
Algorithmica (1990) 5:295-311 Algorithmica
�9 1990 Springer-Verlag New York Inc.

Analysis of the Standard Deletion Algorithms in
Exact Fit Domain Binary Search Trees 1

Joseph Cu lbe r son 2 and J. Ian M u n r o 3

Abstract. It is well known that the expected search time in an N node binary search tree generated by a
random sequence of insertions is O(log N). Little has been published about the asymptotic cost when
insertions and deletions are made following the usual algorithms with no attempt to retain balance. We
show that after a sufficient number of updates, each consisting of choosing an element at random,
removing it, and reinserting the same value, that the average search cost is O(N1/2).

Key Words. Binary search tree, Data structure, Average case analysis.

1. Introduction. Binary search trees are wel l -known da t a s tructures, often used
when fast search, insert ion, and de le t ion are required. They also suppor t nearest-
ne ighbor and range queries. W h e n the search trees are well ba lanced, any of these
ope ra t ions can be done in O(log N) t ime on trees con ta in ing N items.

We follow the usual def ini t ions of the field. A binary search tree is a finite set of
nodes which is ei ther empty , or consists of a roo t and two dis joint b ina ry trees

called the left and r ight subtrees. Each node conta ins a dis t inct m e m b e r of a l inear
o rdered set cal led a key. If v is a n o n e m p t y node of a tree, then l(v) designates the
left subtree, r(v) the r ight subtree, and k(v) the key con ta ined in v. The father, f (v) of
the node or subtree roo ted at v are equiva lent and are defined by the re la t ion
f (l (v)) = f (r (v)) = v. The search property is defined by the rule tha t for each node
v e T, each key in the left subtree of v is less than k(v), a n d each key in the r ight
subtree of v is grea ter than k(v). Hencefor th , we refer to b ina ry search trees s imply
as trees.

The idea of the next larger key in the subtree roo t ed at node v is crucial to the
de le t ion a lgor i thms we discuss. Hence, the successor, s(v), of a node v ~ T is defined
to be that node in the r ight subtree with the m i n i m u m key. If the subtree is empty,
then the funct ion is undefined. A na tu ra l defini t ion for s(v), when the subtree is
empty , would be the ances tor of v which conta ins the next largest key; however , for
purposes of the descr ip t ion of the a lgo r i thm and the subsequent analysis, the above
defini t ion is preferable.

1 This work was done in part while the first author was at the University of Waterloo. This work was
supported by an NSERC '67 Science Scholarship and Grant A-8237 and the Information Technology
Research Centre of Ontario
2 Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
3 Data Structuring Group, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

Received July 28, 1986; revised August 15, 1988. Communicated by Robert Sedgewick.

296 J. Culberson and J. I. Munro

Our concern is the effect of deletions and insertions on the expected cost of
accessing elements in a binary search tree using standard deletion and insertion
schemes that do not explicitly rebalance the tree. The most natural insertion
algorithm E3], [18], [11] is to add a new element in the position at which a search
for it ends unsuccessfully. Our interest is in the combined effect of this insertion
scheme and the deletion algorithms of Hibbard [11] and Knuth [16]. Hibbard
proposed his deletion scheme in 1962. In this algorithm, if the right subtree of the
node containing the key to be deleted is not empty, then the next largest key is
removed from the node containing it and used to replace the deleted key. The
empty node is then deleted as described in detail below. Otherwise, the node is
deleted, and the left subtree, if it exists, becomes the son of the node's parent. Knuth
suggested an improvement. If the left subtree is empty, the node can be deleted
directly, attaching the right subtree to the node's parent. This algorithm often
results in a reduced average cost for any given deletion, and never produces a worse
cost.

Hibbard [11] observed that doing N + 1 random insertions, followed by one
random deletion by his method, results in the same shape distribution of trees as is
obtained by doing N random insertions. Thus, it was thought that deletions do not
affect the expected cost of binary search trees. The Knuth algorithm does not have
this property. Knott [14] observed that after making another insertion this
property is no longer preserved for the Hibbard algorithm either. Knott performed
simulations of these algorithms on small trees, and noted that the empirical
evidence suggested that the expected cost was reduced.

An exact analysis appears to be very difficult, having been so far accomplished
for trees of three or four nodes [13], [2]. In each of these cases, the analysis verifies
that the expected cost is reduced over that of a tree built from random insertions.

Eppinger [8], and Culberson [4], and Culberson and Munro [7] ran more
extensive simulations in which a large increase in the expected search cost was
observed for larger trees. Eppinger conjectured that the expected cost is O(log 3 N).
In what follows, we show that if, after each deletion, we re-insert the same value
that we deleted, then the steady-state expected cost is | The results of
extensive simulations strongly supported the conjecture that this bound also
applies to binary search trees wherein the insertion values are drawn at random
from some domain.

The key ideas of our proof hinge on the asymmetry inherent in the standard
deletion algorithms. In either algorithm, when both subtrees of the node to be
deleted are nonempty, we consistently choose the next key to the right of the node
as the replacement key. If we randomly decide between a left or right choice for the
replacement, then the asymmetry disappears. Experimental evidence lends cre-
dence to the hypothesis that in this case the expected cost is reduced on average by
a long sequence of updates, and thus remains O(log N),

Our analysis will give bounds on the Internal Path Length (IPL) of a tree, which
is the sum over all the nodes in a tree of the length of the path to the node from the
root node. The average length of a search path is the IPL of the tree divided by the
number of nodes N. The average length of a search path represents the average cost
of accessing a key.

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees 297

To insert a key, ~t leaf is created containing the key and is attached in the unique
position that maintains the search property of the tree. This algorithm was
discovered independently by several researchers including Windley [18], Booth
and Colin I-3], and Hibbard [11]. As is well known (see, for example, Knuth [16,
Chapter 6.2.2]) the expected IPL of a tree formed by this insertion process is
approximately 1.386N log2 N. We caution the reader that this is quite different
from all trees being equally likely, which has O(N 3/2) IPL [15].

One of the earliest and best-known deletion algorithms is that of Hibbard [11]
which we restate more formally below using the notation outlined above for
navigating through the tree. The [Ur] means either l or r as appropriate in the
context.

HIBBARD ALGORITHM
To delete a key d from a tree T, find v e T such that k(v) = d.
if r(v) = ~ then do

{ The right subtree is empty, so delete the node containing the key
and reattach the left son as the appropriate left or right son of the
parent }

if v is not the root [I /r](f (v)) ~ l(v);
{ If v is the root then l(v) becomes the new root }
remove v from T.

else do
{Replace the key d with the key from the successor}
k(v) <- k(s(v));
{ Delete the successor node, reattaching its right subtree. Note that

the successor never has a left subtree }
if s(v) = r(v) then r(v) ~ r(r(v))
else l (f (s(v))) ~ r(s(v))
remove s(v) from T.

Knuth 's modification is easily incorporated.
If we are interested in a precise mathematical analysis of long-term behavior, the

obvious process to study is the one in which deletions and insertions alternate, thus
maintaining a fixed number of nodes in the tree. We are concerned with the
asymptotic growth of the average IPL with N, where N is the number of nodes.

Normally, we assume that the values that are inserted come from some fixed
domain. In the analysis we present, however, we always reinsert the same value,
and hence issues of domain are irrelevant.

2. The Skewing Factor. It is apparent that one of the features of the Hibbard
algorithm is its decided asymmetry when the right subtree of the node is nonempty.
In this case, the key is replaced by the next larger key from the tree, and we can
think of the node as having moved to the right a short distance in the domain from
which the keys are drawn. Keep in mind that the root node acts as a divider for the
subtree for future insertions, with all keys larger than the root key falling to the

298 J. Culberson and J. I. Munro

Insertions

Fig. 1. Domain splitting by root.

right, and those smaller falling to the left. Having moved the root to the right,
further insertions will be slightly more likely to fall to the left of the node than
were insertions made prior to the move. Thus, the right subtree of the root will
become smaller on average, with a corresponding increase in the left subtree.
This is illustrated in Figure 1, where the larger key "b" replaces the deleted
key "a."

We would like to think of the root as taking a step 1/Nth of the way across the
domain each time it is updated. Thus, if there are k keys in the right subtree, then on
average it would require approximately k moves of the root until the right subtree
becomes empty. However, a complete analysis based on this idea has proved
elusive [63. (In an earlier analysis 1-53 it was claimed that the expected IPL for trees
drawing new keys from a uniform distribution would be t~(N3/2). Although we
believe the result is correct, the proof assumes that the successive moves of a tag
(defined in the next section) all have the same distribution. The distributions of
such moves are subtly different, but probably close enough for purposes of the
analysis.)

If we restrict the value inserted to be the value just deleted, then it will take
exactly k moves of the root to empty a subtree of size k. We refer to this as a process
on an Exact Fit Domain (EFD) tree, since one way of defining the situation is to
restrict the domain so that the number of distinct values in the domain is exactly
the number of nodes in the tree. We note that the root node of any subtree will
slowly move to the right, until its right subtree becomes empty, when the next
update will delete the node. Thus, the tree will become skewed to the left. One effect
of this skewing is that the length of the path from the root of the tree to the leftmost
node becomes greatly elongated. We call the nodes along this path the backbone of
the tree. Our analysis focuses on the backbone of the EFD tree, and remarkably
this restricted analysis is sufficient to show that the expected IPL of an EFD tree is
O(N3/2).

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees 299

3. The Analysis. One problem encountered in studying the backbone is that,
when a key is scheduled to be deleted and the node containing it has no right
subtree, the node disappears. We establish a system of tags for the updating process
using the Hibbard algorithm.

The smallest key in the tree (and hence the key in the leftmost backbone node)
receives a new tag whenever it is inserted. This is the only way a tag can be created.
Whenever a key is deleted, all the tags currently attached to it are moved to the
next larger key, unless the deleted key is the largest, in which case its tags are
discarded. For completeness, we assume that initially the smallest key has a tag,
and the keys in the remaining backbone nodes of the tree are tagged with temporary
tags, which we subsequently ignore.

It is now an easy exercise to prove that, under the Hibbard algorithm, at any
time during the updating process, precisely those keys in the backbone are tagged.
Using this equivalence in what follows, we often refer to the backbone nodes as
being tagged. Similarly, each contiguous set of untagged keys is precisely the set of
keys in the right subtree of the node containing the tagged key to its left. We often
use the term interval to refer to these sets of keys.

The lifetime of a tag is the number of updates from the time of its creation until it
has been discarded. We note that on an EFD tree, a tag will move exactly N times,
the last move being the update which discards it. Since each key is chosen with
equal probability on each update, the probability that a particular tag moves is 1/N
per update, and thus the expected lifetime of a tag is N 2 updates.

Using this expected lifetime, we can state

LEMMA 1. After an average of N 2 updates, an EFD tree will be in steady state.

PROOF. We note that the updating process is a Markov chain, in which the
different tree shapes are the states, and thus it must eventually reach a steady-state
distribution. Consider a sequence of updates which starts with the first move of
some tag and ends with the kth move. We specify this sequence by
1, sl, 2, s2 Sk- 1, k, where each integer i, 1 < i _< k, represents the update on key
i that moves the tag the ith time, and s i, 1 < i < k, are the sequences of updates
between the successive moves of the tag. During the updates, in any si, the tag is on
key i + 1 implying tha tkey i + 1 is in the backbone, and all keysj < i are in the left
subtree of the node containing i + 1. Thus, in any s~, only those updates on keys j,
1 < j < i, can effect a change in the shape of the subtree to the left of the tag. By
induction, the shape of the subtree to the left of the tag at the end of the sequence is
entirely independent of the shape of the tree prior to the sequence. Since this is true
for every tag, it follows that when the tag which was initially on the smallest key is
removed from the tree, the tree shape has the same distribution as it will have after
the removal of any subsequent tag. As stated previously, the expected lifetime of
this tag is N 2 updates. Note that we do not mean by this that the distribution of
tree shapes immediately after removing tags from the tree is the steady-state
distribution, since clearly this is not the case. Rather it means that if we randomly
sample the process after N 2 updates have occurred, then we will find the
steady-state distribution. []

300 J. Culberson and J. I. Munro

This result concurs with the simulation results of Eppinger [8] and Culberson
[4], [6] on trees of random domain, wherein it was noted that after approximately
N 2 updates, the IPL and other measures stabilized.

Note that when a tag is first created, the two smallest nodes in the tree are
tagged. We can think of these two tags as defining an interval, which currently has
zero keys in it. This interval also determines the size of the right subtree of the key
under the leftmost tag. As long as the two tags are moved in such a way that they
do not collide, that is, become attached to the same key, they will continue to define
the right subtree of the leftmost tag of the pair in this way. The number of changes
to a noncollapsing interval between two such tags during the lifetime of the upper
tag must be less than or equal to 2N - 2, since the upper tag can move no more
than N - 1 times after the lower tag is created, and the lower tag must move no
more times than the upper, or they will collide.

By computing bounds on the expected size of such noncollapsing intervals, we
can bound the size of the subtrees of the backbone, as well as the number of nodes
in the backbone. Note that only those updates which affect the size of the interval
in question concern us here. Updates on keys other than the two at the extrema of
the interval have no effect on the number of keys in the interval. Updates on the
keys within the interval may change the shape of the subtree, but we do not analyze
this shape. Since an update reinserts the deleted key, the new key must fall in the
same interval, and so the number of keys in the interval does not change for such
updates. Similar remarks apply to updates on keys which fall outside the interval.
We refer to the number of keys in the interval as the size of the interval, or
equivalently as the size of the subtree.

We now compute the expected size of the interval when the upper tag moves past
thej th key as in Figure 2. To understand the motivation behind this, notice that as
long asj is the largest (i.e., rightmost) key in the interval, then the size of the interval
must be less than or equal to its size whenj entered it. We see that the expected size
of the right subtree of the root will be less than or equal to the value obtained by
setting j -- N in the following lemma.

LEMMA 2. In an EFD the expected size of the interval containin9 the j th smallest
key at the time it enters the interval is

_ 2 2 J - 2

PROOF. On the first move of the upper tag, the second smallest key is added to the
interval between the two tags. Similarly, the j th key is added to the interval on the
j - 1st move of the upper tag. To simplify the algebra, we let k = j - 1, and solve
for the expected number of nodes in the interval between two tags after the upper
tag has moved k times under the condition that after any ith move of the upper tag,
1 _< i < k < N, the lower tag has moved fewer than i times.

We can model the behavior of the number of keys in the interval by a simple
coin-flipping process. Here a head corresponds to a move of the right tag, or an

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees

Update Onj Moves It Into The Subtree

 eys I I I I

J

J

Fig. 2. Moving thejth node into the interval.

301

increase of one in the number of keys, and a tail to a move of the left tag, or a
decrease of one in the number of keys. The number of keys in the interval
corresponds to the number of heads minus the number of tails. We start with no
heads or tails, and we wish to know what the expected difference is after some
number of heads, given that the number of tails never exceeds the number of heads.
This process is known in the literature as a simple random walk with an absorbing
barrier at - 1. See, for example, Feller I-9].

To aid in understanding the analysis, we represent the possible walks for k < 3 in
Figure 3. Initially, we start at the origin, which is the top circle of the diagram. We
use k to represent the number of steps to the right, and i the net distance moved to
the right. Thus, i under the coin model is the difference between the number of
heads and the number of tails. In the figure all moves are downward, and either to
the right, corresponding to a head (move of the upper tag), or to the left
corresponding to a tail (move of the lower tag).

Using our oblique coordinate system, we let (i, k) be the position in the diagram
representing a distance of i from the origin after k heads. We let P~.k represent the
number of ways of reaching (i, k) with no point on the path having a negative i
component, and also the last move being be a head. In the diagram this
corresponds to the number of paths by which we could reach the ith position from
the origin along the upward diagonal ending at k. For example, the positions
reachable with k = 3 are indicated by the double circles in the diagram. Here

302 J. Culberson and J. I. Munro

Start
k= 0

,,a

:: ,-., U :�9 "D / "O
i= 0 1 2 3 4 5 6

Fig. 3. Exact fit domain analysis.

Pl,a = 2, P2 ,3 : 2, and P3 ,3 = 1. Note that P o , 3 : 0, since we are looking at the
state immediately after the kth right move. Thus, in the diagram we do not include
the dashed edges along the third diagonal in computing P~, 3. Note the implication
that there is always at least one node in the initial right subtree of the root (for
N > I) .

Since left and right moves are equally probable, in the unbounded case the
probability of any given path of length j is (�89 The depth of a point (i, k) is 2k - i,
and so the probability, P{(i, k)}, of reaching (i, k) on a random walk by one of the
P~ k paths is 1l-~2k- iD Let Y be the event that, until k right moves have occurred, , \21 a i , k"

i _> 0 at all times. Let P{ Y} be the probability of Y. The expected value of i for a
given k and under the condition that i > 0 at all times is

k

~, iP{(i, k)}
E k = Eli[Y] - i=1

P{Y}

k

2i(! ~ 2 k - i p
1,2.l ~ i , k

i = 1

k
Z fl_'~2k - i lD

k 2 / Xi , k
i = 1

Using the ballot theorem of Feller. [9, Chapter III.1] the number of paths is

, (2k:,)
P i , k - - 2 k - - i

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees 303

and thus

~'~ (1 ~ 2 k - i

g k = i_-'~1 k2J 21~-- i N k

(:) ~ (�89 i 2k i DR

i=l 2k -- i

We can now solve for N k and D k. Letting j = k - i we get

t• V t!~J (k - j) k j KT
lVk = k2 / / ~ \ 2 1 ;

j=O

.~- (�89 3"= k + 1 k + l - 4k

Using the identity

(7)
we treat each of the terms in the preceding sum individually, ignoring for the
moment the factors independent ofj. The first term of the sum becomes

k- 1(1)j k

k~l[(k-l-j+2) (k -b j --I- 1)] ;~~i []
j=o k + 2 (�89 k + 2 (�89 + .= (�89 k k + 2 + j + 1

and using the telescoping property and applying repeatedly this becomes

/ 2 k + 1 \ 1 k-1 / 2 k + 1\ 1 k 1 (2k + 1\ 1 k 1
= t k + 2) (2) + t k + 3) (2) - + ' " + 2 k + 1 7 (2) -

Similarly, the second term is

:ii(�89 k '] , L I ~ (2 k [k ')] I

And finally the third term is

304 J. Culberson and J. I. Munro

Thus, combining these terms, together with the coefficients, gives

L L \k+lJJ

-- 4k(�89 zk-2 - (2 k k I)]- (�89 (�89]
and by straightforward expansion of the binomial coefficients this becomes

By an analogous set of manipulations we get

Thus,

E k ~ 1,

Using Stirling's approximation leads to

Ek "~ X//~.

Finally, recall that the upper tag starts on the second smallest key, and thus the kth
move of the upper tag corresponding to adding the k + 1st key to the subtree.
Thus, by substituting j - 1 for k we finish our proof. []

In the following lemma, the rth subtree refers to the right subtree of the rth
backbone node from the right, where the root is the first backbone node. If there is
no rth backbone node, because the backbone has fewer than r nodes, then we
consider the rth subtree to be empty; that is, it has a size of zero.

LEMMA 3. The expected size of the rth subtree on an EFD after sufficiently many
updates is O(N1/2),for all r.

PROOF. This follows from the previous lemma on observing that the expected size

of the subtree to the left of a tag on the kth node is O(v/k) = O(x /~). The topmost

subtree is O(v/N) when the Nth node is first introduced, and further updates can
only reduce this size until the Nth node is eventually tagged again. []

In the next lemma we compute a bound on the length of the backbone.

LEMMA 4. The expected number of nodes in the backbone of the EFD tree is

| after sufficiently many updates.

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees 305

PROOF. Let v be a node in the backbone of a tree, and let r(v) be the right subtree
of v. We define Wk, the weight of the backbone with respect to key k, where k is in
one of the nodes in r(v) u {v}, as 1/(1 + Ir(v)l). Thus, the number B of nodes in the
backbone of an N node tree is

N

B = E W k .
k = l

Intuitively, the density of the backbone nodes near the right of a tree is not
increased by the fact that they are near the upper boundary. More formally, if we
consider the first N nodes of an M node tree, where M may be arbitrarily large, we
see that the number of nodes in the backbone over the first N nodes is identical to
the number of backbone nodes in an N node tree in which the set of updates is the
same as the set of updates over the first N nodes of the M node tree. This is true
since an update on any key k does not affect the structure of the backbone to the
left of the key. Thus, where we now consider the weights from the M node tree, we
see that the number of backbone nodes over the first N nodes is

N

B < 1 + ~ w k,
k = l

where the 1 comes from the observation that the rightmost backbone node may
now be distributed over some of the keys to the right of the Nth node. If we
consider the average weight taken over time on the kth key, we see that

N

E[B] < 1 + ~ E[wk].
k = l

We now compute an upper bound on E[-Wk], for k < N. We proceed in a manner
similar to that in the proof of Lemma 2. That is, we compute a bound based upon the
ways in which an initially adjacent pair of tags could have moved to define the
interval containing k. (If k is tagged, we consider it to be part of the interval to the
right.) First we compute the expected weight R k on a key in the interval to the left of
the kth key, immediately before the kth key first falls into the interval (actually, we
compute the ratio for the k + 1st, but this will not make any difference in the
asymptotic result that we derive):

k

E �9 1 2 k - i (1/t)(~) Pi, k
R k = i = l k

E[l'~2k - i D
\ 2 / l i , k

i = l

where the term 1/i is the assigned weight, given that there are i - 1 nodes in the
subtree. Using the value of Pi.k from Lemma 2, we find that the expected ratio is

E (�89 1 2k i

R k = i= 1 2k - i
Dk

306 J. Culberson and J. I. Munro

where D k is defined as in Lemma 2. We now compute the value of the numerator by

(:) (:) • (�89 1 2k i 2k i - 1
i= 1 2 k ~ = k i = (� 8 9 - - 1

= ~ (~) (�89 + j -
�9 = k - 1 "

Now using the same techniques as in Lemma 2, this reduces to

1

2k"

Recalling that

from Lemma 2, and using Stirling's approximation we find that the expected
weight is

R k ,~ 2x/k"

Let Zi be the event that the first tagged key to the right of k is key k + i, i >_ 1.
Since we are considering the noncollapsing interval containing k, once a key k + i
enters the interval, the weight on k cannot decrease until k + i + 1 enters, but may
increase as keys are deleted from the left of the interval. It follows that E[wk[Zi] <_
Rk+ i. (For i > 1, the inequality is strict, since Zi is equivalent to stating that there
are at least i keys in the interval to the left of a tag on k + i.) Since R k is decreasing
in k, Rk+ ~ <_ R k. We can extend our definition of Zi using i = M - k + 1 for the
event that no key to the right is tagged, in which case w k <_ 1/(M - N) < Rk, for
k _< N and large M. Then,

E[Wk] = Z E[WkIZ,]P{Z,} <_ Rk.
i > 1

To complete the proof,

N

E[B] ~_ 1 + ~ R k
k = l

n 1

= o (v @) ,

where the last follows by comparing the summation of 1/x/~ with the integral to see

that the result is ~ 2v/N.

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees 307

From Lemma 3 we see that the expected size of any subtree is O(x /~), and thus
by Jensen's inequality [10, p. 153] the expected number of nodes in the backbone is

f~(x//N). Together, these bounds complete the lemma. []

We note that in fact the upper bound is approximately x / ~ ~ 1.77.. x /~ . Since
this is based on the expected weight when the kth key first enters the interval, it is in
a sense based on the minimal expected interval that is on a maximal expected
weight. On the other hand, if we look at the expected interval size, we can see that

when the kth key is first tagged the size of the interval to its right is still O(x/~). This

suggests that the expected size of the interval is x / ~ _ o(w/k) over all time. We
conjecture that a better approximation to the coefficient can be obtained by
ignoring the small order term and taking the inverse of this expectation to be the
expected proportion of the time that the kth key is tagged. Thus,

N 1
E[B] ~ E

k = l N / / ~

2

~ 1.128 .. x /~ .

This conjecture has the virtue of being in excellent agreement with the results of the
simulations performed upon EFD trees [6].

We now have two facts which together imply that the IPL of the EFD tree is
O(N 3/2) if more than N 2 updates have been performed. These are the upper bound
on the subtree size, and the upper bound on the expected number of backbone
nodes. We first prove the lower bound on the IPL.

LEMMA 5. The asymptotic expected IPL of a tree is ~(N3/2).

PROOF. We let N i be the number of nodes (including the backbone node) in the
ith subtree from the right of the tree. Using the upper bound of Lemma 4, we
choose K and c such that E[N.d _ K -- cN 1/2 for all i. Let Ci be the contribution of
the i largest keys to the IPL. Then the expected contribution of the jK largest keys
is

E[C~x-I> ~ i E [N ,] + (j + 1) K - E [N J -- ~ 1
i = 1 i i = 1

since the path to any node in the ith subtree (except the backbone node) must have
length at least i, and the path to any node not in the first j subtrees (or the
backbone) must have length of at least j + 1. The last term compensates for the
backbone nodes, where the ith backbone node is at distance i - 1 from the root. An
easy induction shows that

i E [N J + (j + 1) K - - E[N~] _> iK.
i = 1 i

308 J. Culberson and J. I. Munro

~-'j+ 1 Thus E[CjK] >_ 2i= 1 iK -- Z.,i= 1 1. Setting j = L.N/K], we find

LNIKA

E [C N] -> 2 iK - - O (x / / N) = ~'~(N3/2).
i=1

[]

Next we prove the upper bound.

LEMMA 6. The asymptotic IPL of a tree is 0(N3/2).

PROOF. We build a pessimal tree, in which we put O(N 1/2) nodes in the backbone
with a leading coefficient larger than that of the expected number of nodes. We then
add nodes until each subtree contains O(N x/z) nodes, again with a sufficiently large
coefficient. Note that this tree will have more than N nodes. For our upper bound
we assume that each subtree is linear, which is the worst case. We note that the IPL
can be computed as the sum over each subtree of the IPL of that subtree, plus the
sum of the distances to the roots of the subtrees times the number of nodes in the
corresponding subtree. The IPL of each subtree is

O(N~/2)

IPL s = ~ i
i=1

= O (N) .

Since there are O(N 1/2) such subtrees, this implies that the sum of all the IPLs of
the subtrees is 0(N3/2). The sum of the distances to the roots of the subtrees is

O(N 1/2)
iO(N 1/2) = O(N3/2).

i=1

Thus, the total of these two is also O(N3/2). We see that for each subtree of the
expected asymptotic tree, the contribution to the IPL is less than the contribution
of the corresponding subtree in the pessimal tree, and there are more subtrees in the
pessimal tree than in the average tree. Hence, the expected asymptotic IPL is less
than or equal to that of the pessimal tree, which completes the lemma. []

Finally, we combine these two lemmas to form

THEOREM 1. The IPL of the EFD tree is O(N3/2).

Note that the above analysis does not depend upon the shape of the right
subtrees of the backbone nodes. Thus this analysis applies to any algorithm on an
EFD which is similar to the Hibbard algorithm in that the successor is used to
replace the deleted node, or if no successor exists, then the node is deleted. Such an
algorithm may restructure the right subtree in anyway it pleases without changing
the asymptotic result.

We can also use similar techniques to analyze the following. Knuth [16] presents
an improved algorithm that differs from Hibbard's only in checking for an empty
left subtree before choosing the successor to replace the key. If the left subtree is

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees 309

empty, then the right son replaces the node containing the deletion key, instead of
the successor. This algorithm is one of the more popular textbook algorithms for
deletion in binary search trees [1], [19], [17].

Knuth [16] shows that for one application, his rule always results in a tree that is
at least as well balanced as the one produced by the Hibbard algorithm when
applied to the same tree, and is often better. However, we have the following
theorem.

THEOREM 2. The Knuth algorithm used on an EFD tree results in O (N 3/2) expected
IPL.

�9 PROOF. In the previous analysis only the backbone deletions are considered.
Thus the only deletions that could change the results of the analysis for the Knuth
algorithm are those involving the leftmost node in the tree, since it is the only
backbone node with an empty left subtree. Even then, the result differs only if the
right subtree of that node has at least two nodes in its backbone. In that case, the
leftmost tag moves to the right as before, but one or more additional tags must now
be inserted between the two smallest tags. We call these tags k-tags. For example, if
we delete "a" from the left tree in Figure 4 using the Knuth algorithm, then both
"b" and "c" are added to the backbone, forcing us to introduce the k-tag labeled
"0," in addition to the new tag "3" on "a." It is easily seen that both the Knuth and
Hibbard algorithms produce the same set of tags, and that the tags move
identically under each. In addition, the k-tags introduced by the Knuth algorithm
also move as they would under the Hibbard algorithm, once they are created. Thus,
the Knuth algorithm can only reduce the size of the resulting subtrees, and increase
the length of the backbone, and so the average IPL is still ~(N3/2).

To prove the upper bound, we divide the tree on thef th key from the left of the
tree, withf = 3J-log 2 N-]. For any sequence of updates, there are just two ways that
a key to the right of thef th key can be k-tagged under the Knuth algorithm. Either
the k-tag was created directly on a key to the right of (or on) the f t h key, or the
k-tag was created to the left of the f t h key.

Fig. 4. Adding new tags by Knuth deletion.

310 J. Culberson and J. I. Munro

We consider first the case of k-tags created to the right of the f t h key. For any
pair of adjacent tags, the probability that the upper tag passes t h e f t h key before
the first move of the lower tag is (1/2) I, and thus the steady-state probability that
t he f th key is in the leftmost interval of the backbone is O((1/2)s). Only in this case
can a k-tag be created directly on or to the right of the f t h key by the Knuth
algorithm. The probability that the smallest key is updated is 1IN per update, and
even if the f t h key is in the leftmost interval (and thus there may be nodes
to its right also in the interval), less than N k-tags can be created on the next
update. Thus the expected number of k-tags created to the right of t h e f t h key per
update is bounded by O((1/N)/(N/2I)) = O((�89 We know that the expected time
any tag remains on the tree is O(N z) updates, and thus using Little's Law (see, for
example, I12]) we see that, in the steady state, the expected number of k-tags on the
tree which were created to the right of the f t h key is 0(N2/2 I) = O(1/N) for
f = 3[log 2 N-].

Turning to the k-tags created to the left of t he f th node, we note that once a k-tag
is created it behaves identically under either algorithm. Thus, we can consider these
k-tags as tags starting to the left on an N - f + 1 node tree under the Hibbard
algorithm. As a worst case, let us assume that t h e f t h key is tagged with a tag or k-
tag at all times, and then treat the f t h key as the smallest key of our N - f + 1
node tree. Therefore, by our previous lemmas, on average there are

O(x/N - f + 1) keys to the right of the f t h key tagged with tags or k-tags which
started to the left of the f t h key.

Finally, even if the Knuth algorithm could somehow contrive to keep
all the keys to the left of the f t h key tagged or k-tagged, this adds at most
a term of O(log N) to the expected number in the backbone. Thus, the expected
number of nodes in the backbone for the Knuth algorithm is bounded by

O(~/N - f + 1) + O(1/N) + O(log N) = O(v/N), and we note that in fact this
has the same leading coefficient as in the result for the Hibbard algorithm. We can
now derive an upper bound of O(N 3/2) for the expected IPL using the proof of
Theorem 2. []

We should mention that the Knuth algorithm is free to increase the rebalancing
effects on the right subtrees, and, guessing that the size of the leftmost subtree is
probably bounded by a small constant, we expect almost no change in the behavior
of the backbone. Simulation results [4] suggest that on average the Knuth
algorithm produces a tree with a slightly smaller cost than does the Hibbard
algorithm.

4. Conclusion. We have shown that a restricted form of binary search trees
develop an average IPL of | 3/2) when subjected to a sufficiently long sequence
of updates using the Hibbard deletion algorithm and standard leaf insertion. We
have also shown that for these trees the improved algorithm given by Knuth has
similar asymptotic behavior. We believe these results also apply to the more usual
model wherein the keys to be inserted during the updating process are drawn at
random.

Standard Deletion Algorithms in Exact Fit Domain Binary Search Trees 311

When Binary Search Trees are to be used dynamically, we recommend a simple
modification to the Knuth algorithm that appears to eliminate this deterioration in
performance. When both subtrees are nonempty, choose at random either the
successor or the predecessor as the replacement node for the deleted element, or for
that matter, simply alternate. This removes the asymmetry of the algorithm, and
it would appear that no skewing of the tree should take place. The experimental
evidence [41, I-8"1 tends to confirm this conjecture. Indeed, indications are that in
trees subjected to updates using this algorithm the average search cost is less than
that in trees grown from random sequences of insertions.

References

I-1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data Structures and Algorithms, Addison-Wesley,
Reading, MA, 1983.

1,2] Baeza-Yates, R. A., A Trivial Algorithm Whose Analysis Isn't: A Continuation, BIT, 29 (1989),
88 113.

1,3] Booth, A. D., and Colin, A. J. T., On the Efficiency of a New Method of Dictionary Construction,
Information and Control, 3 (1960), 327-334.

1,4] Culberson, J. C., Updating Binary Trees, Technical Report CS 84 08, University of Waterloo,
Waterloo, Ontario, March 1984.

1,5] Culberson, J., The Effect of Updates in Binary Search Trees, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, Providence, RI, 1985, pp. 205-212.

1,6] Culberson, J., The Effect of Asymmetric Updates in Binary Search Trees, Ph.D. Thesis, University
of Waterloo, Waterloo, Ontario, 1986.

1,7] Culberson, J., and Munro, J. I., Explaining the Behavior of Binary Search Trees Under
Prolonged Updates: A Model and Simulations, The Computer Journal, 32 (1989), 68-75.

1,8] Eppinger, J. L., An Empirical Study of Insertion and Deletion in Binary Trees, Communications of
the Association for Computing Machinery, 26 (1983), 663-669.

1,9] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. I, Wiley, New York,
1968.

1,10] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York,
1971.

1-11] Hibbard, T. N., Some Combinatorial Properties of Certain Trees with Applications to Searching
and Sorting, Journal of the Association for Computing Machinery, 9 (1962), 13-28

[12] Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, Holden-Day, San
Francisco, 1980.

1,13] Jonassen, A. T., and Knuth, D. E., A Trivial Algorithm Whose Analysis Isn't, Journal of
Computer and System Sciences, 16 (1978), 301-322.

1,14] Knott, G. D., Deletion in Binary Storage Trees, STAN-CS-75-491, Ph.D. Thesis, Stanford
University, May 1975.

[15] Knuth, D. E., Fundamental Algorithms, The Art of Computer Programming, Vol. I, Addison-
Wesley, Reading, MA, 1968.

[16] Knuth, D. E., Searching and Sorting. The Art of Computer Programming, Vol. III, Addison-
Wesley, Reading, MA, 1973.

1,17] Tenenbaum, A. M., and Augenstein, M. J., Data Structures Using Pascal, Prentice-Hall,
Englewood Cliffs, N J, 1986.

1,,18] Windley, P. F., Trees, Forests, and Rearranging, The Computer Journal, 3 (1960), 84-88.
1,19] Wirth, N., Algorithms & Data Structures, Prentice-Hall, Englewood Cliffs, N J, 1986.

