

92

Refactoring Test Code

 Arie van Deursen Leon Moonen Alex van den Bergh Gerard Kok
 CWI Software Improvement Group
 The Netherlands The Netherlands
 http://www.cwi.nl/~{arie,leon}/ http://www.software-improvers.com/
 {arie,leon}@cwi.nl {alex,gerard}@software-improvers.com

ABSTRACT
Two key aspects of extreme programming (XP) are unit
testing and merciless refactoring. Given the fact that the
ideal test code / production code ratio approaches 1:1, it
is not surprising that unit tests are being refactored. We
found that refactoring test code is different from
refactoring production code in two ways: (1) there is a
distinct set of bad smells involved, and (2) improving test
code involves additional test-specific refactorings. To
share our experiences with other XP practitioners, we
describe a set of bad smells that indicate trouble in test
code, and a collection of test refactorings to remove these
smells.

Keywords
Refactoring, unit testing, extreme programming.

1 INTRODUCTION
“If there is a technique at the heart of extreme
programming (XP), it is unit testing” [1]. As part of their
programming activity, XP developers write and maintain
(white box) unit tests continually. These tests are
automated, written in the same programming language as
the production code, considered an explicit part of the
code, and put under revision control.

The XP process encourages writing a test class for every
class in the system. Methods in these test classes are used
to verify complicated functionality and unusual
circumstances. Moreover, they are used to document code
b y explicitly indicating what the expected results of a
method should be for typical cases. Last but not least,
tests are added upon receiving a bug report to check for
the bug and to check the bug fix [2]. A typical test for a
particular method includes: (1) code to set up the fixture
(the data used for testing), (2) the call of the method, (3) a
comparison of the actual results with the expected values,
and (4) code to tear down the fixture. Writing tests is
usually supported by frameworks such as JUnit [3].

The test code / production code ratio may vary from
project to project, but is ideally considered to approach a
ratio of 1:1. In our project we currently have a 2:3 ratio,
although others have reported a lower ratio 1. One of the

1 This project started a year ago and involves the development of a
product called DocGen [4]. Development is done by a small team of
five people using XP techniques. Code is written in Java and we use the

corner stones of XP is that having many tests available
helps the developers to overcome their fear for change:
the tests will provide immediate feedback if the system
gets broken at a critical place. The downside of having
many tests, however, is that changes in functionality will
typically involve changes in the test code as well. The
more test code we get, the more important it becomes that
this test code is as easily modifiable as the production
code.

The key XP practice to keep code flexible is “refactor
mercilessly”: transforming the code in order to bring it in
the simplest possible state. To support this, a catalog of
“code smells” and a wide range of refactorings is
available, vary ing from simple modifications up to ways
to introduce design patterns systematically in existing
code [5].

When trying to apply refactorings to the test code of our
project we discovered that refactoring test code is
different from refactoring production code. Test code has
a distinct set of smells, dealing with the ways in which
test cases are organized, how they are implemented, and
how they interact with each other. Moreover, improving
test code involves a mixture of refactorings from [5]
specialized to test code improvements, as well as a set of
additional refactorings, involving the modification of test
classes, ways of grouping test cases, and so on.

The goal of this paper is to share our experience in
improving our test code with other XP practitioners. To
that end, we describe a set of test smells indicating
trouble in test code, and a collection of test refactorings
explaining how to overcome some of these problems
through a simple program modification.

This paper assumes some familiarity with the xUnit
framework [3] and refactorings as described by Fowler
[5]. We will refer to refactorings described in this book
using Name (F:page#) and to our test specific
refactorings described in section 3 using Name (#).

2 TEST CODE SMELLS
This section gives a overview of bad code smells that are
specific for test code.

JUnit framework for unit testing.

93

Smell 1: Mystery Guest.
When a test uses external resources, such as a file
containing test data, the test is no longer self contained.
Consequently, there is not enough information to
understand the tested functionality, making it hard to use
that test as documentation.

Moreover, using external resources introduces hidden
dependencies: if some force changes or deletes such a
resource, tests start failing. Chances for this increase
when more tests use the same resource. The use of
external resources can be eliminated using the refactoring
Inline Resource (1). If external resources are needed, you
can apply Setup External Resource (2) to remove hidden
dependencies.

Smell 2: Resource Optimism.
Test code that makes optimistic assumptions about the
existence (or absence) and state of external resources
(such as particular directories or database tables) can
cause non-deterministic behavior in test outcomes. The
situation where tests run fine at one time and fail
miserably the other time is not a situation you want to
find yourself in. Use Setup External Resource (2) to
allocate and/or initialize all resources that are used.

Smell 3: Test Run War.
Such wars arise when the tests run fine as long as you are
the only one testing but fail when more programmers run
them. This is most like ly caused by resource interference:
some tests in your suite allocate resources such as
temporary files that are also used by others. Apply Make
Resource Unique (3) to overcome interference.

Smell 4: General Fixture.
In the JUnit framework a programmer can write a setUp
method that will be executed before each test method to
create a fixture for the tests to run in.

Things start to smell when the setUp fixture is too general
and different tests only access part of the fixture. Such
setUps are harder to read and understand. Moreover, they
may make tests run more slowly (because they do
unnecessary work). The danger of having tests that take
too much time to complete is that testing starts interfering
with the rest of the programming process and
programmers eventually may not run the tests at all.

The solution is to use setUp only for that part of the
fixture that is shared by all tests using Fowler’s Extract
Method (F:110) and put the rest of the fixture in the
method that uses it using Inline Method (F:117). If, for
example, two different groups of tests require different
fixtures, consider setting these up in separate methods
that are explicitly invoked for each test, or spin off two
separate test classes using Extract Class (F:149).

Smell 5: Eager Test.
When a test method checks several methods of the object
to be tested, it is hard to read and understand, and
therefore more difficult to use as documentation.

Moreover, it makes tests more dependent on each other
and harder to maintain.

The solution is simple: separate the test code into test
methods that test only one method using Fowler’s Extract
Method (F:110), using a meaningful name highlighting
the purpose of the test. Note that splitting into smaller
methods can slow down the tests due to increased
setup/teardown overhead.

Smell 6: Lazy Test.
This occurs when several test methods check the same
method using the same fixture (but for example check the
values of different instance variables). Such tests often
only have meaning when considering them together so
they are easier to use when joined using Inline Method
(F:117).

Smell 7: Assertion Roulette.
“Guess what’s wrong?” This smell comes from having a
number of assertions in a test method that have no
explanation. If one of the assertions fails, you do not
know which one it is. Use Add Assertion Explanation (5)
to remove this smell.

Smell 8: Indirect Testing.
A test class is supposed to test its counterpart in the
production code. It starts to smell when a test class
contains methods that actually perform tests on other
objects (for exa mple because there are references to them
in the class-to-be-tested). Such indirection can be moved
to the appropriate test class by applying Extract Method
(F:110) followed by Move Method (F:142) on that part of
the test. The fact that this smell arises also indicates that
there might be problems with data hiding in the
production code.

Note that opinions differ on indirect testing. Some people
do not consider it a smell but a way to guard tests against
changes in the “lower” classes. We feel that there are
more losses than gains to this approach: It is much harder
to test anything that can break in an object from a higher
level. Moreover, understanding and debugging indirect
tests is much harder.

Smell 9: For Testers Only.
When a production class contains methods that are only
used by test methods, these methods either (1) are not
needed and can be removed, or (2) are only needed to set
up a fixture for testing. Depending on functionality of
those methods, you may not want them in production
code where others can use them. If this is the case, apply
Extract Subclass (F:330) to move these methods from the
class to a (new) subclass in the test code and use that
subclass to perform the tests on. You will often find that
these methods have names or comments stressing that
they should only be used for testing.

Fear of this smell may lead to another undesirable
situation: a class without corresponding test class. The
reason then is that the developer (1) does not know how
to test the class without adding methods that are

94

specifically needed for the test and (2) does not want to
pollute his production class with test code. Creating a
separate subclass helps to deal with this problem.

Smell 10: Sensitive Equality.
It is fast and easy to write equality checks using the
toString method. A typical way is to compute an actual
result, map it to a string, which is then compared to a
string literal representing the expected value. Such tests,
however may depend on many irrelevant details such as
commas, quotes, spaces, etc. Whenever the toString
method for an object is changed, tests start failing. The
solution is to replace toString equality checks by real
equality checks using Introduce Equality Method (6).

Smell 11: Test Code Duplication.
 Test code may contain undesirable duplication. In
particular the parts that set up test fixtures are susceptible
to this problem. Solutions are similar to those for normal
code duplication as described by Fowler [5, p. 76]. The
most common case for test code will be duplication of
code in the same test class. This can be removed using
Extract Method (F:110). For duplication across test
classes, it may provide helpful to mirror the class
hierarchy of the production code into the test class
hierarchy. A word of caution however: moving duplicated
code from two separate classes to a common class can
introduce (unwanted) dependencies between tests.

A special case of code duplication is test implication: test
A and B cover the same production code, and A fails if
and only if B fails. A typical example occurs when the
production code gets refactored: before this refactoring, A
and B covered different code, but afterwards they deal
with the same code and it is not necessary anymore to
maintain both tests .

3 REFACTORINGS
Bad smells seem to arise more often in production code
than in test code. The main reason for this is that
production code is adapted and refactored more
frequently, allowing these smells to escape.

One should not, however, underestimate the importance
of having fresh test code. Especially when new
programmers are added to the team or when complex
refactorings need to be performed, clear test code is
invaluable. To maintain this freshness, test code also
needs to be refactored.

We define test refactorings as changes (transformations)
of test code that: (1) do not add or remove test cases, and
(2) make test code better understandable/readable and/or
maintainable.

The production code can be used as a (simple) test case
for the refactoring: If a test for a piece of code succeeds
before the test refactoring, it should also succeed after the
refactoring (and no, replacing all test code by
assert(true) is not considered a valid refactoring).
This obviously also means that you should not modify
production code while refactoring test code (similar to not

changing tests when refactoring production code).

While working on our test code, we encountered the
following refactorings:

Refactoring 1: Inline Resource.
To remove the dependency between a test method and
some external resource, we incorporate that resource in
the test code. This is done by setting up a fixture in the
test code that holds the same contents as the resource.
This fixture is then used instead of the resource to run the
test. A simple example of this refactoring is putting the
contents of a file that is used into some string in the test
code.

If the contents of the resource are large, chances are high
that you are also suffering from Eager Test (5) smell.
Consider conducting Extract Method (F:110) or Reduce
Data (4) refactorings.

Refactoring 2: Setup External Resource.
If it is necessary for a test to rely on external resources,
such as directories, databases, or files, make sure the test
that uses them explicitly creates or allocates these
resources before testing, and releases them when done
(take precautions to ensure the resource is also released
when tests fail).

Refactoring 3: Make Resource Unique.
A lot of problems originate from the use of overlapping
resource names, either between different tests run done
by the same user or between simultaneous test runs done
by different users.

Such problems can easily be prevented (or repaired) by
using unique identifiers for all resources that are
allocated, for example by including a time-stamp. When
you also include the name of the test responsible for
allocating the resource in this identifier, you will have
less problems finding tests that do not properly release
their resources.

Refactoring 4: Reduce Data.
Minimize the data that is setup in fixtures to the bare
essentials. This will have two advantages: (1) it make
them better suitable as documentation, and (2) your tests
will be less sensitive to changes.

Refactoring 5: Add Assertion Explanation.
Assertions in the JUnit framework have an optional first
argument to give an explanatory message to the user
when the assertion fails.

Testing becomes much easier when you use this message
to distinguish between different assertions that occur in
the same test. Maybe this argument should not have been
optional…

Refactoring 6: Introduce Equality Method.
If an object structure needs to be checked for equality in
tests, add an implementation for the “equals” method for
the object’s class. You then can rewrite the tests that use
string equality to use this method. If an expected test

95

value is only represented as a string, explicitly construct
an object containing the expected value, and use the new
equals method to compare it to the actually computed
object.

4 RELATED WORK
Fowler [5] presents a large set of bad smells and
refactorings that can be used to remove them. The
difference between his work and ours is that we focus on
smells and refactorings that are typical for test code
whereas his book focuses more on production code. The
role of unit tests in [5] is also more geared towards
proving that a refactoring didn’t break anything than to be
used as documentation of the production code.

Instead of focusing on cleaning test code which already
has bad smells, Schneider [6] describes how to prevent
these smells right from the start by discussing a number
of best practices for writing tests with JUnit.

The C2 Wiki contains some discussion on the decay of
unit test quality and practice as time proceeds2, and on the
maintenance of broken unit tes ts3. Opinions vary between
repairing broken unit tests, deleting them completely, and
moving them to another class in order to make them less
exposed to changes (which may lead to our Indirect
Testing (8) smell).

5 CONCLUSIONS
 In this paper, we have looked at test code from the
perspective of refactoring. While working on our XP
project, we observed that the quality of the test code was
not as high as the production code. Test code was not
refactored as mercilessly as our production code,
following Fowler’s advice that it is okay to copy and edit
test code, trusting our ability to refactor out truly common
items later [5, p. 102]. When at a later stage we started to
refactor test code more intensively, we discovered that
test code has its own set of problems (which we translated
into smells) as well as its own repertoire of solutions
(which we formulated as test refactorings).

The contributions of this paper are the following: _

• We have collected a series of test smells that help
developers to identify weak spots in their test code;

• We have composed a set of specific test refactorings
enabling developers to make improvements to their
test code in a systematic way;

• For each smell we have given a solution, using either
a potentially specialized variant of an existing
refactoring from [5] or one of the dedicated test
refactorings.

2 http://c2.com/cgi/wiki?TwoYearItch

3 http://c2.com/cgi/wiki?RefactorBrokenUnitTests

4 http://c2.com/cgi/wiki?RefactoringTestCode

The purpose of this paper is to share our experience in
refactoring test code of our ongoing XP project with other
XP practitioners. We believe that the resulting smells and
refactorings provide a valuable starting point for a larger
collection based on a broader set of projects. Therefore,
we would like to invite readers interested in further
discussion on this topic to the C2 Wiki4.

An open question is how test code refactoring interacts
with the other XP practices. For example, the presence of
test code smells may indicate that your production code
has some bad smells. So trying to refactor test code may
indirectly lead to improvements in production code.
Furthermore, refactoring test code may reveal missing
test cases. Adding those to your framework will lead to a
more complete test coverage of the production code.
Another question is at what moments in the XP process
test refactorings should be applied. In short, the precise
interplay between test refactoring and the XP practices is
a subject of further research.

REFERENCES
1. K. Beck. Embracing change with extreme

programming. IEEE Computer , 32(10):70–77, October
1999.

2. K. Beck. Extreme Programming Explained. Addison
Wesley, 2000.

3. K. Beck and E. Gamma. Test infected: Programmers
love writing tests. Java Report, 3(7):51–56, 1998.

4. A. van Deursen, T. Kuipers, and L. Moonen. Legacy
to the extreme. In Extreme Programming Examined.
Addison-Wesley, 2001. To appear.

5. M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

6. A. Schneider. JUnit best practices. Java World, 12,
2000. http://www.javaworld.com/javaworld/jw-12-
2000/jw-1221-junit.html.

