EXERCÍCIOS DE MATEMÁTICA DISCRETA 20. SEMESTRE DE 2003

[Os exercícios desta lista são reciclados de edições anteriores desta e disciplinas semelhantes. Alguns exercícios estão em sua versão original, em inglês. (Melhor assim do que demorar mais ainda para eu disponibilizá-los).]

- 1. Let $\mathcal{A} = \{A_{\lambda} : \lambda \in \Lambda\}$ be a family of subsets of a finite set W. Consider the subsets $\Lambda' \subset \Lambda$ such that the family of sets A_{λ} ($\lambda \in \Lambda'$) admits a system of distinct representatives. Show that any two such maximal sets (under inclusion) have the same cardinality.
- 2. Let $M_i = M_i(S_i)$ $(1 \le i \le k)$ be matroids on pairwise disjoint sets S_i . Let

$$\mathcal{I} = \left\{ \bigcup_{1 \le i \le k} I_i \colon I_i \in \mathcal{I}(M_i) \right\}$$
(1)

be the family of unions of independent sets in the matroids M_i (one independent set I_i for each i). Clearly, $\mathcal{I} \subset 2^S$, where $S = \bigcup_{1 \le i \le k} S_i$.

- (i) Show that \mathcal{I} is the set of independent sets of a matroid on \overline{S} . This matroid is called the *direct sum* of the matroids M_i $(1 \le i \le k)$, and is usually denoted $\bigoplus_{1 \le i \le k} M_i$.
- (*ii*) Determine the rank function of $\bigoplus_{1 \le i \le k} M_i$.
- 3. Let $f: S \to T$ be a surjection, where S is a finite set. Suppose M = M(S) is a matroid on S. Let

$$\mathcal{I} = \{ f(I) \colon I \in \mathcal{I}(M) \}$$
(2)

be the family of images of independent sets in M under f. Clearly, $\mathcal{I} \subset 2^T$.

- (i) Show that \mathcal{I} is the set of independent sets of a matroid on T. This matroid is sometimed called the *homomorphic image* of M under f.
- (*ii*) Let $N = N_f$ be the homomorphic image of M under f. Show that the rank function r_N of N is given by

$$r_N(A) = \min\{r_M(f^{-1}(B)) + |A \setminus B| \colon B \subset A\}$$
(3)

for all $A \subset T$, where r_M is the rank function of M.

4. [Horn] Let k be a positive integer. Suppose x_1, \ldots, x_n are vectors in some vector space such that, for any $J \subset [n]$, there is $J' \subset J$ such that $|J'| \geq |J|/k$ and the vectors x_j $(j \in J')$ are linearly independent. Prove that x_1, \ldots, x_n may be partitioned into at most k families of linearly independent vectors.

Date: Versão de 27 de novembro de 2003.

5. [Nash-Williams] Let G be a multigraph with no loops and at least one edge. Prove that the edge set of G may be written as a union of k forests if and only if

$$k \ge \frac{|E(H)|}{|V(H)| - c(H)} \tag{4}$$

for all subgraphs $H \subset G$ of G with |V(H)| - c(H) > 0, where c(H) denotes the number of components in the graph H.

- 6. [Tutte] Let G be a connected graph. Prove that G contains k edgedisjoint spanning trees if and only if for any partition π of the vertex set of G, the number of edges joining vertices in distinct blocks of π is at least $k(|\pi| - 1)$, where $|\pi|$ denotes the number of blocks in π .
- 7. [Edmonds] Let M = M(S) and N = N(S) be two matroids on S. Prove that

$$\max\{|I|: I \in \mathcal{I}(M) \cap \mathcal{I}(N)\} = \min\{r_M(A) + r_N(S \setminus A): A \subset S\}.$$
 (5)

[Sugestão. Consider the matroid $M \vee N^*$, where N^* is the dual of N.]

8. Let G be a connected graph, and suppose that the edges of G are coloured in an arbitrary way. Prove that G contains a spanning tree with all its edges coloured with different colours if and only if, for all subgraphs $H \subset G$ of G, the number of colours that occur in $E(G) \setminus E(H)$ is at least c(H) - 1, where, again, c(H) denotes the number of components in H. [Sugestão. Observe that, if S is a finite set, then the family of all sets of cardinality at most m is the family of independent sets of a matroid (this is the uniform matroid $U_{n,m}$, where n = |S|). Use this observation for m = 1 and S the colour classes of the edge colouring of G. Apply the above theorem of Edmonds. Alternatively, give a proof from first principles.]