81 G_RANDOM RANDOM GRAPH GENERATION 1

Important: Before reading G_RANDOM, please read or at least skim the program for GB_.RAND.

1. Random graph generation. I've cut out parts of a couple of programs in the Stanford GraphBase
to put together this source. You can generate several types of random graphs with this program to check the
programs that you write yourself. You should read gb_random to understand how these graphs are generated.

2. We permit command-line options in typical UNIX style so that a variety of graphs can be studied: The

user can say ‘-n(number)’; ‘-m(number)’, ‘-M’, ‘=s’, ‘=d’, ‘~1(number)’, ‘~L(number)’, ‘~S(number)’, and/or

‘-G, to change the default values of the parameters in the graph random_graph (n, m, multi, self | directed , dist_from., dist_to
Look at the code below to see what these options work (sorry!). If the user wishes to generate random bi-

partite graphs, he or she should say ‘-b’, and give the parameters ‘-u(number)’ and ‘-w(number)’ to specify

how many vertices should be in the two vertex classes U and W (say n! and n2). This program then makes

the call random_bigraph(n1,n2,m, multi, distl , dist2, min_len, maz_len, seed).

#include "gb_graph.h" /* the GraphBase data structures */
#include "gb_rand.h" /* the roget routine x*/
#include "gb_save.h" /% restore_graph */

(Preprocessor definitions)

main (argce, argu)

int argc; /* the number of command-line arguments x/
char xargu[]; /* an array of strings containing those arguments */
{ Graph xg; /* the graph we will work on */
unsigned long n = 100; /* number of vertices desired x/
unsigned long m = 100; /* number of arcs or edges desired */
long multi = 0; /= allow duplicate arcs? =/

long self = 0; /x allow self loops? */
long directed = 0; /* directed graph? x/

long xdist_from = A; /* distribution of arc sources */

long xdist_to = A; /* distribution of arc destinations x/

long min_len =1, maz_len = 1; /* bounds on random lengths */
long seed = 0; /* random number seed */

long save = 0; /* whether to save the generated graph */
long bipartite = 0; /* whether bipartite */

unsigned long nl = 100; /* number of vertices desired x/
unsigned long n2 = 100; /* number of vertices desired x/
long xdistl = A; /x distribution on first vertex class */
long xdist2 = A, /x distribution on second vertex class */

(Scan the command-line options 3);
if (bipartite) g = random_bigraph(nl,n2,m, multi, dist1, dist2, min_len, maz_len, seed);
else g = random_graph(n, m, multi, self , directed, dist_from, dist_to, min_len, max_len, seed);
if (9=4) {
forintf (stderr, "Sorry, can’t,create the graph! (error code,%1d)\n", panic_code);
return —1;
}
(Print the vertices and edges of g 5);
if (save) save_graph(g,"random.gb"); /* generate an ASCII file for g =/
return 0; /* normal exit */

2 RANDOM GRAPH GENERATION G_RANDOM 83

3. (Scan the command-line options 3) =
while (—argc) {

if (sscanf (argvlargc], "-n¥%lu",&n) =1) ;

[

else if (sscanf (argv[argc],"-u%lu",&ni) =1) ;
else if (sscanf (argv[argc],"-whlu",&n2) =1) ;
else if (sscanf (argv|argc], "-m¥%lu",&m) = 1) ;
else if (stremp(argv[arge],"-M") =0) multi = 1;
else if (stremp(argv|arge],"-s") =0) self = 1;
else if (stremp(argv[argc],"-d") =0) directed = 1;
else if (sscanf (argv[argc],"-1%1d", &minlen) = 1) ;
else if (sscanf (argv|argc], "-L%1d", &maz_len) = 1) ;
else if (sscanf (argv[arge], "-8%1d", &seed) = 1) ;
else if (stremp(argvlarge],"-G") =0) save = 1;
else if (stremp(argv[arge],"-b") = 0) bipartite = 1;
else {

fprintf (stderr,

"Usage: sy [-nN] [-mN] [-M] [-s] [-d] [-1N] [-LN] [-SN] [-G] [-b] [-n1N] [-n2N]\n", argv[0]);
return —2;

}
}

This code is used in section 2.

84 G_RANDOM PRINTING OUT THE GRAPH 3

4. Printing out the graph. We print out the graph in a rather simple way: we just print the adjacency
lists. For simplicity, the vertices are identified with the integers 0, ...,n—1, where n is the number of vertices
in the graph g.

5. (Print the vertices and edges of g 5) =
if (9 =A) printf("Something, ,went wrong (paniccode %1d) '\n", panic_code);
else {
register Vertex xv; /* current vertex being visited */

printf ("The graph whose official name_is\n\n ,%s\n\n", g~id);
if (directed) printf("has,%ld vertices and, %1ld arcs:\n\n", g-n, g~m);
else printf("has_%ld vertices and %1d edges:\n\n", g-n, g~m/2);
for (v = grvertices; v < g~vertices + g-n; v++) {
register Arc xa; /* current arc from v x/
printf ("\n%ld:", v — g~vertices);
for (a = v~arcs; a; a = a~next) printf ("L,hLld", a~tip — g-vertices);
}
printf ("\n");

}

This code is used in section 2.

4 INDEX

G_RANDOM

§6

6. Index. We close with a list that shows where the identifiers of this program are defined and used.

=

a: 5.
Arc: 5.
arcs: O.
argc: 2, 3.
argv: 2, 3.

bipartite: 2, 3.
directed: 2, 3, 5.
dist_from: 2.
dist_to: 2.

distl: 2.

dist2: 2.
forintf: 2, 3.

g: 2.

Graph: 2.

id: 5

m:
main: 2.
max_len: 2, 3
min_len: 2, 3.

N o

multi: 2,

n: 2.

next: 5.

nl: 2, 3.

n2: 2, 3.
panic_code: 2, 5.
printf: 5.

random_bigraph: 2.

random_graph: 2.
restore_graph: 2.
roget: 2.

save: 2, 3.
save_graph: 2.

seed: 2, 3.
self: 2, 3.
sscanf: 3.
stderr: 2, 3.
stremp: 3.
tip: 5.

UNIX dependencies:

v D,
Vertex: 5.
vertices: 5.

G_RANDOM NAMES OF THE SECTIONS 5

(Print the vertices and edges of g 5) Used in section 2.
(Scan the command-line options 3) Used in section 2.

June 1, 2007 at 10:58

G_RANDOM

Section Page

Random graph generation 1 1
Printing out the graph e 4 3
Index o 6 4

This file in not part of the Stanford GraphBase. I have, however, copied parts of the programs in the GraphBase (I
just put together some parts of two different programs and edited the result a bit).

	Random graph generation
	Printing out the graph
	Index
	Names of the sections
	Print the vertices and edges of g
	Scan the command-line options

