TERCEIRA PROVA DE ALGORITMOS EM GRAFOS BCC, 10. SEMESTRE DE 2004

1. [2 pontos] Lembre que um vertebrado é uma tripla (T, x, y), onde T é uma árvore e x e y são vértices de T (x é a cabeça do vertebrado e y é a cauda do vertebrado). Lembre que existe uma bijeção entre vertebrados com n vértices e funções $f: [n] \to [n]$, onde, como de usual, $[n] = \{1, \ldots, n\}$. O diâmetro diam(G) de um grafo conexo G é o máximo das distâncias entre dois vértices em G, isto é,

$$\operatorname{diam}(G) = \max\{\operatorname{dist}_G(x, y) \colon x, y \in V(G)\}. \tag{1}$$

Descreva cuidadosamente como podemos estimar computacionalmente o diâmetro médio de uma árvore T com n vértices, para n razoavelmente grande (digamos, n=20). Isto é, como podemos estimar

$$n^{-(n-2)} \sum \operatorname{diam}(T), \tag{2}$$

onde a soma é sobre toda árvore T com conjunto de vértices [n]? (Nesta questão, não é necessário escrever código; basta você esboçar um procedimento, e dizer por que ele funciona.)

2. [2 pontos] Considere o seguinte trecho de código, que implementa a essência do algoritmo de Warshall:

(i) Execute o trecho de código acima na matriz

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3)

(Você deve dizer o estado da matriz A após cada iteração do for mais externo.)

(ii) Generalize (i): considere o grafo dirigido G_n com n vértices generalizando o grafo em (i). (Assim, G_6 é o grafo do item (i).) Descreva a matriz A correspondente ao grafo G_n após a execução do corpo do for externo para um i genérico $(0 \le i < n = V)$.

- 3. [2 pontos] (Nesta questão, os grafos são não-orientandos.) Suponha que temos G=(V,E) um grafo com função custo nas arestas $c\colon E\to\mathbb{R}$. Seja ainda s um vértice fixo de G. Por simplicidade, suponha c(e) positivo para todo $e\in E$. Podemos definir uma árvore de caminhos mínimos com raiz s como sendo uma árvore geradora T de G que tem a propriedade de que, para todo $t\in V$, a distância $\mathrm{dist}_G(s,t)$ de s a t em G é igual à distância $\mathrm{dist}_T(s,t)$ em T. É verdade que uma tal árvore de caminhos mínimos com raiz s é necessariamente uma árvore geradora mínima? Prove ou dê um contra-exemplo. Se você for dar um contra-exemplo, ele deve ser tal que $0 < c(e) \le 1$ para todo e, mas o custo das árvores em questão (árvore de caminhos mínimos e árvore geradora mínima) diferem de pelo menos 10^{10} .
- 4. [4 pontos] Seja G=(V,E) um grafo conexo e $c\colon E\to \mathbb{R}$ uma função custo nas arestas de G.
 - (i) Seja $A \subset E$ um conjunto de arestas de G que está contida em alguma árvore geradora mínima de G. Seja $U \subset V$ tal que $A \cap E(U, V \setminus U) = \emptyset$, onde $E(U, V \setminus U) = \{\{u, w\} \in E : u \in U, w \in V \setminus U\}$ é o corte definido por U. Suponha que $e \in E(U, V \setminus U)$ tem custo mínimo dentre as arestas em $E(U, V \setminus U)$. Mostre que $A \cup \{e\}$ está contida em alguma árvore geradora mínima de G.
 - (ii) Descreva o algoritmo de Kruskal precisamente e prove sua correção.
 - (iii) Descreva o algoritmo de Prim precisamente e prove sua correção.