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Analysis of the Standard Deletion Algorithms in 
Exact Fit Domain Binary Search Trees 1 

Joseph Cu lbe r son  2 and  J. Ian  M u n r o  3 

Abstract. It is well known that the expected search time in an N node binary search tree generated by a 
random sequence of insertions is O(log N). Little has been published about the asymptotic cost when 
insertions and deletions are made following the usual algorithms with no attempt to retain balance. We 
show that after a sufficient number of updates, each consisting of choosing an element at random, 
removing it, and reinserting the same value, that the average search cost is O(N1/2). 
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1. Introduction.  Binary  search trees are  wel l -known da t a  s tructures,  often used 
when fast search,  insert ion,  and  de le t ion  are  required.  They also suppor t  nearest-  
ne ighbor  and  range queries. W h e n  the search trees are well ba lanced,  any  of  these 
ope ra t ions  can be done  in O(log N)  t ime on trees con ta in ing  N items. 

We follow the usual  def ini t ions of the field. A binary search tree is a finite set of  
nodes  which is ei ther  empty ,  or  consists  of  a roo t  and  two dis joint  b ina ry  trees 

called the left and  r ight  subtrees.  Each node  conta ins  a dis t inct  m e m b e r  of  a l inear  
o rdered  set cal led a key. If  v is a n o n e m p t y  node  of  a tree, then l(v) designates  the 
left subtree,  r(v) the r ight  subtree,  and  k(v) the key con ta ined  in v. The father, f ( v )  of 
the node  or  subtree  roo ted  at  v are  equiva lent  and  are defined by  the re la t ion  
f ( l (v ) )  = f ( r ( v ) )  = v. The search property is defined by the rule tha t  for each node  
v e T, each key in the left subtree  of  v is less than  k(v), a n d  each key in the r ight  
subtree  of  v is grea ter  than  k(v). Hencefor th ,  we refer to b ina ry  search trees s imply 
as trees. 

The  idea of the next larger  key in the subtree  roo t ed  at  node  v is crucial  to the 
de le t ion  a lgor i thms  we discuss. Hence,  the successor, s(v), of a node  v ~ T is defined 
to be that  node  in the r ight  subtree  with the m i n i m u m  key. If the subtree  is empty,  
then the funct ion is undefined.  A na tu ra l  defini t ion for s(v), when the subtree  is 
empty ,  would  be the ances tor  of  v which conta ins  the next largest  key;  however ,  for 
purposes  of  the descr ip t ion  of  the a lgo r i thm and  the subsequent  analysis,  the above  
defini t ion is preferable.  
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Our concern is the effect of deletions and insertions on the expected cost of 
accessing elements in a binary search tree using standard deletion and insertion 
schemes that do not explicitly rebalance the tree. The most natural insertion 
algorithm E3], [18], [11] is to add a new element in the position at which a search 
for it ends unsuccessfully. Our interest is in the combined effect of this insertion 
scheme and the deletion algorithms of Hibbard [11] and Knuth [16]. Hibbard 
proposed his deletion scheme in 1962. In this algorithm, if the right subtree of the 
node containing the key to be deleted is not empty, then the next largest key is 
removed from the node containing it and used to replace the deleted key. The 
empty node is then deleted as described in detail below. Otherwise, the node is 
deleted, and the left subtree, if it exists, becomes the son of the node's parent. Knuth 
suggested an improvement. If the left subtree is empty, the node can be deleted 
directly, attaching the right subtree to the node's parent. This algorithm often 
results in a reduced average cost for any given deletion, and never produces a worse 
cost. 

Hibbard [11] observed that doing N + 1 random insertions, followed by one 
random deletion by his method, results in the same shape distribution of trees as is 
obtained by doing N random insertions. Thus, it was thought that deletions do not 
affect the expected cost of binary search trees. The Knuth algorithm does not have 
this property. Knott  [14] observed that after making another insertion this 
property is no longer preserved for the Hibbard algorithm either. Knott  performed 
simulations of these algorithms on small trees, and noted that the empirical 
evidence suggested that the expected cost was reduced. 

An exact analysis appears to be very difficult, having been so far accomplished 
for trees of three or four nodes [13], [2]. In each of these cases, the analysis verifies 
that the expected cost is reduced over that of a tree built from random insertions. 

Eppinger [8], and Culberson [4], and Culberson and Munro [7] ran more 
extensive simulations in which a large increase in the expected search cost was 
observed for larger trees. Eppinger conjectured that the expected cost is O(log 3 N). 
In what follows, we show that if, after each deletion, we re-insert the same value 
that we deleted, then the steady-state expected cost is | The results of 
extensive simulations strongly supported the conjecture that this bound also 
applies to binary search trees wherein the insertion values are drawn at random 
from some domain. 

The key ideas of our proof hinge on the asymmetry inherent in the standard 
deletion algorithms. In either algorithm, when both subtrees of the node to be 
deleted are nonempty, we consistently choose the next key to the right of the node 
as the replacement key. If we randomly decide between a left or right choice for the 
replacement, then the asymmetry disappears. Experimental evidence lends cre- 
dence to the hypothesis that in this case the expected cost is reduced on average by 
a long sequence of updates, and thus remains O(log N), 

Our analysis will give bounds on the Internal Path Length (IPL) of a tree, which 
is the sum over all the nodes in a tree of the length of the path to the node from the 
root node. The average length of a search path is the IPL of the tree divided by the 
number of nodes N. The average length of a search path represents the average cost 
of accessing a key. 
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To insert a key, ~t leaf is created containing the key and is attached in the unique 
position that maintains the search property of the tree. This algorithm was 
discovered independently by several researchers including Windley [18], Booth 
and Colin I-3], and Hibbard [11]. As is well known (see, for example, Knuth [16, 
Chapter 6.2.2]) the expected IPL of a tree formed by this insertion process is 
approximately 1.386N log2 N. We caution the reader that this is quite different 
from all trees being equally likely, which has O(N 3/2) IPL [15]. 

One of the earliest and best-known deletion algorithms is that of Hibbard [11] 
which we restate more formally below using the notation outlined above for 
navigating through the tree. The [Ur] means either l or r as appropriate in the 
context. 

HIBBARD ALGORITHM 
To delete a key d from a tree T, find v e T such that k(v) = d. 
if r(v) = ~ then do 

{ The right subtree is empty, so delete the node containing the key 
and reattach the left son as the appropriate left or right son of the 
parent } 

if v is not the root [I /r]( f (v) )  ~ l(v); 
{ If v is the root then l(v) becomes the new root } 
remove v from T. 

else do 
{Replace the key d with the key from the successor} 
k(v) <- k(s(v)); 
{ Delete the successor node, reattaching its right subtree. Note that 

the successor never has a left subtree } 
if s(v) = r(v) then r(v) ~ r(r(v)) 
else l ( f  (s(v))) ~ r(s(v)) 
remove s(v) from T. 

Knuth 's  modification is easily incorporated. 
If we are interested in a precise mathematical analysis of long-term behavior, the 

obvious process to study is the one in which deletions and insertions alternate, thus 
maintaining a fixed number of nodes in the tree. We are concerned with the 
asymptotic growth of the average IPL with N, where N is the number of nodes. 

Normally, we assume that the values that are inserted come from some fixed 
domain. In the analysis we present, however, we always reinsert the same value, 
and hence issues of domain are irrelevant. 

2. The Skewing Factor. It is apparent that one of the features of the Hibbard 
algorithm is its decided asymmetry when the right subtree of the node is nonempty. 
In this case, the key is replaced by the next larger key from the tree, and we can 
think of the node as having moved to the right a short distance in the domain from 
which the keys are drawn. Keep in mind that the root node acts as a divider for the 
subtree for future insertions, with all keys larger than the root key falling to the 
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Insertions 

Fig. 1. Domain splitting by root. 

right, and those smaller falling to the left. Having moved the root to the right, 
further insertions will be slightly more likely to fall to the left of the node than 
were insertions made prior to the move. Thus, the right subtree of the root will 
become smaller on average, with a corresponding increase in the left subtree. 
This is illustrated in Figure 1, where the larger key "b"  replaces the deleted 
key "a."  

We would like to think of the root as taking a step 1/Nth of the way across the 
domain each time it is updated. Thus, if there are k keys in the right subtree, then on 
average it would require approximately k moves of the root until the right subtree 
becomes empty. However, a complete analysis based on this idea has proved 
elusive [63. (In an earlier analysis 1-53 it was claimed that the expected IPL for trees 
drawing new keys from a uniform distribution would be t~(N3/2). Although we 
believe the result is correct, the proof assumes that the successive moves of a tag 
(defined in the next section) all have the same distribution. The distributions of 
such moves are subtly different, but probably close enough for purposes of the 
analysis.) 

If we restrict the value inserted to be the value just deleted, then it will take 
exactly k moves of the root to empty a subtree of size k. We refer to this as a process 
on an Exact Fit Domain (EFD) tree, since one way of defining the situation is to 
restrict the domain so that the number of distinct values in the domain is exactly 
the number of nodes in the tree. We note that the root node of any subtree will 
slowly move to the right, until its right subtree becomes empty, when the next 
update will delete the node. Thus, the tree will become skewed to the left. One effect 
of this skewing is that the length of the path from the root of the tree to the leftmost 
node becomes greatly elongated. We call the nodes along this path the backbone of 
the tree. Our analysis focuses on the backbone of the EFD tree, and remarkably 
this restricted analysis is sufficient to show that the expected IPL of an EFD tree is 
O(N3/2). 
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3. The Analysis. One problem encountered in studying the backbone is that, 
when a key is scheduled to be deleted and the node containing it has no right 
subtree, the node disappears. We establish a system of tags for the updating process 
using the Hibbard algorithm. 

The smallest key in the tree (and hence the key in the leftmost backbone node) 
receives a new tag whenever it is inserted. This is the only way a tag can be created. 
Whenever a key is deleted, all the tags currently attached to it are moved to the 
next larger key, unless the deleted key is the largest, in which case its tags are 
discarded. For  completeness, we assume that initially the smallest key has a tag, 
and the keys in the remaining backbone nodes of the tree are tagged with temporary 
tags, which we subsequently ignore. 

It is now an easy exercise to prove that, under the Hibbard algorithm, at any 
time during the updating process, precisely those keys in the backbone are tagged. 
Using this equivalence in what follows, we often refer to the backbone nodes as 
being tagged. Similarly, each contiguous set of untagged keys is precisely the set of 
keys in the right subtree of the node containing the tagged key to its left. We often 
use the term interval to refer to these sets of keys. 

The lifetime of a tag is the number of updates from the time of its creation until it 
has been discarded. We note that on an EFD tree, a tag will move exactly N times, 
the last move being the update which discards it. Since each key is chosen with 
equal probability on each update, the probability that a particular tag moves is 1/N 
per update, and thus the expected lifetime of a tag is N 2 updates. 

Using this expected lifetime, we can state 

LEMMA 1. After an average of  N 2 updates, an EFD tree will be in steady state. 

PROOF. We note that the updating process is a Markov chain, in which the 
different tree shapes are the states, and thus it must eventually reach a steady-state 
distribution. Consider a sequence of updates which starts with the first move of 
some tag and ends with the kth move. We specify this sequence by 
1, sl, 2, s2 . . . . .  Sk- 1, k, where each integer i, 1 < i _< k, represents the update on key 
i that moves the tag the ith time, and s i, 1 < i < k, are the sequences of updates 
between the successive moves of the tag. During the updates, in any si, the tag is on 
key i + 1 implying tha tkey  i + 1 is in the backbone, and all keysj  < i are in the left 
subtree of the node containing i + 1. Thus, in any s~, only those updates on keys j, 
1 < j < i, can effect a change in the shape of the subtree to the left of the tag. By 
induction, the shape of the subtree to the left of the tag at the end of the sequence is 
entirely independent of the shape of the tree prior to the sequence. Since this is true 
for every tag, it follows that when the tag which was initially on the smallest key is 
removed from the tree, the tree shape has the same distribution as it will have after 
the removal of any subsequent tag. As stated previously, the expected lifetime of 
this tag is N 2 updates. Note that we do not mean by this that the distribution of 
tree shapes immediately after removing tags from the tree is the steady-state 
distribution, since clearly this is not the case. Rather it means that if we randomly 
sample the process after N 2 updates have occurred, then we will find the 
steady-state distribution. [] 
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This result concurs with the simulation results of Eppinger [8] and Culberson 
[4], [6] on trees of random domain, wherein it was noted that after approximately 
N 2 updates, the IPL and other measures stabilized. 

Note that when a tag is first created, the two smallest nodes in the tree are 
tagged. We can think of these two tags as defining an interval, which currently has 
zero keys in it. This interval also determines the size of the right subtree of the key 
under the leftmost tag. As long as the two tags are moved in such a way that they 
do not collide, that is, become attached to the same key, they will continue to define 
the right subtree of the leftmost tag of the pair in this way. The number of changes 
to a noncollapsing interval between two such tags during the lifetime of the upper 
tag must be less than or equal to 2N - 2, since the upper tag can move no more 
than N - 1 times after the lower tag is created, and the lower tag must move no 
more times than the upper, or they will collide. 

By computing bounds on the expected size of such noncollapsing intervals, we 
can bound the size of the subtrees of the backbone, as well as the number of nodes 
in the backbone. Note that only those updates which affect the size of the interval 
in question concern us here. Updates on keys other than the two at the extrema of 
the interval have no effect on the number of keys in the interval. Updates on the 
keys within the interval may change the shape of the subtree, but we do not analyze 
this shape. Since an update reinserts the deleted key, the new key must fall in the 
same interval, and so the number of keys in the interval does not change for such 
updates. Similar remarks apply to updates on keys which fall outside the interval. 
We refer to the number of keys in the interval as the size of the interval, or 
equivalently as the size of the subtree. 

We now compute the expected size of the interval when the upper tag moves past 
thej th key as in Figure 2. To understand the motivation behind this, notice that as 
long asj  is the largest (i.e., rightmost) key in the interval, then the size of the interval 
must be less than or equal to its size whenj  entered it. We see that the expected size 
of the right subtree of the root will be less than or equal to the value obtained by 
setting j -- N in the following lemma. 

LEMMA 2. In an EFD the expected size of the interval containin9 the j th smallest 
key at the time it enters the interval is 

_ 2 2 J -  2 

PROOF. On the first move of the upper tag, the second smallest key is added to the 
interval between the two tags. Similarly, the j th key is added to the interval on the 
j - 1st move of the upper tag. To simplify the algebra, we let k = j  - 1, and solve 
for the expected number of nodes in the interval between two tags after the upper 
tag has moved k times under the condition that after any ith move of the upper tag, 
1 _< i < k < N, the lower tag has moved fewer than i times. 

We can model the behavior of the number of keys in the interval by a simple 
coin-flipping process. Here a head corresponds to a move of the right tag, or an 
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Fig. 2. Moving thejth node into the interval. 

301 

increase of one in the number of keys, and a tail to a move of the left tag, or a 
decrease of one in the number of keys. The number of keys in the interval 
corresponds to the number of heads minus the number of tails. We start with no 
heads or tails, and we wish to know what the expected difference is after some 
number of heads, given that the number of tails never exceeds the number of heads. 
This process is known in the literature as a simple random walk with an absorbing 
barrier at - 1. See, for example, Feller I-9]. 

To aid in understanding the analysis, we represent the possible walks for k < 3 in 
Figure 3. Initially, we start at the origin, which is the top circle of the diagram. We 
use k to represent the number of steps to the right, and i the net distance moved to 
the right. Thus, i under the coin model is the difference between the number of 
heads and the number of tails. In the figure all moves are downward, and either to 
the right, corresponding to a head (move of the upper tag), or to the left 
corresponding to a tail (move of the lower tag). 

Using our oblique coordinate system, we let (i, k) be the position in the diagram 
representing a distance of i from the origin after k heads. We let P~.k represent the 
number of ways of reaching (i, k) with no point on the path having a negative i 
component, and also the last move being be a head. In the diagram this 
corresponds to the number of paths by which we could reach the ith position from 
the origin along the upward diagonal ending at k. For  example, the positions 
reachable with k = 3 are indicated by the double circles in the diagram. Here 
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Start 
k= 0 
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i= 0 1 2 3 4 5 6 

Fig. 3. Exact fit domain analysis. 

Pl,a = 2, P2 ,3  : 2, and P3 ,3  = 1. Note that P o , 3  : 0, since we are looking at the 
state immediately after the kth right move. Thus, in the diagram we do not include 
the dashed edges along the third diagonal in computing P~, 3. Note the implication 
that there is always at least one node in the initial right subtree of the root (for 
N > I ) .  

Since left and right moves are equally probable, in the unbounded case the 
probability of any given path of length j is (�89 The depth of a point (i, k) is 2k - i, 
and so the probability, P{(i, k)}, of reaching (i, k) on a random walk by one of the 
P~ k paths is 1l-~2k- iD Let Y be the event that, until k right moves have occurred, , \21 a i ,  k" 

i _> 0 at all times. Let P{ Y} be the probability of Y. The expected value of i for a 
given k and under the condition that i > 0 at all times is 

k 

~, iP{(i, k)} 
E k = Eli[ Y] - i=1 

P{Y} 

k 

2i( ! ~ 2 k - i p  
1,2.l ~ i , k  

i = 1  

k 
Z fl_'~2k - i lD  

k 2 /  Xi ,  k 
i = 1  

Using the ballot theorem of Feller. [9, Chapter III.1] the number of paths is 

, (2k:,) 
P i ,  k - -  2 k - -  i 
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and thus 

~'~ ( 1 ~ 2 k - i  

g k  = i_-'~1 k2J 21~-- i N k 

(:) ~ (�89 i 2k i DR 

i=l 2k -- i 

We can now solve for N k and D k. Letting j = k - i we get 

t• V t!~J (k - j )  k j KT 
lVk = k2 /  / ~  \ 2 1  ; 

j=O 

.~- (�89 3"= k + 1 k + l  - 4k 

Using the identity 

(7) 
we treat each of the terms in the preceding sum individually, ignoring for the 
moment the factors independent ofj.  The first term of the sum becomes 

k- 1(1)j k 

k~l[(k-l-j+2) (k -b j --I- 1) ] ;~~i [ ] 
j=o k + 2  (�89 k + 2  (�89 + .= (�89 k k + 2  + j + 1 

and using the telescoping property and applying repeatedly this becomes 

/ 2 k  + 1 \  1 k-1 / 2 k  + 1\ 1 k 1 (2k + 1\ 1 k 1 
= t k + 2 ) ( 2 )  + t k + 3 ) ( 2 ) -  + ' " +  2 k + 1 7 ( 2 ) -  

Similarly, the second term is 

:ii(�89 k ' ] , L I ~ ( 2 k [ k ' ) ] I 

And finally the third term is 
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Thus, combining these terms, together with the coefficients, gives 

L L \k+lJJ  

-- 4k(�89 zk-2 - ( 2 k  k I)]- (�89 (�89 ] 
and by straightforward expansion of the binomial coefficients this becomes 

By an analogous set of manipulations we get 

Thus, 

E k ~ 1, 

Using Stirling's approximation leads to 

Ek "~ X//~. 

Finally, recall that the upper tag starts on the second smallest key, and thus the kth 
move of the upper tag corresponding to adding the k + 1st key to the subtree. 
Thus, by substituting j - 1 for k we finish our proof. [] 

In the following lemma, the rth subtree refers to the right subtree of the rth 
backbone node from the right, where the root is the first backbone node. If there is 
no rth backbone node, because the backbone has fewer than r nodes, then we 
consider the rth subtree to be empty; that is, it has a size of zero. 

LEMMA 3. The expected size of the rth subtree on an EFD after sufficiently many 
updates is O(N1/2),for all r. 

PROOF. This follows from the previous lemma on observing that the expected size 

of the subtree to the left of a tag on the kth node is O(v/k ) = O(x /~  ). The topmost 

subtree is O(v/N ) when the Nth node is first introduced, and further updates can 
only reduce this size until the Nth node is eventually tagged again. [] 

In the next lemma we compute a bound on the length of the backbone. 

LEMMA 4. The expected number of nodes in the backbone of the EFD tree is 

|  after sufficiently many updates. 
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PROOF. Let v be a node in the backbone of a tree, and let r(v) be the right subtree 
of v. We define Wk, the weight  of the backbone with respect to key k, where k is in 
one of the nodes in r(v) u {v}, as 1/(1 + Ir(v)l). Thus, the number  B of nodes in the 
backbone of an N node tree is 

N 

B = E W k .  
k = l  

Intuitively, the density of the backbone nodes near the right of a tree is not 
increased by the fact that they are near the upper boundary. More formally, if we 
consider the first N nodes of an M node tree, where M may be arbitrarily large, we 
see that the number  of nodes in the backbone over the first N nodes is identical to 
the number  of backbone nodes in an N node tree in which the set of updates is the 
same as the set of updates over the first N nodes of the M node tree. This is true 
since an update on any key k does not affect the structure of the backbone to the 
left of the key. Thus, where we now consider the weights from the M node tree, we 
see that the number  of backbone nodes over the first N nodes is 

N 

B <  1 + ~ w  k, 
k = l  

where the 1 comes from the observation that the rightmost backbone node may 
now be distributed over some of the keys to the right of the Nth node. If we 
consider the average weight taken over time on the kth key, we see that 

N 

E[B] < 1 + ~ E[wk]. 
k = l  

We now compute an upper bound on E[-Wk], for k < N. We proceed in a manner  
similar to that in the proof  of Lemma 2. That  is, we compute a bound based upon the 
ways in which an initially adjacent pair of tags could have moved to define the 
interval containing k. (If k is tagged, we consider it to be part  of the interval to the 
right.) First we compute the expected weight R k on a key in the interval to the left of 
the kth key, immediately before the kth key first falls into the interval (actually, we 
compute the ratio for the k + 1st, but this will not make any difference in the 
asymptotic result that we derive): 

k 

E �9 1 2 k - i  (1/t)(~) Pi, k 
R k = i = l  k 

E[ l'~2k - i D 
\ 2 /  l i , k  

i = l  

where the term 1/i is the assigned weight, given that there are i - 1 nodes in the 
subtree. Using the value of Pi.k from Lemma 2, we find that the expected ratio is 

E (�89 1 2k i 

R k  = i= 1 2k  - i 
Dk 
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where D k is defined as in Lemma 2. We now compute the value of the numerator by 

(:) ( : )  • (�89 1 2k i 2k i - 1  
i=  1 2 k ~  = k i =  ( � 8 9  - -  1 

= ~ (~) (�89 + j - 
�9 = k - 1  " 

Now using the same techniques as in Lemma 2, this reduces to 

1 

2k" 

Recalling that 

from Lemma 2, and using Stirling's approximation we find that the expected 
weight is 

R k ,~  2x/k" 

Let Zi be the event that the first tagged key to the right of k is key k + i, i >_ 1. 
Since we are considering the noncollapsing interval containing k, once a key k + i 
enters the interval, the weight on k cannot decrease until k + i + 1 enters, but may 
increase as keys are deleted from the left of the interval. It follows that E[wk[Zi] <_ 
Rk+ i. (For i > 1, the inequality is strict, since Zi is equivalent to stating that there 
are at least i keys in the interval to the left of a tag on k + i.) Since R k is decreasing 
in k, Rk+ ~ <_ R k. We can extend our definition of Zi using i = M - k + 1 for the 
event that no key to the right is tagged, in which case w k <_ 1/(M - N)  < Rk, for 
k _< N and large M. Then, 

E[Wk] = Z E[WkIZ,]P{Z,} <_ Rk. 
i > 1  

To complete the proof, 

N 

E[ B] ~_ 1 +  ~ R k 
k = l  

n 1 

= o ( v @ ) ,  

where the last follows by comparing the summation of 1/x/~ with the integral to see 

that the result is ~ 2v/N. 
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From Lemma 3 we see that the expected size of any subtree is O(x /~  ), and thus 
by Jensen's inequality [10, p. 153] the expected number of nodes in the backbone is 

f~(x//N). Together, these bounds complete the lemma. [] 

We note that in fact the upper bound is approximately x / ~  ~ 1.77.. x /~ .  Since 
this is based on the expected weight when the kth key first enters the interval, it is in 
a sense based on the minimal expected interval that is on a maximal expected 
weight. On the other hand, if we look at the expected interval size, we can see that 

when the kth key is first tagged the size of the interval to its right is still O(x/~ ). This 

suggests that the expected size of the interval is x / ~  _ o(w/k ) over all time. We 
conjecture that a better approximation to the coefficient can be obtained by 
ignoring the small order term and taking the inverse of this expectation to be the 
expected proportion of the time that the kth key is tagged. Thus, 

N 1 
E[B] ~ E 

k = l  N / / ~  

2 

~ 1.128 .. x /~ .  

This conjecture has the virtue of being in excellent agreement with the results of the 
simulations performed upon EFD trees [6]. 

We now have two facts which together imply that the IPL of the EFD tree is 
O(N 3/2) if more than N 2 updates have been performed. These are the upper bound 
on the subtree size, and the upper bound on the expected number of backbone 
nodes. We first prove the lower bound on the IPL. 

LEMMA 5. The asymptotic expected IPL  of  a tree is ~(N3/2). 

PROOF. We let N i be the number of nodes (including the backbone node) in the 
ith subtree from the right of the tree. Using the upper bound of Lemma 4, we 
choose K and c such that E[N.d _ K -- cN 1/2 for all i. Let Ci be the contribution of 
the i largest keys to the IPL. Then the expected contribution of the jK  largest keys 
is 

E[C~x-I> ~ i E [ N , ] + ( j +  1) K -  E [ N J  -- ~ 1 
i = 1  i i = 1  

since the path to any node in the ith subtree (except the backbone node) must have 
length at least i, and the path to any node not in the first j subtrees (or the 
backbone) must have length of at least j + 1. The last term compensates for the 
backbone nodes, where the ith backbone node is at distance i - 1 from the root. An 
easy induction shows that 

i E [ N J + ( j +  1) K - -  E[N~] _> iK. 
i = 1  i 
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~-'j+ 1 Thus E[CjK] >_ 2i= 1 iK -- Z.,i= 1 1. Setting j = L.N/K], we find 

LNIKA 

E [ C N ]  -> 2 iK - -  O ( x / / N )  = ~'~(N3/2). 
i=1 

[] 

Next we prove the upper bound. 

LEMMA 6. The asymptotic IPL of a tree is 0(N3/2). 

PROOF. We build a pessimal tree, in which we put O(N 1/2) nodes in the backbone 
with a leading coefficient larger than that of the expected number of nodes. We then 
add nodes until each subtree contains O(N x/z) nodes, again with a sufficiently large 
coefficient. Note that this tree will have more than N nodes. For  our upper bound 
we assume that each subtree is linear, which is the worst case. We note that the IPL 
can be computed as the sum over each subtree of the IPL of that subtree, plus the 
sum of the distances to the roots of the subtrees times the number of nodes in the 
corresponding subtree. The IPL of each subtree is 

O(N~/2) 

IPL s = ~ i 
i=1 

= O ( N ) .  

Since there are O(N 1/2) such subtrees, this implies that the sum of all the IPLs of 
the subtrees is 0(N3/2). The sum of the distances to the roots of the subtrees is 

O(N 1/2) 
iO(N 1/2) = O(N3/2). 

i=1 

Thus, the total of these two is also O(N3/2). We see that for each subtree of the 
expected asymptotic tree, the contribution to the IPL is less than the contribution 
of the corresponding subtree in the pessimal tree, and there are more subtrees in the 
pessimal tree than in the average tree. Hence, the expected asymptotic IPL is less 
than or equal to that of the pessimal tree, which completes the lemma. [] 

Finally, we combine these two lemmas to form 

THEOREM 1. The IPL of the EFD tree is O(N3/2). 

Note that the above analysis does not depend upon the shape of the right 
subtrees of the backbone nodes. Thus this analysis applies to any algorithm on an 
EFD which is similar to the Hibbard algorithm in that the successor is used to 
replace the deleted node, or if no successor exists, then the node is deleted. Such an 
algorithm may restructure the right subtree in anyway it pleases without changing 
the asymptotic result. 

We can also use similar techniques to analyze the following. Knuth [16] presents 
an improved algorithm that differs from Hibbard's only in checking for an empty 
left subtree before choosing the successor to replace the key. If the left subtree is 
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empty, then the right son replaces the node containing the deletion key, instead of 
the successor. This algorithm is one of the more popular textbook algorithms for 
deletion in binary search trees [1], [19], [17]. 

Knuth [16] shows that for one application, his rule always results in a tree that is 
at least as well balanced as the one produced by the Hibbard algorithm when 
applied to the same tree, and is often better. However, we have the following 
theorem. 

THEOREM 2. The Knuth algorithm used on an EFD tree results in O ( N  3/2) expected 
IPL. 

�9 PROOF. In the previous analysis only the backbone deletions are considered. 
Thus the only deletions that could change the results of the analysis for the Knuth 
algorithm are those involving the leftmost node in the tree, since it is the only 
backbone node with an empty left subtree. Even then, the result differs only if the 
right subtree of that node has at least two nodes in its backbone. In that case, the 
leftmost tag moves to the right as before, but one or more additional tags must now 
be inserted between the two smallest tags. We call these tags k-tags. For example, if 
we delete "a" from the left tree in Figure 4 using the Knuth algorithm, then both 
"b" and "c" are added to the backbone, forcing us to introduce the k-tag labeled 
"0," in addition to the new tag "3" on "a." It is easily seen that both the Knuth and 
Hibbard algorithms produce the same set of tags, and that the tags move 
identically under each. In addition, the k-tags introduced by the Knuth algorithm 
also move as they would under the Hibbard algorithm, once they are created. Thus, 
the Knuth algorithm can only reduce the size of the resulting subtrees, and increase 
the length of the backbone, and so the average IPL is still ~(N3/2). 

To prove the upper bound, we divide the tree on thef th  key from the left of the 
tree, withf  = 3J-log 2 N-]. For any sequence of updates, there are just two ways that 
a key to the right of thef th  key can be k-tagged under the Knuth algorithm. Either 
the k-tag was created directly on a key to the right of (or on) the f t h  key, or the 
k-tag was created to the left of the f t h  key. 

Fig. 4. Adding new tags by Knuth deletion. 
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We consider first the case of k-tags created to the right of the f t h  key. For any 
pair of adjacent tags, the probability that the upper tag passes t h e f t h  key before 
the first move of the lower tag is (1/2) I, and thus the steady-state probability that 
t he f th  key is in the leftmost interval of the backbone is O((1/2)s). Only in this case 
can a k-tag be created directly on or to the right of the f t h  key by the Knuth 
algorithm. The probability that the smallest key is updated is 1IN per update, and 
even if the f t h  key is in the leftmost interval (and thus there may be nodes 
to its right also in the interval), less than N k-tags can be created on the next 
update. Thus the expected number of k-tags created to the right of t h e f t h  key per 
update is bounded by O((1/N)/(N/2I)) = O((�89 We know that the expected time 
any tag remains on the tree is O(N z) updates, and thus using Little's Law (see, for 
example, I12]) we see that, in the steady state, the expected number of k-tags on the 
tree which were created to the right of the f t h  key is 0(N2/2 I) = O(1/N) for 
f = 3[log 2 N-]. 

Turning to the k-tags created to the left of t he f th  node, we note that once a k-tag 
is created it behaves identically under either algorithm. Thus, we can consider these 
k-tags as tags starting to the left on an N - f  + 1 node tree under the Hibbard 
algorithm. As a worst case, let us assume that t h e f t h  key is tagged with a tag or k- 
tag at all times, and then treat the f t h  key as the smallest key of our N - f + 1 
node tree. Therefore, by our previous lemmas, on average there are 

O(x/N - f + 1) keys to the right of the f t h  key tagged with tags or k-tags which 
started to the left of the f t h  key. 

Finally, even if the Knuth algorithm could somehow contrive to keep 
all the keys to the left of the f t h  key tagged or k-tagged, this adds at most 
a term of O(log N) to the expected number in the backbone. Thus, the expected 
number of nodes in the backbone for the Knuth algorithm is bounded by 

O(~/N - f  + 1) + O(1/N) + O(log N) = O(v/N), and we note that in fact this 
has the same leading coefficient as in the result for the Hibbard algorithm. We can 
now derive an upper bound of O(N 3/2) for the expected IPL using the proof of 
Theorem 2. [] 

We should mention that the Knuth algorithm is free to increase the rebalancing 
effects on the right subtrees, and, guessing that the size of the leftmost subtree is 
probably bounded by a small constant, we expect almost no change in the behavior 
of the backbone. Simulation results [4] suggest that on average the Knuth 
algorithm produces a tree with a slightly smaller cost than does the Hibbard 
algorithm. 

4. Conclusion. We have shown that a restricted form of binary search trees 
develop an average IPL of |  3/2) when subjected to a sufficiently long sequence 
of updates using the Hibbard deletion algorithm and standard leaf insertion. We 
have also shown that for these trees the improved algorithm given by Knuth has 
similar asymptotic behavior. We believe these results also apply to the more usual 
model wherein the keys to be inserted during the updating process are drawn at 
random. 
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When Binary Search Trees are to be used dynamically, we recommend a simple 
modification to the Knuth algorithm that appears to eliminate this deterioration in 
performance. When both subtrees are nonempty, choose at random either the 
successor or the predecessor as the replacement node for the deleted element, or for 
that matter, simply alternate. This removes the asymmetry of the algorithm, and 
it would appear that no skewing of the tree should take place. The experimental 
evidence [41, I-8"1 tends to confirm this conjecture. Indeed, indications are that in 
trees subjected to updates using this algorithm the average search cost is less than 
that in trees grown from random sequences of insertions. 
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