

38

Stabilizing the XP Process Using Specialized Tools

Martin Lippert, Stefan Roock, Robert Tunkel, Henning Wolf
University of Hamburg

Computer Science Department, SE group
& APCON Workplace Solutions GmbH

Vogt-Kölln-Straße 30
22527 Hamburg, Germany

{lippert, roock, tunkel, wolf}@jwam.org

ABSTRACT
One problem with the XP development process is its
fragility. If developers use the XP techniques in an
unintended way or not at all, the XP process is likely to
break down: The misused techniques affect the other XP
techniques in a negative way, breaking the whole process.

We believe that it is possible to stabilize the XP process
using specialized artifacts to reify the XP techniques. We
discuss the reification of the XP technique Continuous
Integration using the JWAM IntegrationServer as an
example. We present our experience with this tool and
analyze its effects on the other XP techniques.

Keywords

eXtreme Programming, process, artifacts, continuous
integration, team development, tool support.

1 MOTIVATION
Extreme Programming is a combination of a number of
different techniques for developing software. These
techniques are not independent, but rather influence and
complement each other. Kent Beck shows their
relationships in [1].

Over the past two years, we have used XP techniques in
various development projects. Here, we observed that the
XP process is fragile: if one XP technique is used in an
unintended way or not at all, dependent XP techniques
may be affected. The problem is that XP is based on
discipline and experience. If a team lacks the necessary
discipline or experience, the XP process is likely to break
down. The role of a XP coach is therefore suggested by
Beck. The XP coach has the required experience and tries
to establish the XP values within the XP team. He/she is
the conscience of the team.

However, this situation is unsatisfactory. Many small
teams do not have the financial resources to pay for an
XP coach, and even if they do, it is very hard to a get a
good one. So farm there have not been many successful
XP projects that have produced skilled coaches.

Fortunately, there are other ways of transferring
experience and knowledge than by coaches. One is to
reify successful routines and behavior in artifacts (cf. [2]).
This is what cultures do: if a routine is executed over and

over again in the same or a similar way, the culture will
create an artifact that reifies this routine. A carpenter
hammers nails into wood. The reification of this routine is
the hammer. The hammer does not force the carpenter to
use it as intended, or even to use it at all, but it helps the
carpenter to do his work effectively. Thus, the carpenter
will, of course, use the hammer. At the same time, the
hammer “helps” the carpenter to remember how to
hammer. This facility is more important for an
inexperienced carpenter than for an experienced one. The
hammer helps to transfer the knowledge about how to
hammer from the experienced carpenter to the
inexperienced one. The hammer stabilizes the routine of
hammering.

The idea of using artifacts to reify proven routines and
practices is not only useful for XP projects without a
coach. Even with an XP coach, the artifacts help to
stabilize the good practices and techniques. It is crucial to
use artifacts as part of the game, but the artifacts and
routines have to be complemented by a value system.
Artifacts, routines and value systems stabilize each other.

In this paper, we focus on the Continuous Integration
technique of XP. We present the JWAM
IntegrationServer as one possible artifact reifying this
technique and therefore stabilizing the XP process.

2 Reification of the integration process in AN
ARTIFACT

The dependency diagram in Figure 6 focuses on
Continuous Integration, which is shown to be directly
related to Collective Ownership, Coding Standards,
Testing, Refactoring, Pair-Programming and Short
Releases. If a team has problems with Continuous
Integration, this is likely to cause problems with other XP
techniques. But if Continuous Integration works well, it
should support many other XP techniques.

When we started using XP techniques, Continuous
Integration was one of the first we adopted. We tried to
establish the technique as suggested in [1]. We used one
physical integration machine for the whole team (about 8
developers) which always keeps a consistent and running
version of the system under development. However, this
did not work as expected. We achieved only a few
integrations per week and the team’s motivation was

39

adversely affected.

The reason for the failure to establish Continuous
Integration was easily found: each integration took too
much time. There were too many things to, such as:

• Find out what changed on the client and on the server
since the last synchronization of server and client.

• Merge the modifications done on the client.

• Compile server sources.

• Test server sources.

Since we had no tools to support the integration process,
only some conventions and to-do lists were available to
guide the developer through the integration process.
Especially occurring problems were a pain. Sometimes,
after a merge, the test cases would not run any more. In
that case, we had two possibilities: we could remove the
problem on the integration server machine, blocking the
server for further integrations during this period, or we
could restore the previous state of the integration machine
and remove the problem on the client.

A single integration, for example, often took more than 2-
3 hours. The integration process, then, was laborious and
nobody wanted to do it. Another negative aspect of the
integration process was the fact that the integration
machine was located in a different room from where most
of the development was done. These two facts, the long
and complicated integration process on a totally different
machine and the spatially separated integration machine
were a considerable handicap for the people doing the
integration. This had a further impact on other XP
techniques, especially refactoring. Since integration was
done infrequently, the refactorings were very large. We
were therefore very often without running system

versions, which hindered Short Releases.
During the large refactorings, the test cases
often broke down and had to be more or
less rewritten after refactoring. This
hampered the XP technique of Testing.

We started to look for a more suitable
integration method to restabilize our XP
process.

We liked the idea of using an artifact to
support continuous integration within our
development team. But what sort of artifact
would be suitable? Using one integration
machine was unsuccessful, as were to-do
lists.

A tool might be the right answer to this
question. CVS, Envy or other source-code-
management systems could be used to reify
the continuous integration technique. The
important thing is that the tool is accepted
by the team members and that it or its use

supports the principles of XP Continuous Integration.
CVS or other source-code- or version-management
systems can be used in combination with conventions
specifying how to use them. One convention might be
that every developer has to download the current version
before the next integration, update the changed source
codes and conduct all the tests to ensure that all test cases
run with the integrated version. This is one way of using a
tool in combination with conventions to stabilize
continuous integration within the team. We identified the
following points as important for the Continuous
Integration technique:

• Very short integration cycles. We consider a few
minutes, no more to be optimal. This allows us to
realize smooth team development without adversely
affecting other members of the team.

• Unit testing is essential. Ideal would be a tool that
takes care of the correctness of all sources at every
integration.

• And last but not least: the tool and the conventions
should be as easy to use as possible.

We decided to develop a specialized tool, the JWAM
IntegrationServer as an extension to CVS, to provide our
developers with a smooth way of dealing with continuous
integration. Based on our positive experience with the
tool, we present its basic functionality in the following
section. We would, however, like to emphasize that any
other source-code-management system may be useful for
reifying continuous integration with the right set of
conventions and values.

On-Site Customer Planning Game

Metaphor

40 Hour Week

Refactoring

Simple Design

Pair
Programming

Testing Short Releases

Coding
Standards

Continuous IntegrationCollective Ownership

Figure 6: Dependencies between XP techniques, with highlighted
dependencies between Continuous Integration and the related XP

40

3 JWAM IntegrationServer
Given the requirements and observations mentioned
above, we developed a specialized tool to support the
continuous integration process. This tool can be thought
of as a unit-testing addition to a normal version-
management system. It is based on two components:

• The IntegrationServer is a server process that runs on
a server machine that is accessible to all developers.
This server machine defines the reference machine
and controls and manages the complete source code
using a version-management system.

• The IntegrationClient is a client-side tool that allows
the user to update source code on the reference
machine as well as obtaining changed source code
from it. The client tool works as the artifact for the
developer and offers the user an easy-to-use
interface.

The typical use case for this tool is: the developer has
changed a number of pieces of source code and would
like to integrate them to provide the other developers
inside the team with the changes. This task is supported
by the IntegrationClient , where the developer can list the
files he/she has changed. The developer can then
integrate them by simply pushing a button. This single

action guarantees that:

1. the changed pieces of source code are transferred to
the server reference machine

2. the complete source code is compiled

3. all test cases run on the reference machine

Only if all three actions are successful and no failure
occurs during unit testing are the updated pieces of source
code accepted on the reference machine and the
integration successful. If one unit test fails or an error
occurs during one of the actions, the integration is
cancelled. As a result of a failed integration, the changed
versions of the pieces of source code are rejected and
none of the code base is changed on the reference
machine. Feedback about a successful or failed
integration is, of course, reported to the developer sitting
in front of the IntegrationClient tool. The main user
interface of the IntegrationClient tool is shown in Figure
2.

Test cases are handled as normal source code by the
IntegrationClient. The developer can add, modify or
delete test-case classes using the same tool as for every
other piece of source code.

The other use case that often occurs is where another

Figure 7: The IntegrationClient user interface

41

developer has changed some source code on the reference
machine. In this case, the IntegrationClient shows all
changed pieces of source code and the developer has the
opportunity to download all new or changed pieces of
source code to his/her development machine.

Another interesting case is the occurrence of conflicts,
e.g. when two developers on the team have changed the
same source code. In this case, the IntegrationClient
indicates the conflict and does not allow the changed
source code to be uploaded to the server. First, the
developer has to download the changed version from the
server, transfer his/her changes into this source code and
then integrate the new merged version. This can be
supported by a Diff- or Merge-like tool.

4 Experience
We have been using the tool since April 2000 and our
experience during more than 2,000 integrations has been
extremely positive. The tool is easy to use and enables
changed source code to be easily integrated. An
integration is done in less than 10 minutes for large
projects (thousands of source files) and in a few seconds
for small projects (some hundred source files), the XP
idea of Continuous Integration being optimally supported.
This makes the tool very attractive for developers. The
programming pair can take a break while the integration
process is running. Results and possible errors are
reported in a progress log.

Our use of the tool suggests that small changes and
frequent integrations are best. This is because all
developers like the tool and know how to use it. And the
tool lists all differences between the source code on the
reference machine and the individual developer’s source
base. This makes it very easy to see whether someone
else has changed a piece of source code which could have
serious effects on my changes.

Since the IntegrationServer incorporates an optimistic
locking strategy, the first developer to integrate modified
sources wins. If the integration is refused by the
IntegrationServer, the developer who tried to integrate
has to remove the problem. This leads the developers to
integrate as fast as possible to avoid potential conflicts.
Thus, the reification of the Continuous Integration
technique in a tool as an artifact supports not only this
technique but the refactoring technique as well.
Developers are “forced” by the IntegrationServer to make
small refactorings rather than large ones.

The fact that the IntegrationServer ensures a running
version on the server supports the Small Releases
technique, too. In principle, it is possible to deliver a new
version every day. The technique of Collective Code
Ownership is also supported by the IntegrationServer
because the developer that caused a conflict has to
remove it – no matter where code he/she has to modify.
Testing is supported by the IntegrationServer’s testing
facility. The developers know that the IntegrationServer
will execute their tests over and over again and will avoid

breaking their code. Developers thus experience the
benefits of test cases and are willing to write test cases for
their code.

In our experience, the IntegrationServer does not
specifically support the XP techniques Pair Programming
and Coding Standards. These techniques are supported by
Continuous Integration as a technique, and not by the
IntegrationServer.

5 Related work
There are a number of different tools that can be used as
an artifact for the Continuous Integration process. As
mentioned before, CVS, Envy or TeamStreams by Object
Technoloy International (see [3]) may be called to mind.
They are all useful for developing with XP. The
IntegrationServer only adds a special, extremely easy-to-
use and smooth interface and automated testing of the
integrated version, which makes it easier to use for our
XP projects.

There are other artifacts that may be useful for reifying
other XP techniques. The Refactoring Browser, for
example, might be used for the Refactoring technique1.

6 Conclusion and OUTLOOK
The reification of the Continuous Integration process
using a specialized tool as an artifact works well. In
particular the shift from non-XP development to XP was
stabilized by this tool.

The IntegrationServer is only a first step toward a set of
artifacts stabilizing the XP process. In addition to
presenting the IntegrationServer, this paper is intended to
provoke a discussion on other artifacts suitable for
stabilizing the XP process. These we are still looking for.

7 References
1. Kent Beck: eXtreme Programming Explained –

Embrace Change, Addison-Wesley, Reading,
Massachusetts, 1999.

2. Keld Bødker, Jesper Strandgaard Pedersen:
Workplace Cultures: Looking at Artifacts, Symbols
and Practices. In: Joan Greenbaum, Morten Kyng
(Eds.): Design at Work . Lawrence Erlbaum
Associates, Publishers, Hillsdale, New Jersey, pp.
121-138. 1991.

3. Jim des Rivières, Erich Gamma, Kai-Uwe Mätzel,
Ivan Moore, André Weinand, John Wiegand: Team
Streams – Extreme Team Support, in Proceedings of
eXtreme Programming and Flexible Processes in
Software Engineering - XP 2000, Cagliari, Sardinia,
Italy, June 2000.

4. JWAM website: http://www.jwam.org

1 Thanks to the reviewer who suggested this idea.

