

54

Adaptation: XP Style

Christopher T. Collins
Senior Software Developer
RoleModel Software, Inc.

342 Raleigh Street
Holly Springs, NC 27540 USA

+1 919 557 6352
ccollins@rolemodelsoft.com

Roy W. Miller
Software Developer

RoleModel Software, Inc
342 Raleigh Street

Holly Springs, NC 27540 USA
+1 919 557 6352

rmiller@rolemodelsoft.com

ABSTRACT
Others in the XP community (Beck, Fowler, et al.) have
talked about the need to adapt XP to local conditions.
They have addressed the “why” question in some depth,
but not completely. They also have not addressed the
“how” question beyond rather general statements. We
will attempt to complete the “why” and to answer the
“how.”

Introspection is an internal habit that every member of the
development team needs to have. They should be
thinking about how their process could be better. When
they come upon what we call a process smell (i.e.
something that just does not feel right about their
process), this is a signal to think about what the root
cause might be. The practice of retrospectives makes
those thoughts public. The combination of these two
allows a team to adapt XP in a way that is consistent with
its values, principles, and practices.

Keywords
Adaptation, introspection, proactive retrospective,
process refactoring, process smells, process spike,
reactive retrospective, XP.

1 WHY CHANGE YOUR PROCESS?
People and circumstances vary. Software projects should
embrace this principle. Software projects are composed of
people. The context (business priorities, politics, etc.) will
vary. This means that no two software projects can be
exactly alike. Heavyweight methods ignore this. They
want to make people into replaceable parts and projects
into scripted plays so that software development will be
predictable. Unfortunately, they overlook the fact that
people make software, and people are not predictable.

People developing software learn as they progress. Not
incorporating new knowledge that improves results is
rather silly. If a team notices that something in their
development process is causing pain, they need to make
adjustments.

Not changing a process that doesn’t produce what you
want is risky. Sooner or later, the problems will build to
critical mass and slow you down. You need to remove the
cruft from the process, just like you remove it from the

code.

So, change is required. But how do you do it? The
problem with much of the material written about XP to
date is that it does not address this question well enough.
We need to know the goal of change, and the path to get
there.

2 XP MATURITY LEVELS
We need to define the way we look at XP. Beck has made
a start by saying there are three levels of XP maturity:

1. XP (Out of the Box)

2. Adaptation

3. Transcendence

XP “out of the box” refers to doing XP in what Martin
Fowler calls its “book form” [2]. Do it as written. After a
few iterations, start to adapt it as necessary. At some
point, you will stop caring about whether you are doing
XP or not. The name becomes less important than the
results, and the process becomes your own. XP “out of
the box” is just the simplest process that could possibly
work. Thus, it’s the best place to start. As Fowler says,
“Fundamentally, it's easier to change a small thing by
adding bits, than to change a large thing by taking bits
away” [2].

The goal is not to move through the levels as quickly as
possible, but only when you need to. Process
improvement for its own sake is an instance of YAGNI
(You Aren’t Going to Need It).

XP needs to offer some guidance about what mechanisms
a team should use to move between the three levels of
maturity.

3 THE CHANGE AGENT
Heavyweight methods suggest that process-focused
groups outside the project should dictate proven change
strategies to the project team. XP says that the team
should adapt the process from within to produce the best
possible results. Nothing drains a team more than having
change dictated to it. For a team to be as effective as it
can be, the people in it have to accept responsibility for
improving their own process. How do they do that?

55

Fowler says, “The first part of self-adaptivity is regular
reviews of the process. Usually you do these with every
iteration.” He recommends further that more formal
process reviews take place in 2-3 day offsite
“retrospectives” run by a trained facilitator. He als o says
that “reviews are neither emphasized, nor part of the
process, although there are suggestions that reviews
should be made one of the XP practices” [2]. This doesn’t
go far enough.

The way you should go about changing XP is to turn XP
on itself, using the discipline’s values, principles, and
practices to adapt it to your local conditions. If attempted
changes to a process are inconsistent with the values of
that process that are already in place, those changes will
not work. What we need is essentially an “XP way” to
change XP. We recommend that you start with three
things:

1. a baseline for comparison

2. the value of introspection

3. the practice of retrospectives

4 THE BASELINE
You have to do XP first before you can know how to
change it to fit your particular context. It is premature
abstraction to change it before you do it. Michael Potts of
Beech Aircraft said, “The Wright brothers’
design…allowed them to survive long enough to learn
how to fly.” XP “by the book” will let you build great
software while you are learning how to do it even better.
Treat XP “by the book” as your training wheels. Once
you feel you have it down, remove them and make the
process your own.

There is a good rule of thumb to apply when writing
code: make it run, make it right, make it fast. XP “by the
book” is much like writing good code. Do XP as written
first. That is making it run. Adapt the process for local
conditions. That is making it right. Move past the book
form to make the process wholly your own. That is
making it fast.

Make it run first to get initial benchmarks that tell you
whether or not your changes are effective. If you make a
change that breaks something, revert to the baseline. Note
that this does not mean you should do things by the book
when they simply do not make sense. The point is that
you should try to modify as little as possible before you
know definitively what works and what doesn’t in your
environment. For example, if automating an acceptance
test for a particular function of your user interface isn’t
worth the effort and the money, don’t feel the need to do
it just because that’s what XP out of the box would
require. Be smart about it.

The question is, when you do need to change XP, how do
you do it in an XP way?

5 THE VALUE OF INTROSPECTION
Stephen Covey talked about “sharpening the saw” as one

of the seven habits of highly effective people. That’s what
introspection is. It is people thinking about their process,
vocalizing and refining their thoughts about it, and
encouraging others to do the same. People have to
develop the habit and mindset of introspection, just like
they have to develop the habits of thinking simply,
communicating openly and honestly with others,
tempering optimism with feedback, and being brave.

The values of XP are an admission of human nature.
People implement XP, and we humans have certain
foibles in common, generally speaking. We tend to be
selfish. We tend to be dishonest with ourselves and with
others. We tend to make things more complicated than
they need to be. We tend to get scared by things we don’t
understand. We fear failure. Stress exaggerates these
traits. The brilliant thing about XP is that its values
recognize this tendency for humans to retreat to our baser
selves. The values expose that tendency, and provide a
foundation for practices that help people overcome it. But
there is something missing.

There is a part of human nature that others have
addressed implicitly, but have not articulated. Humans
tend not to think beyond the ends of their noses. We tend
to get tunnel vision. We tend to take the path of least
resistance by doing the first thing that “works”. This is a
defense mechanism. Traditional approaches to developing
software have conditioned us to be afraid of change,
because they make change painful, both personally and
professionally. Other writers have recognized the pain of
change. That recognition is the primary reason for XP’s
growing success (it makes change less painful). What
other writers have not done is recognize that the habit of
introspection is what enables change.

People have to develop the habit of looking for process
refactorings just like they look for code refactorings.
Introspection is something that good programmers should
be doing anyway. As Andy Hunt and Dave Thomas said
in The Pragmatic Programmer, being pragmatic is
“thinking beyond the immediate problem, always trying
to place it in its larger context, always trying to be aware
of the bigger picture” [4]. What we are suggesting is that
introspection should be a habit that applies to process as
well. The other values also apply to process, and they
support introspection. You should listen to your current
process, share ideas for making it better, make the
simplest process changes that could possibly work, and
proceed with confidence.

6 PROCESS SMELLS
All of this introspecting is good, but when do you know
that an apparent process problem is worth doing
something about? You know it when it smells.

A process smell is an indication that something is wrong.
Something doesn’t feel right, so you think about it in
order to articulate the source of the problem.

56

Examples of Smells
For example, suppose you suddenly feel the need to
schedule bug fixes into an iteration. Or maybe you feel
the need for a process to track bugs. These things are not
inherently bad, but this is a process smell. You probably
do not need to add anything to the process here. A likely
source of the problem is that your acceptance tests are
weak. This could be letting bugs slip through at the end of
iterations, and allowing developers to call stories
complete before they are. If you were doing it right, some
critical percentage of acceptance tests for the new stories
would be passing before you declared those stories
“done.”

As another example, suppose you notice that pairs seems
to be staying together for several days at a time. XP
suggests that pairs ought to rotate more often than that.
Something could be wrong here. This could indicate that
tasks are too long, which keeps people from switching as
often as they could otherwise. They want a sense of
completion on certain tasks, so they stick with tasks that
take too long. This could indicate the need to shorten
tasks in the next iteration.

As a third example, consider pair programming. Ward
Cunningham talks about reflective articulation, or the art
of verbalizing what you’re doing and where you’re going
when you pair program. This keeps your pair fully
engaged and able to help. Sometimes you’ll notice that
one member of a pair isn’t fully engaged like that. His
pair might be madly typing away, not talking very much,
while he falls asleep. We sometimes refer to this as the
“drooling smell.” This requires some process fixing.
Maybe in the next day’s stand-up meeting you need to
emphasize that pairing means that both members need to
be fully engaged. Then again, perhaps the problem is you.
When introspecting on how you are performing, one item
that should be on your checklist is how well you are
pairing. If your pairs consistently have trouble staying
engaged when you drive, maybe you need to work on
your pairing skills.

Subjective Smells
Not all smells are directly observable like this. Some
smells are subjective. If people are bored with their jobs,
loathe going to work in the morning, call in sick
frequently, or feel like they have to work nights and
weekends to stay on schedule, you have a process
problem. If only one person on the team feels or behaves
this way, perhaps that is an individual issue that you need
to work through for the benefit of the team. If many team
members feel or behave this way, you had better fix the
process.

The Catch-All Smell
Not all smells are specific enough to identify discretely.
Some can be difficult to track down. Fortunately, you
have a “catch-all” smell to help you out. This is a
remarkable decline in your velocity. A close second is a
sharp increase in your acceptance test failure rate. This is

really just a warning of future velocity problems.

Most process problems show up in your velocity
eventually. They can get there in different ways. Perhaps
your defect rate suddenly goes way up, which forces you
to spend lots of time repairing code that worked in the
past. Maybe somebody isn’t able to be as productive as
they have been, which drags down his pair.

7 THE PRACTICE OF RETROSPECTIVES
Once you have identified a process smell, and you have
used introspection to articulate it, how do you tell the rest
of the team about it? Retrospectives allow people to make
introspection public. Retrospectives come in two forms:

• proactive, to keep things running smoothly

• reactive, to fix an immediate problem

The first category should be a natural part of the XP
rhythm. Code a little, test a little, integrate a little, think a
little. It’s a tune-up, rather than an overhaul. XP isn’t all
code – that’s just what you focus on most of the time.
Proactive retrospectives aren’t a formal affair. They
should happen in stand-up meetings attended by a group
of programmers with the habit of introspection.

Proactive retrospectives should look something like this.
Someone on the team has a good idea for how to do
something more efficiently. He talks to his pair about it to
get his thoughts straight. In the next morning’s stand-up
meeting, he brings it up for the group to comment on
based on their collective experience. If others have tried it
already and it didn’t work, they can say why and prevent
people from wasting time exploring it. If the idea has
promise, he and his pair can do what we call a process
spike. Much like a coding spike, a process spike is
exploring a process change to see if it will work, and
how. When the spike is done, he and his pair can report
back to the team in the next stand-up meeting. If it
worked, the rest of the team can integrate it into the
process.

The second category is necessary when something in the
process starts to smell. Remember that velocity serves as
the barometer for how well the process is running. If it
rises or falls significantly, that signals the need for a
reactive retrospective. If your iterations are short, you
probably will not notice velocity changes during an
iteration (unless they are extreme). It is a better idea to
fold reactive retrospectives into iteration planning itself.
That is the most frequent practical checkpoint where such
an exercise makes sense, as Fowler suggested in his paper
The New Methodology [3].

Reactive retrospectives should look something like this.
When the team gathers in a conference room to plan the
next iteration, they begin by reflecting on the past one.
This includes a short brainstorming session to answer the
four questions proposed by Norm Kerth for project post-
mortems [5]:

57

1. What did we do well?

2. What have we learned?

3. What can we do better?

4. What puzzles us?

Then the team comes up with ideas for how to preserve
the good and get rid of the bad. They develop a short list
of process spikes to conduct before the next iteration.

Fowler says that organizations also should hold a 2-3 day
offsite meeting after every release (this is in keeping with
Kerth’s project retrospectives) [2]. It would be hard to
justify doing them more frequently. The important thing
to note here is that those meetings are not a substitute for
lightweight retrospectives.

The key to retrospectives is to make sure you are solving
the correct problem. Sometimes the tendency is going to
be to add a practice to the process, where the real problem
is in how you are implementing one of the twelve
practices.

8 PUTTING IT ALL TOGETHER
One of the authors (Chris) was working on a project that
used two-week iterations. One developer noticed a pattern
of decreased intensity and focus in the middle of
iterations. In a stand-up meeting, he suggested that the
team should try one-week iterations to see if it helped.
The team discussed it and decided to try it for an iteration
or two. After a couple iterations, the team reevaluated the
results and decided that the overhead of starting one-week
iterations wasn’t leaving enough time to get anything
substantial done. Two-week iterations just felt right. Like
a good XP team, they reverted to two-week iterations.

This is an example of how a member of the team applied
the habit of introspection to identify a process smell. He
used proactive retrospective to vocalize his thoughts in a
public forum. The team performed a process spike to test
the suggested adaptation, and learned from the spike.

9 BEYOND XP
We have talked about turning XP on itself in order to
adapt it to local conditions. XP makes it convenient to
include them as a natural part of development. But the
practices we’ve discussed here apply outside the world of
XP.

Agile methods such as XP lend themselves to inclusion of
introspection and retrospectives, and cannot function very
well without them. They depend on the professional
discipline and dedication of the people using them as a
replacement for formalism. But even heavyweight
methods can benefit from having their participants
actively think about how to improve their process.

You should actively reflect on your process to see if there
are ways you can improve it, regardless of the process
you are using. This includes developing the habit of

introspection, and including retrospectives in your
process so that you can learn from the past to improve the
future. No process is foolproof enough, or complete
enough, for users of that process to turn off their brains.

10 CONCLUSION
Kent Beck included “local adaptation” as a principle of
XP. Fowler expanded this idea when he talked about
taking XP beyond the boundaries. We do not believe
either went far enough. We hope this paper helps to fill in
the gaps.

Some of the things we advocate here are extensions of
existing XP practices (such as process refactoring). We
have suggested several new things, but we believe they
are fundamental, consistent with XP in its current form,
and light enough to be implemented without distracting
teams fro m their primary goal of writing good code.

Good software development teams should develop the
habit of introspection, practice retrospectives, identify
process smells, and perform process spikes to test out
adaptations.

We suggest that introspection could be the fifth value for
XP, and the retrospectives could be the thirteenth
practice. However, we are not advocating an explosion of
new values and practices for XP. You can vary the
practices of XP within existing parameters. Sometimes,
though, that doesn’t go far enough. It is not wrong to add
something new. However, if you’re going to add
something to XP, that new thing must be aligned with the
existing values and principles. In particular, it must not
burden the process unnecessarily.

ACKNOWLEDGEMENTS
Many of the ideas in this paper have been adapted from
material by Kent Beck, Martin Fowler, and Norm Kerth.

Thanks to Kent Beck, Martin Fowler, Joshua Kerievsky,
Ken Auer, and the rest of the RoleModel Software team
for reviewing and commenting on this paper.

REFERENCES
1. Beck, K. Extreme Programming Explained:

Embrace Change, Addison-Wesley (1999).

2. Fowler, M. Variations On a Theme of XP . On-
line at http://www.martinfowler.com.

3. Fowler, M. The New Methodology. On-line at
http://www.martinfowler.com.

4. Hunt, A. and Thomas, D. The Pragmatic
Programmer, Addison-Wesley (2000).

5. Kerth, N. On-line at
http://www.retrospectives.com.

