

96

The Need for Speed: Automating Acceptance Testing in an
Extreme Programming Environment

Lisa Crispin

Senior Test Engineer
Tensegrent

6100 Greenwood Plaza Blvd
Greenwood Village, CO 80210

USA
1.303.268.4621

lisa@tensegrent.com

Tip House
Chief Systems Analyst

OCLC, Inc.
www.oclc.org

6565 Frantz Rd.
Dublin, OH 43017

USA
1.614.761.5139

tip_house@oclc.org

Contributor: Carol Wade
HealthLanguage, Inc.

3960 Lewiston St.
Aurora, CO 80011

USA
1.303.307.4400

carol_r_wade@hotmail.com

ABSTRACT
In eXtreme Programming Explained, Kent Beck
compares eXtreme Programming (XP) to driving a car:
the driver needs to steer and make constant corrections
to stay on the road. If the XP development team is
steering the car, the XP tester is navigating. Someone
needs to plot the course, establish the landmarks, keep
track of the progress, and perhaps even ask for
directions. Acceptance tests must go beyond
functionality to determine whether the packages meet
goals such as specified performance levels. Automating
end-to-end testing from the customer point of view can
seem as daunting as driving along the edge of a cliff
with no guard rail. At Tensegrent, a software
engineering firm in Denver organized around XP
practices, the developers and the tester have worked
together to design modularized, self-verifying tests that
can be quickly developed and easily maintained. This is
accomplished through a combination of in-house and
vendor-supplied tools. This presentation covers:

• How to focus acceptance testing for XP

• How to design automated tests that are low-
maintenance and self-verifying

• How to apply the values of XP to test automation

• Ways to gather metrics and provide useful reports

The Tensegrent lightweight test methodology isn't
specific to a particular test tool. It allows acceptance
testing to keep pace with the rapid iterations of an XP
project.

KEYWORDS
Testing, automated testing, acceptance testing, test
scripts, tester, test tools, web testing, GUI testing.

INTRODUCTION
The three XP books give detailed explanations of many
aspects of the development side of XP. The test
engineer coming from a traditional software
development environment may not find enough

direction on how to effectively automate acceptance
tests while keeping up with the fast pace of an XP
project. In an XP team, developers are also likely to
find themselves automating acceptance tests – an area
where they may have little experience. Automating
acceptance testing in an XP project may feel like
driving down a 12% grade in a VW bug with a speeding
semi in the rear-view mirror. Don’t worry – like all of
XP, it requires courage, but it can – and should – be fun,
not scary.

The XP practices we follow at Tensegrent include:

§ pair programming

§ test first, then code

§ do the simplest thing that works (NOT the coolest
thing that works!)

§ 40-hour week

§ refactoring

§ coding standards

§ small releases

§ play the planning game

We apply these same practices to testing – including
pair testing.

Do XP teams really need a dedicated tester? It’s hard
for a tester to answer this in an unbiased manner. In my
experience, even senior developers don’t have much
testing experience, beyond unit and integration tests and
perhaps load tests. They tend to write acceptance tests
only for “happy paths” and don’t think of the nasty evil
steps that might break the system. At Tensegrent, we
had one project wrapping up while another one was
starting, so a decision was made to do the first two-
week iteration of the new project with a developer
serving as a part-time tester. By their own admission,
without an experienced tester to push them, the
developers got 90% of all the stories done by the end of

97

the iteration. To the customer, this looked like nothing
at all was done, and they were very unhappy. It took
some work to win back the customer’s trust.

How is Testing in XP Different?

How does acceptance testing in an XP environment
deviate from traditional software testing? First of all,
let's look at acceptance testing. Acceptance tests
prove that the application works as the customer wishes.
Acceptance tests give customers, managers and
developers confidence that the whole product is
progressing in the right direction. Acceptance tests
check each increment in the XP cycle to verify that
business value is present. Acceptance tests, the
responsibility of the tester and the customer, are end-to-
end tests from the customer perspective, not trying to
test every possible path through the code (the unit tests
take care of that), but demonstrating the business value
of the application. Acceptance tests may also include
load, stress and performance tests to demonstrate that
the stability of the system meets customer requirements.

Should I strap on a helmet and arm the air bags?

Testing in an XP environment feels like a drive through
twisting mountain roads at first. When I first read
eXtreme Programming Explained, the very idea of
testing without any formal written specifications seemed
a bit TOO extreme. It’s been difficult learning all the
different ways I can contribute to the team’s success.
My roles can be confusing and conflicting – I’m part of
the development team, but I need a more objective
viewpoint. I’m a customer advocate, making sure the
customer gets what she pays for. At the same time, I
need to protect the developers from a customer who
wants MORE than they paid for.

While XP is definitely a new way to drive, the road isn’t
as unfamiliar as some might think. For example, many
people new to XP think that XP projects produce very
little documentation. This hasn’t been our experience.
For one thing, the acceptance tests themselves become
the main documentation of the customer requirements.
They can be quite detailed and extensive. As an XP
project progresses, many other documents may be
produced: installation instructions, UML documents,
Javadocs, developer setup documents, the list goes on.
The difference between these and the documents in
many traditional projects is, the XP project documents
are up to date and accurate

Question: How do you write acceptance test cases
without documents?

Answer: You don’t need documents, because you
have a customer there to tell you what she is
looking for. Not that this is always easy. In my
experience, it is fairly easy to get a customer to
come up with tests for the intended functionality of
the system. What is more difficult, and requires a

tester’s skill, is to make sure the customer thinks
about areas such as security, error handling,
stability, and performance under load.
Other differences between traditional and XP
development are more subtle. It's really a matter of
degree. XP projects move fast even when compared
with the pace at the Web startup where I used to work.
It’s the fast lane on the Autobahn. A new iteration of
the software, implementing new customer "stories", is
released every one to three weeks. My goal is always to
get acceptance test cases defined within the first day or
two of an iteration, as these are the only written
"specifications" available. For our projects, the
acceptance test definitions have been a joint effort of the
team.

From a tester's point of view, the developer to tester
ratio in XP looks about as comfortable as driving
through the desert in an un-air-conditioned Jeep.
According to Kent Beck, there should be one tester for
each eight-developer team. At Tensegrent, the ratio gets
even higher.

Eeek! Are you SURE protective gear isn’t required?

Fear not! XP builds in checks and balances that enable
a small percentage of test specialists to do an adequate
job of controlling quality.

§ Because the developers write so many unit tests ,
which they must write before they begin coding -
the tester doesn't need to verify every possible path
through the code.

§ The developers are responsible for integration
testing and must run every unit test each time they
check in code. Integration problems are manifested
before acceptance tests are run.

§ The customer gives input to the acceptance tests
and provides test data.

§ The entire development team, not just the tester, is
responsible for automating acceptance tests.
Developers also help the tester produce reports of
test results so that everyone feels confident about
the way the project is progressing.

A caveat – if developers aren’t diligent in writing and
running unit tests and integrating often, you’re going to
have to hire more testers. A couple of iterations into our
first project at Tensegrent, I told my boss I thought we’d
have to hire more testers, there was no way I could keep
up! The problem was simply that the developers hadn’t
gotten the hang of “test before code” yet. Once they did
a thorough job of unit and integration testing, my job
became much more manageable.

The roles of the players on an XP team are quite blurred
compared with those in a traditional software
development process. Thus our Tensegrent XP ("XP")
philosophy is "specialization is for insects" . Here are

98

some of the tasks I perform as a tester:

§ Help the customer write stories

§ Help break stories into tasks and estimate time
needed to complete them

§ Help clarify issues for design

§ Team with the customer to write acceptance tests

§ Pair with the developers to develop test tools,
automated test scripts, and/or test data.

Question: The whole concept of pair programming
sounds weird enough. How can a tester pair with a
programmer?

Answer: I'm not a Java programmer and our
developers don't know the WebART scripting language,
but we still pair program. The partner who is not doing
the actual typing contributes by thinking strategically,
spotting typos and bad habits, and even serving as a
sounding board for the coder. This is a fabulous way
for developers and testers to understand and work
together better. It also gives the tester much more
insight into the system being coded.

I was reluctant to pair test at first. If the developers
wrote the test scripts, would I be able to understand
them and maintain them? The developers weren’t
anxious to pair with me for testing, either. They felt too
busy to spare time for acceptance testing. Then we had
a project where I needed very complicated test data
loaded into a Poet database for testing a security model.
By pairing with a developer, I finished in at least half
the time it would have taken to do it alone, and did a
better job. Now developers take turns on “test support”
to produce test scripts and data needed for automation,
sometimes also to help define test cases if I’m having
trouble understanding a story.

Once you've mustered the courage to switch to the XP
fast lane, it feels fun and safe.

How do I Educate Myself About XP?

Just as you wouldn't attempt to drive a Formula One car
without preparing yourself with training and practice,
the XP team needs good training to start off on the right
road and stay on it.

Start by reading the XP books. The first written about
XP is Extreme Programming Explained, by Kent Beck.
The other two are also essential: Extreme Programming
Installed, by Ron Jeffries, Ann Anderson, and Chet
Hendrickson; and Planning Extreme Programming, by
Kent Beck and Martin Fowler.

You can get an overview and extra insight into XP and
similar lightweight disciplines from the many XP-
related websites, including:

http://www.xprogramming.com

http://www.extremeprogramming.org

http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap

http://www.martinfowler.com

When we at Tensegrent had assembled our first team of
eight developers and a tester, we got together and went
through Extreme Programming Explained and Extreme
Programming Installed as a group, discussing each XP
principle, recording our questions (many of them on
testing) and deciding how we thought we would
implement each principle. This took several hours but
put us all on common ground and made us feel more
secure in our understanding of the concepts.

Once your team has read and discussed the XP
literature, it's time to get professional training. We
hired Bob Martin of ObjectMentor, a consulting
company with much XP expertise, for two days of
intense training (see www.objectmentor.com for more
information). After Bob answered all our questions, we
felt much more confident about areas that had
previously been difficult for us to understand, such as
the planning game, automated unit testing and
acceptance testing.

Don't stop there. Talk to XP experts. Look at the Wiki
pages and sign up for the egroups. If no XP user group
has been formed in your city, start one.

Automating Acceptance Tests

What can you automate?

According to Ron Jeffries, author of XP Installed,
successful acceptance tests are, among other things,
customer-owned and automatic. However, customer-
owned does not necessarily mean customer-written. In
fact, as Kent Beck points out in Extreme Programming
Explained, customers typically can’t write functional
tests by themselves, which is why an XP team has a
dedicated tester: to translate the customers ideas into
automatic tests.

Even with a dedicated tester, though, the "automatic"
criterion has given us some trouble. We automate
whenever it makes sense, but like most things, it is a
trade-off. When you have to climb a steep dirt road
every day, a four-wheel drive vehicle is a necessity, but
it’s overkill if you’re just cruising around the block.

For example, we haven't found a cost-effective way to
automate Javascript testing (so, we just avoid using
Javascript). And we're also struggling with how to
automate non-Web GUI testing in an acceptable
timeframe.

It costs time and money to automate tests and to
maintain them once you’ve got ‘em. Recently we had a
contract for three two-week iterations with four
developers and myself to develop some components of a
system for a customer. While the system involved a
user interface, the design of the UI itself was to be done
later, outside of our project. We developed a very basic

99

interface to be able to test the system. The system
involved multiple servers, interfaces, monitors and a
database. Full test automation would have been a big
effort. It didn't make sense to spend the customer's tight
resources on scripts that had a short life span. Still, I
automated the more tedious parts of the testing so I
could get the tests done in time. In addition, I needed
scripts for load testing. About 40% of the testing ended
up automated. For a longer project, I would prefer to
automate more.

Principles of XP Functional Test Automation
To get more automation, you have to make automation
pay off in the short term, and this means spending less
time developing and maintaining the automated tests.
Here are the principles we are using to accomplish this:

• Drive the test automation design with a “Smoke
Test”, a broad but shallow verification of all the
critical functionality.

• Design the tests like software, so that the
automated tests do not contain any duplicate code
and have the fewest possible modules.

• Separate the test data from the test code , so that
you can deepen test coverage by just adding
additional test data .

• Make the test modules self-verifying to tell you if
they passed or failed of course, but also to
incorporate the unit tests for the module.

• Verify only the function of concern for a
particular test, not every function that may have to
be performed to set up the test.

• Verify the minimum criteria for success.
“Minimum” doesn’t mean “insufficient”. If it
weren’t good enough, it wouldn’t be the minimum.
Demonstrate the business value end-to-end, but
don’t do more than the customer needs to determine
success.

• Continually refactor the automated tests , by
combining, splitting, or adding modules, or
changing module interfaces or behavior whenever it
is necessary to avoid duplication, or to make it
easier to add new test cases

• Pair program the tests , with another tester or a
programmer.

• Design the software for testability , such as
building hooks into the application to help automate
acceptance tests. Push as much functionality as
possible to the backend, because it is much easier to
automate tests against a backend than through a
user interface. I sit in on the developers’ iteration
planning and quick whiteboard design sessions. If I
perceive business logic getting into the front end,
for example in Javascript, I challenge the wisdom
of such a move.

An XP Automated Test Design

Appendix A gives an example of a lightweight test
design illustrating the application of the principles we
have been using successfully at Tensegrent. I'm using
WebART (see the Tools section below) to create and
run the scripts. However, this design approach should
work with any method of automation that permits
modularization of scripts. The appendix gives details
on downloading both the sample scripts and WebART.

Who automates the acceptance tests?
Some sports appear to be individual, when in actuality,
they involve a team. Winners of the Tour de France get
all the glory, but their victory represents a team effort.
Similarly, the XP team may have only one tester, but
the entire team contributes to automating acceptance
tests. If tools are needed to help with acceptance
testing in an XP project, write stories for those tools and
include them in the planning game with all the other
stories. You'll probably need to budget at least a couple
of weeks for creating test tools for a moderately size
project.

In the early days of Tensegrent, we initiated a project
for the specific purpose of developing automated test
tools. This had several advantages, in addition actually
producing the tools:

§ Practice with XP writing stories, playing the
planning game, estimating. This gave us
confidence in our XP skills that served us future
projects.

§ Practice with development technologies.
Developers could experiment with different
approaches and get experience with new tools. For
example, the developers investigated in advance the
advantages of using a dom versus a sax parser on
the XML files containing customer test data. Doing
this in advance gave us more time to experiment
and research technologies than we might have had
later with a client project.

§ Mutual understanding. The team tasked with
producing an acceptance test driver consisted of
only four members and me, so I was called on to
pair program. This exercise gave me insight into
how tough it is to write unit tests, write code and
refactor the code. The developers gave a lot of
thought to acceptance testing and we had long
discussions about what the best practices would be.
This is a great foundation for any XP team.

Tools

To keep the XP car humming, XP testers need a good
toolbox: one containing tools designed specifically for
speed, flexibility and low overhead.

I've asked several XP gurus, including Kent Beck, Ward
Cunningham and Bob Martin, the following question:
"What commercial tools do you use to automate

100

acceptance testing?" Their answers were uniform:
"Grow your own". Our team extensively researched this
area. Our experience has been that we are able to use a
third-party tool for Web application test automation, but
we need homegrown tools for other purposes.

For unit testing , we use a framework called jUnit,
which is available free from http://www.junit.org. It
does an outstanding job with unit tests. Even though I
am not a Java programmer, I can run the tests with
jUnit's TestRunner and can even understand the test
code well enough to add tests of my own. It's possible
to do some functional tests with jUnit. Some XP teams
use this tool for automating acceptance tests, but it can’t
test the user interface. We didn't find it to be a good
choice for end-to-end acceptance testing.

Tools for Creating Acceptance Tests
Some XP pros such as Ward Cunningham advocate the
use of spreadsheets for driving acceptance tests. We
want to make it easy for the customer to write the tests,
and most are comfortable with entering data in a
spreadsheet. Spreadsheets can be exported to text
format, so that you and/or your development team can
write scripts or programs to read the spreadsheet data
and feed it into the objects in the application. In the
case of financial applications, the calculations and
formulas your customer puts into the spreadsheet
communicate to the developers how the code they
produce should work.

At Tensegrent, we provide a couple of ways for
documenting acceptance test cases. Usually we use a
simple spreadsheet format, separating the test case data
itself from the description of the test case steps, actions
and expected results. We’ve also experimented with
entering test cases in XML format which is used by an
in-house test driver. We’re continuing to experiment
with the XML idea, but the spreadsheet format has
worked well. See Appendix B for a sample acceptance
test spreadsheet template.

Appendix C shows a partial excerpt of a sample XML
file used for acceptance test cases. The test case
consists of a description of the test, data and expected
output, steps with actions to be performed and expected
results.

Automated Testing for Web Applications
Test automation is relatively straightforward for Web
applications. The challenge is creating the automated
scripts quickly enough to keep pace with the rapid
iterations in an XP project. This is always toughest in
the early iterations. There are times that I feel like the
slow old car blocking the fast lane. For that extra burst
of speed, I use WebART (http://www.oclc.org/webart),
an inexpensive HTTP-based tool with a powerful
scripting language. WebART enables me to create
modularized test scripts, creating many reusable parts in
a short enough timeframe to keep up with the pace of
development. Javascript testing presents a bigger

obstacle. We test it manually and carefully control our
Javascript libraries to minimize changes and thus the
required retesting. Meanwhile, we continue to research
ways of automating Javascript testing.

Our developers wrote a tool to convert test data
provided by the customers in spreadsheet or XML
format into a format that can be read by WebART test
scripts so that we can automate Web application testing.
Even small efforts like this can help you gain that
competitive edge in the speedy XP environment.

Automated Testing for GUI Applications
Test automation for non-HTTP GUI applications has
been more of an uphill climb. You can travel faster in a
helicopter than a mountain bike, but it takes a long time
to learn to fly a helicopter; they cost a lot more than a
bicycle and you may not find a place to land. Similarly,
the commercial GUI automated test tools we've seen
require a lot of resources to learn and implement.
They're budget breakers for a small shop such as ours.
We searched far and wide but could not come up with a
WebART equivalent in the GUI test world. JDK 1.3
comes with a robot that lets you automate testing of
GUI events with Java, but it's based on the actual
position of components on the screen. Scripts based on
screen content and location are inflexible and expensive
to maintain. We need tests that give the developers
confidence to change the application, knowing that the
tests will find any problems they introduce. Tests that
need updating after each application change could cause
us to lose the race.

We felt that the most important criteria for acceptance
tests is that they be repeatable, because they have to be
run for each integration. We decided to start by
developing our own tool, "TestFactor-e", that will help
customers and testers run manual tests consistently. It
will also record the results. We plan to enhance this
tool to feed the test data and actions directly into
application backends in order to automate the tests. As
we have only been developing web applications, this
effort is on the back burner.

No matter what the system being tested, it takes time to
get up to speed with automation. I plan to do manual
testing in the first iteration. At the start of the second
iteration, I can start automating, using the method
described in Appendix A. There are times I run into a
roadblock which sets me back a day or two. The
solution to that is to find someone to pair with me. As
the tester in an XP project, you may feel lonely at times,
but remember, you aren’t ever alone!

Reports
Getting feedback is one of the four XP values. Beck
says that concrete feedback about the current state of the
system is priceless. If you’re on a long road trip, you
check for road signs and landmarks that tell you how far
along your route you’ve come. If you realize you’re
running behind, you skip the next stop for coffee or

101

push the speed a bit. If you’re ahead of schedule, you
might detour to a more scenic road. The XP team needs
a constant flow of information to steer the project,
making corrections to stay in the lane. The team's
continual small adjustments keep the project on course,
on time and on budget. Unit tests give programmers
minute-by-minute feedback. Acceptance test results
provide feedback about the "Big Picture" for the
customer and the development team.

Reports don't need to be fancy, just easy to read at a
glance. A graph showing the number of acceptance
tests written, the number currently running and the
number currently succeeding should be prominently
posted on the wall. You can find examples of these in
the XP books. Our development team wrote tools to
read result logs from both automated tests and manual
tests run with "TestFactor-e". These tools produce easy-
to-read detail and summary reports in HTML and chart
format.

With all this feedback, you’ll confidently deliver high-
quality software in time to beat your competition.
You’ll meet the challenges of 21st century software
development!

APPENDIX A: LIGHTWEIGHT TEST DESIGN

XP Automated Test Design

The sample scripts used to illustrate the test design are
written with a test tool called WebART
(http://www.oclc.org/webart/). Any test tool which
permits modularization and paramaterization of the
scripts should support this design. To download a soft
copy of the sample scripts, go to
http://www.tensegrent.com and click on the “Sample
WebART Scripts” link.

The Sample Application

Our sample application is a telephone directory lookup
website, http://www.qwestdex.com. This is certainly
not intended as an endorsement of Qwest and we have
no connection with them, it was just a handy public
application with characteristics that allow us to illustrate
the tests.

The Smoke Test

We will consider the critical functionality to be
logging into the site and finding the businesses within a
certain city and category. Pretend that this is the most

important story in the first iteration. Here's the basic
scenario we want to test:

Action Minimum Passing Criteria
Go to login page Page contains the login form
Login Valid login name and

password brings up profile
page

Search for valid
category in
specified city

Valid search retrieves table of
businesses

Logout Page contains link to login
page and home page

The Test Design

We know that there will be more functionality to
test in subsequent iterations, but we will use the
simplest design we can think of to accomplish
these tests without duplication. Then we will
refactor as necessary to accommodate the
additional tests.

The modules will be Go to Login, Login, Go to
Search, Search, and Logout. Here is a diagram
showing how the modules are parameterized:

Separating the test data from the code
The items on the right side of the diagram represent test
data: the URL of the login page, the user id and
password to use to login, and the category and city to
search. The test data is segregated into a test case file,
which is read in by the test when it executes. Here is
sample content of that file to run a single test case:

102

smoketest

 [

 :iter1:

 Url <url=http://qwestdex.com>

 UseridPassword
<uid=bob&psw=bob>

 CatCity <cat=banks&city=dallas>

]

Verification

The main modules use a set of primitive
validation modules to check for the specific
conditions required in a system response and
determine a pass or fail condition. The validation
modules in turn call utility modules to record the
results.

This example uses the following three validation
modules:

vtext validates that a response contains specified text.
for the text string.

vlink validates that a page contains a specific
link.

vform validates that a page contains a specified
HTML form.

Utility Modules

There are also two utility modules which are used by the
main modules:

trace - Displays execution tracing information in the
WebART execution window, for debugging the tests..

log - Records validation outcomes in a log file.
The "zslog" module in the sample scripts writes test
results out in XML format. An in-house tool from
Tensegrent called TestFactor-e builds an HTML page
from this log file showing the results with color-coding
for pass, not run and fail. See Appendix B for an
example.

Creating the Scripts

Creating the first set of scripts is the hard work. Once
you have a working set of modules, you can reuse entire
modules in some cases or turn them into templates in
other cases. Here are the steps I use (preferably as part
of a pair) to create test scripts:

1. Capture a session for the scenario I want to test. See
"capqwest" in the sample scripts as an example.

2. Copy "qwmain", "zsqwlogin" and the other
supporting modules that I already have to new names.
Strip out the code that was specific to that application.

3. Paste in the code specific to the scenario I want to
test, copying from the captured script into the newly
created "templates". Use XP principles here: work in
small increments, make sure your scripts work before
you go on. For example, first see if you can get the
login to work. Then add the search. Then add the logic
for switching depending on the pass/fail outcome.
Remember to do the simplest thing that works and add
complexity only as you need it.

103

Appendix B: Partial Excerpt of XML Template for Acceptance Test Cases

<?xml version="1.0" encoding="UTF-8" standalone="no" >
<!DOCTYPE at-test SYSTEM "at-test.dtd" [
 <!ELEMENT input ANY >
 <!ELEMENT loan-amount ANY >
 <!ELEMENT interest-rate ANY >
 <!ELEMENT term-of-loan ANY >
 <!ELEMENT output ANY >
 <!ELEMENT monthly-payment ANY >
]>

<at-test name="calc-monthly-payment" version="1.0" severity="CRITICAL">

 <at-project>mortgage-calc</at-project>

 <at-description>
 Enter loan amount, interest rate, term of loan (in months)
 to calculate monthly payment.
 </at-description>

 <at-data-sets>
 <at-struct id="values">
 <input>
 <loan-amount>1000000000.00</loan-amount>
 <interest-rate>0.5</interest-rate>
 <term-of-loan>1200</term-of-loan>
 </input>
 <output>
 <monthly-payment>A big, fat wad of dough!</monthly-payment>
 </output>
 </at-struct>
 </at-data-sets>

 <at-plan>

 <at-step name="populate-loan-amount">
 <at-action>
 <at-text>Enter "{0}" in the "Loan Amount field".</at-text>
 <at-value dset="values" select="/input[2]/loan-amount"/>
 </at-action>
 <at-expect>
 <at-text>Cursor moved to "Interest Rate" field for input.</at-text>
 </at-expect>
 </at-step>

 </at-plan>

</at-test>

104

Appendix C: Sample Acceptance Test Spreadsheet

