Stabilizing the XP Process Using Specialized Tools

Martin Lippert, Stefan Roock, Robert Tunkel, Henning Wolf
University of Hamburg
Computer Science Department, SE group
& APCON Workplace Solutions GmbH
Vogt-Kolln-Straf3e 30
22527 Hamburg, Germany
{lippert, roock, tunkel, wolf} @jwam.org

ABSTRACT

One problem with the XP development process is its
fragility. If developers use the XP techniques in an
unintended way or not at all, the XP process is likely to
break down: The misused techniques affect the other XP
techniquesin a negative way, breaking the whole process.

We believe that it is possible to stabilize the XP process
using specialized artifacts to reify the X P techniques. We
discuss the reification of the XP technique Continuous
Integration using the JWAM IntegrationServer as an
example. We present our experience with this tool and
analyze its effects on the other XP techniques.

Keywords

eXtreme Programming, process, artifacts, continuous
integration, team devel opment, tool support.

1 MOTIVATION

Extreme Programming is a combination of a number of
different techniques for developing software. These
techniques are not independent, but rather influence and
complement each other. Kent Beck shows their
relationshipsin [1].

Over the past two years, we have used XP techniques in
various development projects. Here, we observed that the
XP process is fragile: if one XP technique is used in an
unintended way or not at all, dependent XP techniques
may be affected. The problem is that XP is based on
discipline and experience. If a team lacks the necessary
discipline or experience, the XP process is likely to break
down. The role of a XP coach is therefore suggested by
Beck. The XP coach has the required experience and tries
to establish the XP values within the XP team. He/she is
the conscience of the team.

However, this situation is unsatisfactory. Many small
teams do not have the financial resources to pay for an
XP coach, and even if they do, it is very hard to a get a
good one. So farm there have not been many successful
XP projectsthat have produced skilled coaches.

Fortunately, there are other ways of transferring
experience and knowledge than by coaches. One is to
reify successful routines and behavior in artifacts (cf. [2]).
Thisiswhat cultures do: if a routine is executed over and

38

over again in the same or a similar way, the culture will

create an artifact that reifies this routine. A carpenter

hammers nailsinto wood. The reification of thisroutineis
the hammer. The hammer does not force the carpenter to
use it as intended, or even to use it at al, but it helps the
carpenter to do his work effectively. Thus, the carpenter
will, of course, use the hammer. At the same time, the
hammer “helps’ the carpenter to remember how to

hammer. This facility is more important for an
inexperienced carpenter than for an experienced one. The
hammer helps to transfer the knowledge about how to
hammer from the experienced carpenter to the
inexperienced one. The hammer stabilizes the routine of

hammering.

The idea of using artifacts to reify proven routines and
practices is not only useful for XP projects without a
coach. Even with an XP coach, the artifacts help to
stabilize the good practices and techniques. It is crucial to
use artifacts as part of the game, but the artifacts and
routines have to be complemented by a value system.
Artifacts, routines and value systems stabilize each other.

In this paper, we focus on the Continuous Integration
technique of XP. We present the JWAM
IntegrationServer as one possible artifact reifying this
technique and therefore stabilizing the X P process.

2 Reification of the integration process in AN
ARTIFACT

The dependency diagram in Figure 6 focuses on
Continuous Integration, which is shown to be directly
related to Collective Ownership, Coding Standards,
Testing, Refactoring, Pair-Programming and Short
Releases. If a team has problems with Continuous
Integration, thisis likely to cause problems with other XP
techniques. But if Continuous Integration works well, it
should support many other X P techniques.

When we started using XP techniques, Continuous
Integration was one of the first we adopted. We tried to
establish the technique as suggested in [1]. We used one
physical integration machine for the whole team (about 8
developers) which always keeps a consistent and running
version of the system under development. However, this
did not work as expected. We achieved only a few
integrations per week and the team’s motivation was

versions, which hindered Short Releases.
On-Site Customer <------———__._.____, Planning Game

During the large refactorings, the test cases

A ¥ . 40 Hour Week p A often brokg down and had to bg more or
! A4 Q ,/ \ less rewritten after refactoring. This
/ . S "« ‘- hampered the X P technique of Testing.
| 4 R le Desi e [
SR AR / | .
Metaghor - A’ ! ,,S;mpf es;gn/, \ We started to look for a more suitable
X e K e P ! integration method to restabilize our XP
\\\ Rifj‘“‘”"flg/ | /,/ \\\ \ process.
\\ /' ,'/I \\\\ \\ ; // \\s \' H H . 1
WA Ui » We liked the idea of using an artifact to
A4 Pair” _yTesting «-----------» Short Releases

/

) support continuous integration within our
“Programming“4
74 A A

development team. But what sort of artifact
would be suitable? Using one integration
. P Standards

machine was unsuccessful, as were to-do
. - poee 4
» | 4 & -

\ lists.
Collective Ownership<————>Continuous Integration

’ ! -7
, /

A tool might be the right answer to this
guestion. CV'S, Envy or other source-code-
management systems could be used to reify
the continuous integration technique. The
important thing is that the tool is accepted
by the team members and that it or its use
supports the principles of XP Continuous Integration.
CVS or other source-code- or version-management
systems can be used in combination with conventions
specifying how to use them. One convention might be
that every developer has to download the current version
before the next integration, update the changed source
codes and conduct all the tests to ensure that all test cases
run with the integrated version. Thisis one way of using a
tool in combination with conventions to stabilize
continuous integration within the team. We identified the

following points as important for the Continuous
I ntegration technique:

Figure 6: Dependencies between XP techniques, with highlighted

dependencies between Continuous I ntegration and therelated XP
adversely affected.

The reason for the failure to establish Continuous
Integration was easily found: each integration took too
much time. There were too many things to, such as:

Find out what changed on the client and on the server
since the last synchronization of server and client.

M erge the modifications done on the client.
Compile server sources.

Test server sources.

Since we had no tools to support the integration process,
only some conventions and to-do lists were available to
guide the developer through the integration process.
Especialy occurring problems were a pain. Sometimes,
after a merge, the test cases would not run any more. In
that case, we had two possibilities: we could remove the
problem on the integration server machine, blocking the
server for further integrations during this period, or we
could restore the previous state of the integration machine
and remove the problem on the client.

Very short integration cycles. We consider a few
minutes, no more to be optimal. This alows us to
realize smooth team development without adversely
affecting other members of the team.

Unit testing is essential. Ideal would be a tool that

takes care of the correctness of all sources at every
integration.

And last but not least: the tool and the conventions

A single integration, for example, often took more than 2- should be as easy to use as possible.

3 hours. The integration process, then, was laborious and

nobody wanted to do it. Another negative aspect of the
integration process was the fact that the integration
machine was located in a different room from where most
of the development was done. These two facts, the long
and complicated integration process on atotally different
machine and the spatially separated integration machine
were a considerable handicap for the people doing the
integration. This had a further impact on other XP
techniques, especially refactoring. Since integration was
done infrequently, the refactorings were very large. We
were therefore very often without running system

39

We decided to develop a specialized tool, the IWAM
IntegrationServer as an extension to CVS, to provide our
developers with a smooth way of dealing with continuous
integration. Based on our positive experience with the
tool, we present its basic functionality in the following
section. We would, however, like to emphasize that any
other source-code-management system may be useful for

reifying continuous integration with the right set of
conventions and values.

ety IR raatinon Clienk Wesrsion 104 WORKSTRTLOM BobirE_Tankos

Dervedmped by R erli@TunkeLde

Administration
- i vy byl st | By i i sl sl S i i -
m FileSysiem vapgine; LosiRdodfify DA.00,00 16045 S d040 B WIEW FILE | G i FilerSarad e 23,1200 1134 m
ChemiDB Versiomn: Lastbodify: 26010200 1253 Sere: 4146 Ble ' Cresfe ChienDB 206200 1104
IHTEGRATION | Sonver Di viersoe: Lasthindmy 26,1200 1253 Bee: 41496 Bee Create Senmrbid 2200 9650 CLIEMT
Transfor Chanpges To Serer
et Palh | - | Seifile |- | Cear
Drderad by Path = | | Descemding St WL = | OnbrSefected (o Hide “jma- | Match Path and File Uit e Pt
el Rerifib s our s Chech Dolt | Uriches Dol :
Fath Fileriaria | Tope |versioe| version Charges | Changes ﬁv:nm-| I:n:lt|
Clani : Saraar Chant Eamar
wied sy amalghEfandingmemi Emlcmlmﬁ'ﬂ K] 0.1 M FILE CREMTED HHE L] Jit
ufedj s alphatancingireni | ke & Fitml HOFILE CREATED HOKE
MEwamalohShandingivil finalkakJavs gwg | 00 MOFILE =~ (CREMTER) WONE | L1
@ viamalphahandingimmplabbs dmimi I (=] MOFILE CREATED MONE L
el veam alphaihiandingimmidabb= dmme iTabh:dHl'lnurbeomm e 02 WO FILE CREATED HOHE Ll
uledjwamalphafandingireniabbe dmmi | @ T abke dWTAL e i o1z NC FILE CRESTEL: HOHE
uled wamalphshandinmrenMabbedremi el LT =] Jawa 011 MO FILE CRERTED HOME
utstyvvamalphsihandingimenivirms dmmi : oR || NOFLE [CREATED NONE | [
el e alphaihian din g red meses dmime Mmidovwed sl Conted javs JEwa 0z WO FILE CREMSTED HOHE ?
uded vy arm alphEfand g rd e gmim :ﬂuﬁmmHMHWB AELE] Q11 M2 FILE CREMTED HHE O B8
MR T E I E T T G T T (oo findcuned AL sea Jawa 011 WO FILE CREATED HOKE
MEN R aloh s andingIbrot e sERldsr | DR | | UNGHAMGED UMCHAMGED NONE | L1
eljwramalphzthandingiproressioidefeample i_ | .DR URCHeRESED URCHERSED HOKHE | Ll
Julelwamalphafandingipiocesaiolbse e gampe iBlama jva |iEwa UNCHRRGED WODIFIED HOME |]
uledjsramalphahandingproressilde netampke |Slarug Sererdide. s AELCERUATY o1 UHCHARGSED |WCDIFIED: HOHE
uied wamalphshandingprooessfildeamatanal | R URHCHEMNGBED [UMCHAKGED MONE
ustvamalohhandingiproressiicemalonsl__[aciugyars e 03030 UNCHAMSED MODIFIED NONE | [
el veamalph=handingiprocessiolds malens| :.ﬂ.n:lumrnpl.lm Jawa D20 020 URCHAMGED WODIFIED HOHE
wieyamalghEfandingprocegsmice rinatenal Dl e UNCHAMGED (UNCHAMGED HOME |
uledjwamalphatbandinoproes esfilde araterial !“J.‘:Ii.'ts'_TEStJm’a Jawa DED 0 UHCHARKIED |WODIFIED HOKE
NS A Al S nAIngIboE e sERl o5 i Etan 3| eI] Mgws | | UNGHAMGED WODIFIER ~NONWE | LI
el wamalphahandingiproressfolde nmatanal |\Docbatimipl jmrea awa URCHARSED WODIFIED HOHE L]
el wamalphafiandingiproeessiiee aralenal |Dachetimpl_Tesl Eoa dmva 010 (010 |UMCHAMGED [WODIFIED NONE | [
uledj i amalphahandingproce salde fraleial |Coothel_TesLigva Jawa D30 0.3 UHCHARSED |WCDIFIED: HOHE L
ulel|wamalphaihandingiprace BERl e Aratan sl |Procecs SF older (e Lawa 010 010 URCHSMGED WODIFIED — MOWE | |=1
| check mesystem for changes check Serverforchanges | miegratiendescripion | .

L il sRi A B |

Figure7: ThelntegrationClient user interface

3 JWAM IntegrationServer

Given the requirements and observations mentioned
above, we developed a specialized tool to support the
continuous integration process. This tool can be thought
of as a unit-testing addition to a norma version-
management system. It is based on two components:;

The IntegrationServer isaserver process that runson
a server machine that is accessible to all developers.
This server machine defines the reference machine
and controls and manages the complete source code
using aversion-management system.

The IntegrationClient is a client-side tool that allows
the user to update source code on the reference
machine as well as obtaining changed source code
from it. The client tool works as the artifact for the
developer and offers the user an easy-to-use
interface.

The typical use case for this tool is: the developer has
changed a number of pieces of source code and would
like to integrate them to provide the other developers
inside the team with the changes. This task is supported
by the IntegrationClient, where the developer can list the
files he/she has changed. The developer can then
integrate them by simply pushing a button. This single

40

action guarantees that:

1. the changed pieces of source code are transferred to
the server reference machine

2. the complete source code is compiled
3. all test cases run on the reference machine

Only if all three actions are successful and no failure
occurs during unit testing are the updated pieces of source
code accepted on the reference machine and the
integration successful. If one unit test fails or an error
occurs during one of the actions, the integration is
cancelled. As aresult of afailed integration, the changed
versions of the pieces of source code are rejected and
none of the code base is changed on the reference
machine. Feedback about a successful or failed
integration is, of course, reported to the developer sitting
in front of the IntegrationClient tool. The main user
interface of the IntegrationClient tool is shown in Figure
2.

Test cases are handled as normal source code by the
IntegrationClient. The developer can add, modify or
delete test-case classes using the same tool as for every
other piece of source code.

The other use case that often occurs is where another

developer has changed some source code on the reference
machine. In this case, the IntegrationClient shows all
changed pieces of source code and the developer has the
opportunity to download all new or changed pieces of
source code to his/her development machine.

Another interesting case is the occurrence of conflicts,
e.g. when two developers on the team have changed the
same source code. In this case, the IntegrationClient
indicates the conflict and does not alow the changed
source code to be uploaded to the server. First, the
developer has to download the changed version from the
server, transfer his’her changes into this source code and
then integrate the new merged version. This can be
supported by aDiff- or Merge-like tool.

4 Experience

We have been using the tool since April 2000 and our
experience during more than 2,000 integrations has been
extremely positive. The tool is easy to use and enables
changed source code to be easily integrated. An
integration is done in less than 10 minutes for large
projects (thousands of source files) and in a few seconds
for small projects (some hundred source files), the XP
idea of Continuous Integration being optimally supported.
This makes the tool very attractive for developers. The
programming pair can take a break while the integration
process is running. Results and possible errors are
reported in aprogress log.

Our use of the tool suggests that small changes and
frequent integrations are best. This is because all
developers like the tool and know how to use it. And the
tool lists all differences between the source code on the
reference machine and the individual developer’s source
base. This makes it very easy to see whether someone
€l se has changed a piece of source code which could have
serious effects on my changes.

Since the IntegrationServer incorporates an optimistic
locking strategy, the first developer to integrate modified
sources wins. If the integration is refused by the
IntegrationServer, the developer who tried to integrate
has to remove the problem. This leads the developers to
integrate as fast as possible to avoid potential conflicts.
Thus, the reification of the Continuous Integration
technique in a tool as an artifact supports not only this
techniqgue but the refactoring technique as well.
Developers are “forced” by the IntegrationServer to make
small refactorings rather than large ones.

The fact that the IntegrationServer ensures a running
version on the server supports the Small Releases
technique, too. In principle, it is possible to deliver a new
version every day. The technique of Collective Code
Ownership is aso supported by the IntegrationServer
because the developer that caused a conflict has to
remove it — no matter where code he/she has to modify.
Testing is supported by the IntegrationServer’'s testing
facility. The developers know that the IntegrationServer
will execute their tests over and over again and will avoid

41

breaking their code. Developers thus experience the
benefits of test cases and are willing to write test cases for
their code.

In our experience, the IntegrationServer does not
specifically support the XP techniques Pair Programming
and Coding Standards. These techniques are supported by
Continuous Integration as a technique, and not by the
IntegrationServer.

5 Related work

There are a number of different tools that can be used as
an artifact for the Continuous Integration process. As
mentioned before, CVS, Envy or TeamStreams by Object
Technoloy International (see [3]) may be called to mind.
They are al useful for developing with XP. The
IntegrationServer only adds a special, extremely easy-to-
use and smooth interface and automated testing of the
integrated version, which makes it easier to use for our
XP projects.

There are other artifacts that may be useful for reifying
other XP techniques. The Refactoring Browser, for
example, might be used for the Refactoring technique’.

6 Conclusion and OUTLOOK

The reification of the Continuous Integration process
using a specialized tool as an artifact works well. In
particular the shift from non-XP development to XP was
stabilized by thistool.

The IntegrationServer is only a first step toward a set of
artifacts stabilizing the XP process. In addition to
presenting the IntegrationServer, this paper is intended to
provoke a discussion on other artifacts suitable for
stabilizing the X P process. These we are still looking for.

7 References
1. Kent Beck: eXtreme Programming Explained —

Embrace Change, Addison-Wesley, Reading,
M assachusetts, 1999.
2. Keld Bgadker, Jesper Strandgaard Pedersen:

Workplace Cultures: Looking at Artifacts, Symbols
and Practices. In: Joan Greenbaum, Morten Kyng
(Eds.): Design at Work. Lawrence Erlbaum
Associates, Publishers, Hillsdale, New Jersey, pp.
121-138. 1991.

3. Jim des Riviéres, Erich Gamma, Kai-Uwe Métzel,
Ivan Moore, André Weinand, John Wiegand: Team
Streams — Extreme Team Support, in Proceedings of
eXtreme Programming and Flexible Processes in
Software Engineering - XP 2000, Cagliari, Sardinia,
Italy, June 2000.

4. JWAM website: http://www.jwam.org

! Thanks to the reviewer who suggested this idea.

