

75

Using Extreme Programming for Knowledge Transfer

Luigi Benedicenti

University of Regina
3737 Wascana Pky

Regina SK Canada S4S 0A2
Tel: +1-306-585-4701

Luigi.Benedicenti@uregina.ca

Raman Paranjape
University of Regina
3737 Wascana Pky

Regina SK Canada S4S 0A2
Tel: +1-306-585-5290

Raman.Paranjape@uregina.ca

ABSTRACT

This paper presents the application of eXtreme
Programming to the software agents research and
development group at TRLabs Regina. The group had
difficulties maintaining its identity due to a very rapid
turnover and lack of strategic polarization. The
application of eXtreme Programming resulted in a
complete reorientation of the development culture, which
now forms a continuous substrate in every individual.
This allowed the creation of a group identity, thus
promoting the integration of short-term projects in the
strategic group vision, and complete information sharing.

Keywords

Extreme Programming, Knowledge Transfer, Software
Process, Software Lifecycle

1 INTRODUCTION
One of the largest research groups that the authors co-
chair in their academic duties is the Software Agents
research group. Software agents are relatively small
autonomous programs that can accomplish complex tasks
by virtue of two capabilities: mobility and collaboration
[6]. Although the group involves University professors
and students, and it is research-oriented, the environment
in which this research takes place is that of a company:
TRLabs, a pre-competitive research venture. Student
employment is part of the co-operative education
program at the University of Regina, and serves well to
help our future graduates cope with the industrial reality.
TRLabs’s research partners include University and
Industry. Thus, TRLabs represents a different
environment for students and professors alike, an
environment with precise deadlines and specific targets.

In mid-1999, our research group on software agents was
facing a number of difficulties. To experiment with
software agents, our group had to develop a large number
of them, each with different behaviors and goals.
Moreover, the group had to agree on a common execution
model. Finally, since a co-operative work term only lasts
four months, we were hard pressed to find limited-scope
projects with long-lasting value.

To solve these problems, we decided to adopt eXtreme
Programming for both software development and
knowledge transfer and integration in TRLabs’ corporate

culture. Extreme Programming (XP) is a recent
development technique [1] to accelerate and streamline
software development. Since its initial presentation, XP
has been the subject of a substantial amount of
controversy, which has given the opportunity to refine it
and apply it to many different development environments
[3, 7].

In section 2, the rationale for this choice will be
illustrated. Section 3 will present the roles and
responsibilities of the group. Section 4 will detail our
approach. Results will be presented in Section 5. Section
6 will summarize the results into conclusions.

2 RATIONALE
The software agents group at TRLabs and the University
of Regina is a relatively large group (around 12 people)
whose mission is to explore and harness the power of
software agents for research and commercial applications.
On the research side, the group has long-term goals for
novel agent interaction models (for example, insect-like
behavior or data clinging). On the commercial side, the
group is researching in distributed economic models for
e-business and better human-computer interaction [2].

The group is involved in three kinds of projects. The first
kind of projects is strategic, which sets up a theme lasting
several years. The second kind of projects is topic-related,
usually lasting one to two years. The third kind of project
is incubation, lasting for approximately four months.

The main goal of the group is to gain a thorough
knowledge of how software agents can best be used and
in which areas software agents obtain the best results. In
order to achieve this goal, it is necessary to have a
pyramidal structure that concentrates knowledge and
distills it into strategic and operational rules.

Such a structure is easy to build on the administrative
side, but it is very difficult to enforce knowledge
concentration. This is especially true when a high
turnover rate is present.

Soon after XP was introduced, the group decided to adopt
a less stringent XP approach for agent development. The
reasons behind this choice were simple: the sheer number
of agents required for a realistic simulation required it. In
addition, software agents do not lend themselves to be
developed via pseudo-random modifications such as with

76

genetic algorithms.

More recently (beginning of 2000) the group has started
to use XP als o as a means to transfer the knowledge
acquired from incubation projects into a stable corporate
culture base. It is interesting to notice that this choice was
not entirely conscious, as XP-related behavior had
pervaded the group’s activities so much that its adoption
as a means to share information became ‘natural.’

3 ROLES AND RESPONSIBILITIES
The group is organized as a team with a pyramidal
structure (Fig. 1). Top management is technically not part
of the team, but they affect its strategy. Project members
at the strategic level include managers and professors.
They have a better view of the group, as they are
generally involved for a longer time. There have been up
to three such people in the group. Project members at the
topic level are usually research engineers or graduate
students. Project members at the incubation level are
students in the co-operative employment program or
temporary “overflow” personnel.

The goal of incubation project members is to carry out
specific investigations or small software developments
(such as a special class of agents). Topic project members
work on single topics for longer, and often their work
spawns smaller incubation projects. They benefit directly
from incubation project knowledge. Strategic project
members manage the group and integrate the knowledge
in the group’s corporate culture. They also manage
external technology transfer.

 Incubation Project Members

 Topic Project Members

 Strategic Project Members

 Top Management

K
now

ledge

Figure 8: Team structure

4 APPROACH
After the decision to use XP was taken, a strategic
meeting was called to choose the best way to introduce it
to the group. The management was aware of some
specific techniques for introducing XP to professionals
[1] and students [8]. After careful consideration, it was
decided that XP would be introduced as a natural
extension of the software process. In fact, up to that point,
no software process was enforced, but everyone in the
group was expecting a process to be established. Hallway
conversations hinted that the process would be tedious,
clumsy, and very structured.

The introduction of a highly flexible, lightweight process
that was aimed at maximizing compatibility of the
approaches was highly welcomed. It was generally
perceived that programming agents was still a lot of fun –
and this is one of the main tenets of XP.

The process regulates the programming activity and the
reporting/planning activity. Programmers are asked to
comply with the general coding standards that emphasize
code understandability [5]. Group programming is
encouraged, but not mandated. Reuse in software agent is
systematic, not occasional, and thus specific guidelines
have to be given as to how to facilitate it. Refactoring is a
crucial point in software agents, as it allows them to
change easily. Refactoring was present in the agents
group even before the group knew it was called
refactoring.

The reporting and planning activity centers on weekly
meetings. Meetings take place in a boardroom equipped
with computers, video links, and a remote connection to
TRLabs Saskatchewan’s headquarters in Saskatoon. All
project members are required to participate. Each meeting
begins with a presentation from a group member. Then
informal status reports are given. Everyone is free to ask
questions and give suggestions. There is a general feeling
of unity and no comment is ever interpreted in a negative
way. Problem reports and setbacks are regarded as a
group opportunity to solve a challenge, not as something
to condemn. Lastly, replanning takes place. The group
meeting often reaches consensus, but at times it is
necessary to exercise leadership and redefine the group’s
priorities.

The boardroom is also ideal for top management if they
wish to attend the meeting sessions. The conference video
link also allows externals to be invited for presentations
that inject new knowledge in the group. The computer
facilities in the boardroom are used often for live agents
demonstrations.

Documentation is not optional in this kind of endeavor.
However, there is no defined standard for documents, as
they are built only when there is reason to build them.
The group does not write user manuals before the
software is written. A byproduct of presentations is a
good set of tutorials and programmer’s manuals.

The group does not use code protection mechanisms,
although versioning is employed. Continuous refactoring
and reuse had a very interesting effect: no one was ever
affected by the ‘second-system effect’ [3]. As a result, the
agent system is undergoing profound changes all dictated
by contingent necessities and strategic goals, but one
cannot say that the whole system has a version number.
Rather, each component has a unique version.

For example, the agent execution environment kernel
took approximately four months to write, as it was an
incubation project. Since the kernel is a strategic asset, a
more conservative and traditional approach would have

77

had most resources dedicated to it, with potentially
disastrous results if the system were ever to be touched
again. When the agent group decided to change the agent
execution environment to separate the kernel’s user
interface and write a new status agent, the whole task was
completed in just four weeks.

In conclusion, our approach to XP is tailored, and not
‘pure.’ For example, although pair programming is
encouraged, it is not mandated. Group programming
often takes place, and it is very welcome. Forty-hour
weeks are difficult to achieve, as everyone is always very
excited about the week’s achievements. However, last-
day crunches are dutifully avoided. The presence of a
deadline becomes accessory to the development challenge
that makes the group’s achievements so important and
rewarding. Group members are always free to offer
comments and suggestions on every agent project, and no
question is a bad one.

5 RESULTS
The first result is that XP for agent programming works.
The group has been successful in developing an agent
execution environment, numerous collaborating agents,
an economic marketplace for CPU resource allocation,
and many other projects.

Moreover, it is now ascertained that project results
survive radical turnover rates. This was demonstrated
with the agent execution environment, which is being
used and modified presently, even if it was the result of a
short-term project. The strategic importance of this fact is
invaluable to the group.

XP’s evolutionary development eliminated completely
the ‘second-system effect’ in all projects [3]. This
becomes crucial when the system has to be released in a
commercial environment that is now used to fast
development times and just-in-time delivery.

The continuity of this approach, the availability of
tutorials, and the communication-centered approach
selected make it possible for team members to learn the
basics on agents in less than two weeks. Everyone is
immediately productive, signifying that the group was
effective in transferring knowledge. This knowledge is
not only theoretical (as one would expect, with the
involvement of University professors) but it is also
practical, leading to very fast development cycles.

The use of a lightweight process was also extremely
beneficial. New group members do not have to learn a
large process structure, and so they become accustomed
to the process much faster (a week) than if they had to
learn a full formal process model.

Finally, it is also worthwhile to mention that during the
group’s life, turnover has happened at all three levels of
the team structure (Fig. 1). In all cases, the specific
choices made avoided loss of knowledge, even though in
case of the strategic project member the whole group’s
strategy was realigned. Strategic focus was maintained

and production rates never dropped, although of course
individual productivity did vary.

6 CONCLUSIONS
This paper presented an account of the application of XP
to a group developing software in the software agents’
area. The goal of this operation was to improve software
development and preserve and transfer knowledge
throughout the group so that the group could still work
and be productive in an environment with high turnover.

XP proved itself successful in every occasion, and was
invaluable not only in raising productivity, but in keeping
it high. As a result, group members feel more productive
and group morale is soaring. Proactivity has become the
norm, and problem solving has become a welcome
challenge. Boredom has vanished.

The advantages do not stop with the agent group,
however. On the company side, TRLabs has increased its
production rate, and has confirmed its commitment to the
co-operative program at the University of Regina. On the
University side, students employed for a work term feel a
sense of purpose and unity that confirms their willingness
to learn. For the co-operative program, this achievement
is a confirmation of its usefulness. Students that took part
in this program are better-motivated individuals whose
placement rate is noticeably higher.

The approach we selected for XP is certainly different
from what an ‘XP purist’ might produce. The more
outstanding characteristic of our approach is that we are
using XP mainly for knowledge transfer. XP for
development, in fact, does not make full use of XP’s
principles and thus may appear lacking. However, XP
originated mainly because other methods lacked results.

We believe that the adoption of XP in our group has
created advantages, and we are collecting evidence of this
on a daily basis.

ACKNOWLEDGEMENTS

The authors wish to thank TRLabs for providing the
environment and the means to support this experience.
Some of the work described in this paper has been
supported by the National Science and Engineering
Council of Canada (NSERC).

REFERENCES

1. Beck, K. Extreme Programming explained:
Embrace change. Addison-Wesley, 2000.

2. Bredin, J., D. Kotz, and D. Rus. Economic Markets
as a means of open Mobile-Agent Systems.
Proceedings of the Workshop ``Mobile Agents in
the Context of Competition and Cooperation
(MAC3)'' at Autonomous Agents '99, pages 43-49,
May 1999

3. Brooks, F.P. The mythical man-month, anniversary
edition. Addison-Wesley, 1995.

78

4. Gamma, E., and K. Beck. Test Infected. Web Site
On-Line at:
http://members.pingnet.ch/gamma/junit.htm

5. Holmes, N. Why Johnny can’t program. Computer
V33 N12 (December 2000), IEEE Press, p. 158-160.

6. Maes, P. Software agents tutorial. Web Site On-Line
at: http://lcs.www.media.mit.edu/people/pattie/CHI9
7/index.htm

7. McBreen, P. Applying the lessons of extreme
Programming. Proceedings of the: Technology of
Object-Oriented Languages and Systems (TOOLS -
34"00), August 2000.

8. Wege, C. and F. Gerhardt. Learn XP: Host a
bootcamp. Proceedings of XP2000, Italy, 2000 (CD
Edition).

