

58

micro-eXtreme Programming (µXP): Embedding XP Within
Standard Projects

Frank A. Adrian

Symantec, Inc.
15220 NW Greenbrier Pkwy., Suite 200

Beaverton, OR 972006
+1 503 614-7904

fadrian@symantec.com

ABSTRACT
In many organizations, XP might not be embraced - XP,
when used at all, must be practiced at an individual level.
In this paper, we describe a methodology for using XP at
an individual level within a standard project framework
that we call micro-eXtreme Programming (µXP).

KEYWORDS
Software engineering, extreme programming, process
improvement.

1 INTRODUCTION
Using XP is such a good idea, it often seems unbelievable
that some organizations would reject it! Oddly enough,
though, some do. What happens if you find yourself in
this situation? Can you find a way to use XP when no
one else wants to?

We find that many of the principles of XP can be re-
focused to an individual level to make individual
programming tasks more productive. In this paper, we
describe a scaled XP process that individuals can use
within a traditional project framework, describe why our
methodology works and answer objections to the method.
We finish with conclusions.

2 THE PROBLEM
There are cases where an individual programmer cannot
use XP. A manager may not embrace the XP philosophy
– she sees pair programming as a waste of resources and
XP coding practices as an excuse for hacking and
avoiding formal design. Convincing teammates to use
XP may be a problem. As an independent consultant, you
might not have a coding partner to pair with. For small or
experimental projects, incurring the overhead of
arranging pairing to carry out a task may be undesirable.

To address these issues, we scale XP to produce a
methodology that uses its practices, but in a form that an
individual within a traditional project framework can use.
The practice also supports introducing XP into an
organization in a non-threatening manner. We call our
method µXP (micro-eXtreme Programming).

3 WHAT IS µXP
XP itself is still an amorphous concept - references [2 – 6,
12] differ in their definitions.. In our work we started
with core principles taken from [1]. µXP has XP best
practices at its core and many XP practices carry over to
µXP without change. Other XP practices have undergone
subtle shifts in focus. Two XP principles have been
omitted from the µXP cannon and one weakened.

The first tenet sacrificed is pair programming. We enjoy
pair programming and believe that, if it is possible, it is a
great practice to improve code quality. However, it does
not fit into the “individual programming” goal that we are
exploring and must be removed.

Another principle left behind was collective ownership.
Many organizations are too segmented or projects too
fragmented to allow this practice. Sometimes, you are
working on your own code and the issue is irrelevant. In
order to work under these conditions, this practice was
elided.

We weaken XP’s on-site customer principle. In many
organizations, customers cannot or will not be on-site. At
our level of focus, product-level concerns are usually
already defined, so this is not a major issue.

µXP Principles
The principles of µXP are as follows:

Planning Game – Just as in XP, work is organized via a
set of stories. However, the stories used in µXP are so
much smaller that we call them paragraphs. Estimates are
made and tracked at the paragraph level to determine
µXP coding velocity.

Continual Re-prioritization – In µXP, paragraphs are
broken and combined often. Between each iteration, one
re-prioritizes work to be done. At this level, work is
divided for technical and not business reasons, so one
does not need a customer standing by to re-prioritize
every ten minutes. Continual re-prioritization has the
advantage that work remains flexible in the face of design
changes.

59

Small Releases – As in XP, each paragraph is a small,
complete fragment that must be integrated into the body
of code as a whole. Paragraph-size code fragments are so
small that integration is fairly simple, but defects can
occur and the unit tests for the next higher level of code
are run so that integration errors do not accumulate.

Metaphor – We use the same metaphoric programming
practices as XP does. We check our paragraph level code
to insure that it fits with the metaphor we are using to
design the rest of the system.

Simple Design – µXP believes in simple design. We still
include those two key XP sayings “Do the simplest thing
that could possibly work” and “You ain’t going to need
it.” In XP, spiking is used architecturally to get code
working earlier; in µXP, we use “design spikes” to get
working code as soon as possible.

Testing – In XP, the tenet is to test early and test often.
So it is in µXP. Unit tests are written for sentences and
paragraphs before the code itself is written. Tests are
continually run to insure that current changes do not
break previously existing code.

Refactoring –µXP retains XP’s heavy emphasis on
refactoring. The use of design spiking and simple design
often produces duplicated code. Refactoring must be
performed ruthlessly and continually.

Sustainable pace – XP has the concept of a 40-hour
week; µXP has an 8-hour day. It is difficult for people to
work more than this length of time without becoming
fatigued and introducing error. During the planning
game, no more than five ideal hours of work (with
allowances for coding velocity) are scheduled during an
ideal day.

High-availability Customer – In XP, the customer must
be available on-site. In most µXP projects, this is not
feasible. In its place, we require high-availability of the
customer. In general, the customer must be available to
answer paragraph-level issues and this implies that
answers to a question should be available within a couple
of hours. In most cases, issues are already answered at a
story level.

Coding Standards – As with metaphor and refactoring,
this low-level XP practice is carried over unchanged, but
with additional emphasis due to µXP’s closeness to the
code.

4 CONTINUAL RE-PRIORITIZATION

If there is one thing unique about µXP, it is the principle
of continual re-prioritization. Using µXP within the scope
of a traditionally structured project, there are more
external dependencies to manage than in a standard XP
project. Waiting on project dependencies would cause
interminable delays. To smooth project flow, we use

continual re-prioritization.

In XP, between story-level iterations, the practitioners
must re-prioritize the set of tasks to be done. In µXP, the
tasks are re-prioritized within the iteration each time a
sentence or paragraph is completed. We like to think of
this step as continual refactoring of the schedule. Being
an opportunistic practice, this also increases efficiency.
An example will help illustrate…

We start with a requirements document and a set of tasks
from a traditional project schedule to implement a
specific feature. The first convert these tasks into stories.
Then, on a combined basis of prerequisite availability and
design advantage, we select a story for implementation:

Journal Processing
The items in the journal are an ordered set of commands.
The commands are of the form:

• Create an Order.

• Add a Line to an Order.

• Modify a Line within an Order.

• Delete a Line within an Order.

After each command from the journal is processed,
the Order will be checked for consistency.

We write our functional level tests for the story and then
divide the story into a set of paragraphs:

Create an Order.

Create a new Line.

Add a Line to the Order.

Modify a Line within an Order.
Remove a Line from an Order.

Check the Order.

After writing tests at the paragraph level, we divide the
paragraphs into sentences, prioritizing them as to design
advantage:

Create the Order object.

Add a Line collection to the Order.

Create a new Line.

Check the Line for correctness.

Add the Line to the Order.
Modify a Line within an Order.

Remove a Line from an Order.

Check the non-Line portion of the Order.

Check all Lines in the Order.

60

Combine Order checks.

As we start to implement, we construct tests and build
code. Suppose we get to the item “Add the Line to the
Order.” and a test fails – we need to figure out what to do
if a line with a duplicate ID is added to the order. We
take this opportunity to re-prioritize our work, deciding
that replacing the given line is the simplest way to handle
this. We see that we can implement modifying a line by
replacing the line, and that replacing a line is the same as
removing the original line and adding a (unduplicated)
line. We get the following as a result of our
reprioritization:

Create the Order object.

Add a Line collection to the Order.

Create a new Line.

Check the Line for correctness.

Add the (unduplicated) Line to the Order.

Remove a Line from an Order.

Replace a (or add a duplicated) Line within an Order.

Check the non-Line portion of the Order.

Check all Lines in the Order.

Combine Order check.

The work proceeds until the sentences have been
completed.

In addition to working on a single story, one can combine
paragraphs from multiple stories and sentences from
multiple paragraphs. This allows greater flexibility in the
face of external dependencies. E.g., if we are waiting for
a file format to be designed, we cannot write the code to
read the file, but we can proceed with the design and test
of the internal objects into which the data is to be placed.
This method also allows a sort of “pre-factoring,” where
the “You ain’t gonna need it” principle doesn’t apply – if
it’s on a sentence or paragraph list, it’s needed to
implement some part of your chosen stories, isn’t it?

Structured handling of paragraph and sentence level of
the design leads to a more efficient coding regimen.
Writing tests at the sentence level insures that the
primitives are error-free. Many paragraphs turn into
single sentences and the tests can be shared between the
two levels.

5 WHY DOES µXP WORK?
µXP works because XP works. It uses best practices of
XP and scales them down to the sub-story level. The
structure that XP adds to the design process is echoed in
µXP’s coding practices, as are the advantages. The
process structures coding tasks without turning into a
straightjacket. The structuring reduces defects and
increases ones confidence in the code.

Within the scope of a traditional project, µXP provides a
more structured and efficient way of doing coding tasks.
Building your schedule by breaking tasks down to the
paragraph level and measuring coding velocity at this
level will help improve estimates. Using XP methods
within sections of the project will help you be more
responsive when other parts of the design change (and
they will, won’t they?).

We also find that following µXP practices makes one a
better programmer (just as following XP practices makes
a team better). We are exploring whether µXP principles
can be used as the basis for personal software
improvement, much as CMM was used as the basis for
the PSP [7 – 9].

6 OBJECTIONS
With any new methodology, people question whether or
not it really works. Here are a few of the concerns raised
about µXP:

Doesn’t the removal of some of the core XP principles
(particularly pair programming) destroy XP? We find it
does not. If you can use XP, use it – it works. If you
can’t, we still believe a little XP is better than no XP at
all. We have seen increase in design and coding errors
when all XP practices are not followed, but we also see
productivity gains over the monolithic design-code-test
methods.

Doesn’t design spiking and simple design lead to
fragmented and incoherent designs? In general, due to
rigorous use of refactoring, metaphor, and coding
standards, our designs have become more integrated and
easier to understand.

Isn’t this just the same as iterative design? Yes and no.
Iterative design is usually focused on breaking projects
into large-scale chunks and not subdividing the smaller
tasks. µXP brings structure to this lower level.

Isn’t this the same thing most XP’ers do? Again, yes and
no. XP does not prescribe structuring or testing at the
sub-task level the way µXP does. The best XP
practitioners do use these methods, but not stringently.
By adding structure and tests at low levels, µXP makes
coding more efficient.

Doesn’t the structuring of micro-tasks add too much
overhead? In practice, we find not. And the use of
testing at the sub-task integration level reduces errors and
builds code confidence.

My system has no validation tests. How do I know my
code doesn’t break the system? You don’t. You should
probably build some tests! But in this respect you’re no
worse off than you were with standard design and coding
methods.

61

My system takes ten hours to build. How can I use µXP?
With great difficulty? Seriously, you can still use µXP.
You can build components in isolation, using test stubs.
This allows you to code these components using µXP,
integrating into the larger system less frequently. You
should still build good integration tests at the system
level, though.

7 CONCLUSIONS
µXP is not a panacea. At best, is a strategy used when
one cannot use real XP. However, we have found up to
20% decreases in overall task time when using µXP [10].
These results are preliminary and the experiments have
too small a scale for any scientifically valid conclusions
to be drawn. Even so, they show µXP is able to improve
the productivity and scheduling accuracy of the
individual practitioner even within the scope of
traditional projects. Put simply, we believe that µXP
works! This is consistent with our own use of µXP.
More research is needed to extend and verify these
findings.

µXP can still be refined and improved. It is in the
tradition of XP practitioners to vary XP to encompass
whatever works. We hope that µXP inherits these
pragmatic roots, as well.

Giving up XP tenets like pair programming is not
necessarily a tragedy. We still believe that following XP
strictly is a more effective way to pursue multi-person
projects. But we are also convinced that many of the XP
practices and methods can be applied to individual work.

Brooks [11] may be correct that there is no silver bullet to
slay the werewolf of programming. But in the end, better
programming comes down to discipline and commitment
to quality. We believe that µXP is a simple way to instill
both.

8 ACKNOWLEDGEMENTS

I would like to thank the reviewers and Ron Jeffries, in

particular, for their suggestions on improving this paper.

9 REFERENCES
1. Beck, K. eXtreme Programming eXplained:

Embrace Change. Addison Wesley. 2000.

2. “Extreme Programming Roadmap.” Online
document available at URL
http://c2.com/cgi/wiki?ExtremeProgrammingRoadm
ap. 2000.

3. Wells, J.D. “The Rules and Practices of Extreme
Programming.” Online document available at URL
http://www.extermeprogramming.org/rules.html.
1999.

4. Jeffries, R., ed. “What is eXtreme Programming?”
Online document available at URL
http://www.xprogramming.com/what_is_xp.htm,
2000.

5. “Extreme Programming.” Online document available
at URL http://ootips.org/xp.html. 1999.

6. Beck, K., Fowler, M. eXtreme Programming
Planned. Addison Wesley. 2000.

7. Humphrey, W. Introduction to the Personal Software
Process. Addison Wesley Longman. 1996.

8. Bemberger, J. “The Essence of the Capability
Maturity Model.” IEEE Computer. June 1997.
Pp.112-114.

9. ιXP – Using XP Principles for Improving Personal
Software Productivity. On-line document available
at URL http://www.ancar.org/xp/iXP.htm.

10. µXP – Initial Research and Findings. Online
document available at URL
http://www.ancar.org/xp/exper1.htm.

11. Brooks, F. “No Silver Bullet.” IEEE Computer.
April, 1987.

12. Jeffries, R., et.al. eXtreme Programming Installed.
Addison Wesley. 2001.

