1

1. Fecho transitivo

- 1. Fecho transitivo
- 2. Multiplicação de matrizes

- 1. Fecho transitivo
- 2. Multiplicação de matrizes booleanas

- 1. Fecho transitivo
- 2. Multiplicação de matrizes booleanas
- 3. Algoritmo de Warshall

- 1. Fecho transitivo
- 2. Multiplicação de matrizes booleanas
- 3. Algoritmo de Warshall
- 4. Equivalência em termos de complexidade computacional com o produto de matrizes booleanas

- 1. Fecho transitivo
- 2. Multiplicação de matrizes booleanas
- 3. Algoritmo de Warshall
- 4. Equivalência em termos de complexidade computacional com o produto de matrizes booleanas
- 5. Fecho através de busca em profundidade (grafos esparsos)

Multiplicação de matrizes

Multiplicação de matrizes

```
for (s = 0; s < V; s++)
for (t = 0; t < V; t++)
for (i = 0, C[s][t] = 0; i < V; i++)
C[s][t] += A[s][i]*B[i][t];</pre>
```

Multiplicação de matrizes booleanas

Multiplicação de matrizes booleanas

```
for (s = 0; s < V; s++)
  for (t = 0; t < V; t++)
   for (i = 0, C[s][t] = 0; i < V; i++)
      if (A[s][i] && B[i][t]) C[s][t] = 1;</pre>
```

```
for (s = 0; s < V; s++)
  for (t = 0; t < V; t++)
   for (i = 0, C[s][t] = 0; i < V; i++)
      if (A[s][i] && A[i][t])
      C[s][t] = 1;</pre>
```

```
for (s = 0; s < V; s++)
  for (t = 0; t < V; t++)
   for (i = 0, C[s][t] = 0; i < V; i++)
      if (A[s][i] && A[i][t])
      C[s][t] = 1;</pre>
```

Consequência: podemos calcular o fecho transitivo em tempo $O(n^3 \log n)!$

```
for (s = 0; s < V; s++)
  for (t = 0; t < V; t++)
   for (i = 0, C[s][t] = 0; i < V; i++)
      if (A[s][i] && A[i][t])
      C[s][t] = 1;</pre>
```

Consequência: podemos calcular o fecho transitivo em tempo $O(n^3 \log n)!$ [Calcule A^2 , A^4 , A^8 , A^{16} ,...]

```
for (i = 0; i < V; i++)
  for (s = 0; s < V; s++)
   for (t = 0; t < V; t++)
      if (A[s][i] && A[i][t])
      A[s][t] = 1;</pre>
```

Propriedade 1 (Propriedade 19.7). O fecho transitivo de um grafo dirigido com n vértices pode ser computado em tempo $O(n^3)$ pelo algoritmo de Warshall.

Propriedade 1 (Propriedade 19.7). O fecho transitivo de um grafo dirigido com n vértices pode ser computado em tempo $O(n^3)$ pelo algoritmo de Warshall.

Demonstração. Asserção a ser provada por indução em i: após a i-ésima iteração do laço do i, a entrada A[s][t] é 1 se e só se existe um caminho de s a t cujos vértices internos pertencem a $\{0,\ldots,i\}$. (Base: i=-1)

Algoritmo de Warshall para o fecho transitivo (variante)

Algoritmo de Warshall para o fecho transitivo (variante)

```
for (i = 0; i < V; i++)
  for (s = 0; s < V; s++)
   if (A[s][i])
     for (t = 0; t < V; t++)
      if (A[i][t]) A[s][t] = 1;</pre>
```

Programa 19.3: Algoritmo de Warshall

Programa 19.3: Algoritmo de Warshall

```
void GRAPHtc(Graph G)
  { int i, s, t;
    G->tc = MATRIXint(G->V, G->V, O);
    for (s = 0; s < G->V; s++)
      for (t = 0; t < G->V; t++)
        G->tc[s][t] = G->adj[s][t];
    for (s = 0; s < G->V; s++) G->tc[s][s] = 1;
    for (i = 0: i < G->V: i++)
      for (s = 0; s < G->V; s++)
        if (G->tc[s][i] == 1)
          for (t = 0: t < G->V: t++)
            if (G->tc[i][t] == 1) G->tc[s][t] = 1:
int GRAPHreach(Graph G, int s, int t) { return G->tc[s][t]; }
```

Algoritmo de Warshall, complexidade

Algoritmo de Warshall, complexidade

Propriedade 2 (Propriedade 19.8). Podemos implementar um teste de acessibilidade de tempo constante em grafos dirigidos com n vértices usando espaço adicional $O(n^2)$ e tempo de pre-processamento $O(n^3)$.

Digressão: equivalência entre fecho transitivo e produto de matrizes booleanas

Digressão: equivalência entre fecho transitivo e produto de matrizes booleanas

Propriedade 3 (Propriedade 19.9). Podemos calcular o produto AB de duas matrizes booleanas $n \times n$ em tempo $O(T_n)$, onde T_n é o tempo necessário para se calcular o fecho transitivo de um grafo dirigido com n vértices.

Digressão: equivalência entre fecho transitivo e produto de matrizes booleanas

Propriedade 3 (Propriedade 19.9). Podemos calcular o produto AB de duas matrizes booleanas $n \times n$ em tempo $O(T_n)$, onde T_n é o tempo necessário para se calcular o fecho transitivo de um grafo dirigido com n vértices.

Proof. A e B: duas matrizes booleanas $n \times n$. Pomos

$$M = \begin{bmatrix} I & A & 0 \\ 0 & I & B \\ 0 & 0 & I \end{bmatrix}.$$

Digressão: equivalência entre fecho transitivo e produto de matrizes booleanas (cont.)

Observamos que

$$M^{2} = \begin{bmatrix} I & A & AB \\ 0 & I & B \\ 0 & 0 & I \end{bmatrix}. \tag{1}$$

Digressão: equivalência entre fecho transitivo e produto de matrizes booleanas (cont.)

Observamos que

$$M^{2} = \begin{bmatrix} I & A & AB \\ 0 & I & B \\ 0 & 0 & I \end{bmatrix}. \tag{1}$$

Ademais, observamos que a matriz N no lado direito de (??) acima é tal que MN = N.

Algoritmo de Floyd para distâncias (versão primitiva)

Algoritmo de Floyd para distâncias (versão primitiva)

```
for (i = 0; i < V; i++)
  for (s = 0; s < V; s++)
   for (t = 0; t < V; t++)
      if (A[s][i] + A[i][t] < A[s][t])
      A[s][t] = A[s][i] + A[i][t];</pre>
```

```
void TCdfsR(Graph G, Edge e)
  { link t;
   G->tc[e.v][e.w] = 1:
    for (t = G->adj[e.w]; t != NULL; t = t->next)
      if (G->tc[e.v][t->v] == 0)
        TCdfsR(G, EDGE(e.v, t->v));
void GRAPHtc(Graph G, Edge e)
  { int v, w;
    G->tc = MATRIXint(G->V, G->V, O);
    for (v = 0; v < G -> V; v++)
      TCdfsR(G, EDGE(v, v));
int GRAPHreach(Graph G, int s, int t) { return G->tc[s][t]; }
```

Propriedade 4 (Propriedade 19.10). Podemos implementar um teste de acessibilidade de tempo constante em grafos dirigidos com n vértices e m arcos usando espaço adicional $O(n^2)$ e tempo de pre-processamento O(n(m+n)).

Análise empírica de desempenho

Análise empírica de desempenho

Esparso (10n arcos)				Denso (250 vértices)					
n 	W	W*	A	L		W	 ₩*	A	L
25	0	0	1	0	5000	289	203	177	23
50	3	1	2	1	10000	300	214	184	38
125	35	24	23	4	25000	309	226	200	97
250	275	181	178	13	50000	315	232	218	337
500	2222	1438	1481	54	100000	326	246	235	784

W Warshall W* Warshall (variante)

A BeP, matrizes de adjacência

L BeP, listas de adjacência