsystem, e.g. for use by other teams and projects.

A brief explanation why the two are reasonable and how
they connect Extreme Programming and Design by
Contract is given in the following paragraphs.

Subsystems in XP
Extreme Programming is usually viewed as applicable
only in small teams of up to ten or twelve developers.
While this is not a definitive upper limit, most people
regard it as a practical rule-of-thumb for the team size.
Twenty developers is regarded as too large for effectively
applying XP. In his well-known work [7], FRED BROOKS
says: “Adding more men [...] lengthens, not shortens, the
schedule.” This is taken as justification for XP's call for
small teams. But in the same book, BROOKS also
mentions: “This then is the problem with the small, sharp
team concept: it is too slow for really big systems.” [7,
p. 31] Quite often, systems are just too big to be
developed in time by a single XP team.

One possible solution is to partition a large set of
requirements in subsystems that interact only through
well-understood interfaces. This may seem hard to do, but
in practice a lot of business domains do have such
interfaces. They are either company or industry standards,
required by existing architectures, or they are imposed by
third-party software such as SAP. The interface between
payroll and financial accounting is an example, as are
industry standards such as SWIFT for inter-bank

26

messaging, or separate front-office and back-office
systems. Whenever there are such interfaces, they can be
used to partition a system into subsystems.

In environments like that, the stories like #1 above can be
satisfied by the introduction of Design by Contract.
According to our understanding, contracts are most
beneficial to XP projects when used for interfaces
between subsystems. Through preconditions and class
invariants they force calling subsystems to provide the
required environment to use an interface. At the same
time, the calling subsystem can rely on the interface
semantics that are enforced by the callee's postconditions
(and class invariants).

System Documentation
Besides run-time enforcing contracts and error
notification, contracts also serve well as semantic
subsystem interface documentation. They explicitly state
the expected context in which an interface can do useful
work. Additionally, they even specify the results that can
be expected to a certain extent.

Documentation like that when done manually is
notoriously incomplete and outdated. Besides, usually
qualified team members are needed to produce it and
their workforce is often indispensable. In contrast,
contracts can be picked up by suitable tools and up-to-
date documentation can be created any time it is needed,
e.g. to satisfy corporate quality assurance policies. (See
user story #2.)

Thus, contracts make code even more self-documenting,
a goal that is clearly expressed in the XP core practice,
the source code is the design. MEYER also mentions this
aspect of contracts, e.g. in [4, p. 389]

4 XP VALUES
Besides simplicity, the three other values of Extreme
Programming are also affected by Design by Contract:
Communication, feedback, and courage. Communication
is increased by the documentation effect of contracts, as
explained above. Feedback is increased by contract
checking itself, providing developers with early notice of
interface misuse.

Concerning courage: Often, developers hesitate to change
or refactor their own code where it is using or providing
external interfaces, because they fear to break them.
Contracts are a safe-guard against breaking interfaces and
therefore encourage programmers to do necessary
changes.

5 CONTRACTS AND UNIT TESTS
One could think that contracts are not needed when Unit
Tests are written to the extent demanded by XP.
However, we believe that contracts and unit tests
supplement each other.

Unit tests set up a context, then perform a task and check
the result. The context has to satisfy the task’s
preconditions for the test to work, but it never explicitly

mentions those preconditions. For a person browsing
through some unit tests, it is possible to derive the
preconditions from the contexts that are set up. This is
feasible for relatively simple test units. For subsystem
interfaces, the tes t unit is rather complicated. In this case,
implicit preconditions are rather hard to derive from the
unit tests alone.

There is a partial solution to this problem: It is possible
and frequent practice to write specialized unit tests that
check whether interfaces fail gracefully when their
implicit preconditions are not satisfied. However, it is
hard to distinguish these unit tests from the those testing
for real user stories, and it is still hard to derive the actual
preconditions from them. Furthermore, multiple
preconditions result in a combinatorial explosion of the
number of unit tests. Therefore, unit tests cannot
substitute explicitly formulated preconditions.

The relation between unit tests and postconditions is
somewhat less obvious. Both unit tests and postconditions
give evidence of the expected result (or resulting context)
of an action. Unit tests create an example situation and
check an operation's result. Postconditions, though,
describe the expected result in a more general manner,
albeit less detailed. As logical functions, they can
describe an infinite set of possible results and they can
even exclude impossible ones.

Furthermore, Contracts fit well into the “Once and Only
Once” principle of XP. They represent the universal
(desired) semantics of a method, whereas Unit Tests only
represent its semantics under a given assumption.
Therefore, associating the contracts with their methods
instead of their multitude of tests is following that
principle.

As has been illustrated, Unit Tests and Contracts address
different, if somewhat overlapping issues. Unit Tests are
a core practice of Extreme Programming. Their presence
is required throughout the life-cycle of every XP project.
Contracts are not crucial for XP to work. However, in a
large system development effort that is partitioned into
several loosely coupled subsystems, they can help ease
communication difficulties that arise at their interfaces.

6 CONTRACTS AS AN IMPLEMENTATION
PATTERN

The inventor of Design by Contract himself, BERTRAND
MEYER notes that the contracts look formal and
“shocking to most” [4] who first encounter the concept.
Of course, he adds that they are the foundation of code
stability and other quality goals. The authors agree in that
they are indeed a means to achieve those goals, where it
would be hard with Unit Tests alone.

However, contracts are not as strange to developers as
they might appear at first glance. In fact, they are an
implementation pattern commonly found in existing code.

Assertions Again
Contracts are a particular form of assertions, as explained

27

earlier. Assertions themselves are not unknown to most
developers, and they are frequently used by the more
careful in large systems projects. Plain assertions are
sometimes considered unnecessary in the presence of
Unit Test suites, but they are hardly a strange and new
concept.

Preconditions
Preconditions are found in many methods in their
disguise as Guard Clauses4. Using Preconditions instead
makes them easier to locate and additionally enforces
sensible rules for methods overwritten by subclasses.

Postconditions
Postconditions are often simulated by methods checking a
message's result. This is commonly used when the
message sent belongs to another module or is supposed to
call a different application.

Code like this expresses the (healthy) mistrust in the
developers who wrote the called code. However, it would
rather be the other code's responsibility to enforce the
promises made, if only to have it in one place instead of
dispersing it through the client code. This only works,
when those promises are documented, which
postconditions do better than API documentation.

Class Invariants
Class Invariants are not very frequently encountered in
existing code. However, they are sometimes present
without being explicitly formulated. Then, they are an
annoying source of what is often called "beginners'
faults". An example for this is the equals/hashCode
relationship in Java5:

When you overwrite equals() in a class, you have to
make sure that equal objects still return the same hash
code. However, this is enforced nowhere, and it's only
stated in the class library documentation and therefore
easily missed by beginners.6 Of course, the veteran
developer will always remember it, unless they are in a
hurry.

Again, having explicitly stated Invariants will help locate
and enforce them. Developers encountering class
invariants (as opposed to those writing them) will
probably not find them strange and burdensome but rather
welcome them as an additional aid.

4 A Guard Clause, as described in [8] is a condition that is
checked at the beginning of a method, and that raises
some kind of exception when it fails.
5 The same relationship exists in Smalltalk.
6 Interestingly, this is considered a class invariant of class
Object by both the Java and Smalltalk documentation.
Actually, it should rather be an invariant of an interface
that specifies hashing. However, there is no such interface
in Java and of course none in Smalltalk.

7 CONCLUSION
Design by Contract is certainly not a core practice of XP,
but neither does it contradict the XP values. It has been
shown that Design by Contract does offer benefits in an
XP environment, if wisely applied. In particular, large
systems efforts can use Contracts to specify and
document their subsystems' semantics to a certain degree.

The authors are currently applying the approach
described in their projects. An empirical analysis of its
success will show to what extent the described effects
will really benefit large XP projects.

REFERENCES
1. K. Beck, Extreme Programming Explained: Embrace

Change , Addison Wesley Longman, 1999

2. R. Jeffries and Ann Anderson, Extreme
Programming Installed, Addison Wesley Longman
2001

3. K. Beck and M. Fowler, Planning Extreme
Programming, Addison Wesley Longman, 2001

4. B. Meyer, Object-Oriented Software Construction ,
Prentice Hall, 2nd ed., 1997

5. B. Liskov, “Data abstraction and hierarchy”,
SIGPLAN Notices, vol. 23, May 1998

6. J.-M. Jézéquel and B. Meyer, “Design by contract:
The lessons of Ariane”, Computer, vol. 30, pp. 129-
130, January 1999

