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In this paper we present an extensive study into the long-term behaviour of binary search trees subjected to updates
using the usual deletion algorithms taught in introductory textbooks. We develop a model of the behaviour of such trees
which leads us to conjecture that the asymptotic average search path length is O( N? ). We present results of large
simulations which strongly support this conjecture. However, introducing a simple modification to ensure symmetry in
the algorithms, the model predicts no such long-term deterioration. Simulations in fact indicate that asymptotically the
average path length of such trees is less than the 1.386...log, N average path length of trees generated from random

insertion sequences.
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1. INTRODUCTION AND BACKGROUND

In 1983 Eppinger® published simulation results which
overturned a long-standing conjecture due to Knott!!
that performing random updates in a binary search tree
did not adversely affect the performance of the structure.
Knott based his conjecture on smaller simulations which
were insufficient to show the long-term deterioration
observed by Eppinger. This conjecture was supported by
a theoretical treatment of three node trees by Jonassen
and Knuth'® and more recently of four node trees by
Baeza-Yates.?

In the studies noted above and in this paper an update
to a binary search tree consists of one random deletion
followed by a random insertion. That is, an element in
the tree is chosen at random for deletion and a new
element is generated from a fixed and bounded distri-
bution and is inserted. The insert/delete model of an
update gives us a firmer basis for comparisons than one
in which the structure itself changes sizes quite drastically.
The key issue regarding the distribution from which
elements are chosen is that it does not change over time;
i.e. it is fixed. For simplicity we will deal with elements
coming from a uniform distribution. This is of no
technical importance as only the relative value of the
elements matters. The updates are performed using the
well-known deletion algorithm of Hibbard® and the
usual insertion at a leaf algorithm. We define the internal
path length (IPL) of a tree to be the sum over all nodes
in the tree of the length of the path from the root to the
node. The Average Path Length to any node in the tree is
then just the IPL divided by the number of nodes.
Knott’s conjecture claimed that for a binary search tree
subjected to a long sequence of such random updates, the
average IPL would be less than that in a tree generated
from a sequence of random insertions. It is well
known'? that the average IPL in a tree grown from a
random sequence of N insertions is approximately
1.386..Nlog N—2.846 N.t Since a fully balanced tree
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t All logarithms are to the base 2 unless otherwise indicated.

has an IPL of Q(NlogN), Knott’s conjecture was
equivalent to claiming that the IPL of a binary search
tree remained (N log N), but with a reduced coefficient.

Eppinger’s results® indicated that this was false, and
that furthermore the increase did not appear to be
bounded by a constant factor. He conjectured, using
regression analysis to support his claim, that the IPL
tended to @(N log® N). The formulation he gave was
0.0280 N log* N—0.392 N log? N+3.03 Nlog N—4.81 N.
We claim that Eppinger’s conjecture is itself too
optimistic. In the following sections we develop a model
for the behaviour of binary search trees under a long
sequence of updates based on the analysis of Exact Fit
Domain trees given in Ref. 6. The analysis we present
here, although not mathematically complete, is intuitively
appealing. Moreover, using this hypothetical model we
can compute asymptotic expected values for various
parameters measuring the shape of the trees. We have
performed extensive simulations, and measured these
values over a large number of trees. The results are in
close agreement with the values predicted by the model.
Assuming the correctness of these results, it follows that
the IPL of such trees is in fact @(N?). The approximate
formula we obtain from our model is 0.266 n:+0.693 N
log N—2.008 n.

In Fig. 1 we display the average path length as
measured by various simulations together with curves
from ours and Eppinger’s conjectures. The x’s mark the
data points from Eppinger’s simulations, while the O’s
represent the average path lengths computed from the
unadjusted IPLs of Table 5 (see Section 4).

We follow the usual definitions. A binary search tree is
a finite set of nodes which is either empty, or consists of
a root (containing a key) and two disjoint binary trees
called the left and right subtrees. If v is a non-empty node
of a tree, then /(v) designates the left subtree, r(v) the
right subtree, and k(v) the key of v. The search property
is defined by the rule that for each node ve T, each key
in the left subtree of v is less than k(v), and each key in
the right subtree of v is greater than k(v). Henceforth, we
will refer to binary search trees simply as trees.

To insert a key, a leaf is created containing the key and
is attached in the unique position that maintains the
search property of the tree. This algorithm was dis-
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Figure 1. Comparison of conjectures to simulation data.
Asymptotic average path length versus N. , New
conjecture; - - -, Eppinger estimate.

covered independently by several researchers including
Windley,'® Booth and Colin® and Hibbard,® and attri-
buted to D. J. Wheeler and C. M. Berners-Lee.’

One of the earliest and best-known deletion algorithms
is that of Hibbard.® We illustrate this algorithm in Fig. 2
for the relevant cases as discussed below. That is,
suppose node v is to be deleted. There are three cases to
consider.

(1) If v is a leaf, change the reference to v to null.

(2) If r(v) = & but v) + & change the reference of
V’s parent to refer to I(v).

(3) If r(v) # J delete the leftmost node in r(v) from its
current position (by one of the cases above) and copy its
key into v. The copying is usually done by relinking.

2. WHAT WE EXPECT TO HAPPEN

In Eppinger’s simulations, the IPL of large trees was first
seen to decrease from its initial value. Then it slowly
increased. It achieved a maximum at approximately N?
updates, after which the value remained fairly steady.
Any useful model should attempt some explanation of
these features. We now proceed to develop and justify
such a model.

The reason for the initial reduction would appear to be
the rebalancing effect of Hibbard’s algorithm when the
right subtree is empty. In this case, the node is deleted
and the left subtree is connected directly to the node’s
parent. This is illustrated in Fig. 2 by the deletion of node
4. If the left subtree has several nodes, then the length of
the path from the root to each of these nodes is reduced
by one, thus reducing the IPL. In our example, the paths
to nodes 1, 2 and 3 have each been shortened by one.
Knuth'? noticed this, and suggested that the algorithm
could be improved by also checking for an empty left
subtree and using a rule which is symmetric to (2) above.

Initial tree

Result of deleting 4

Result of deleting 6
from original tree

Figure 2. Example of deletion in a binary search tree.

In our example, using Hibbard’s algorithm to delete 6
makes 7 the new root of the tree, even if the nodes 1,2,
3 and 4 are not present, while Knuth’s improved
algorithm would simply move 9 to the root, without
making further changes. In the tree actually used in the
illustration, however, Knuth’s algorithm would produce
the same results for both deletions.

This improved algorithm is the one usually presented
in textbooks."'%:1* Knott’s simulations!' indicated that
the Knuth algorithm gave slightly better results than the
Hibbard algorithm when used in a sequence of updates.

To verify that this rebalancing in the case of empty
subtrees is the cause for the initial improvement, and to
see if this algorithm was asymptotically better than
Hibbard’s, we simulated Knuth’s algorithm on trees of
up to N = 1024 nodes and far in excess of N2 updates. As
predicted, the initial improvement was slightly greater
than Eppinger’s results for the Hibbard algorithm.
However, the long-term deterioration was just as
pronounced, with the maximum IPL being only slightly
less than for the Hibbard algorithm, as shown by Table
1. A more detailed study of this and other deletion
algorithms is found in Ref. 4.

However, it is the long-term effect of the algorithms
that interests us here. To understand the long-term
increase in the IPL, we notice that in each of these
algorithms the behaviour is decidedly asymmetric when
the right subtree of the node containing the deleted key
is not empty. Suppose that the key we are deleting is at
the root of the tree. If the right subtree is non-empty,
then the successor key becomes the new root key. Since
new keys fall in the left or right subtree depending upon
whether they are smaller or larger than the root, it
follows that future insertions are more likely to fall in the

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 69

2102 ‘Z 2N U0 TWE LN3O YOI LOI18Ig/dSN/dE NS T /BI0SeuINopiogxo- ufwoo//:dny Wwo.y pepeojumoq


http://comjnl.oxfordjournals.org/

J. CULBERSON AND J.1. MUNRO

Table 1. Empirical mean internal path lengths from
simulations (including those of Eppinger)

Hibbard algorithm Knuth algorithm
Number

of nodes Mean IPL Iterations Trees Mean IPL Iterations

32 — — — 1324 7500
64 349.9 10000 200 345.2 50000
128 889.8 50000 200 880.0 80000
256 22513 120000 100 2232.2 150000
512 5737.1 500000 50 5643.1 500000
1024 14687.2 2500000 25 14348.3 2000000
2048 37876.0 9000000 20 — —

left subtree than previously. This is illustrated in Fig. 3.
This effect will be repeated each time the root key is
selected for deletion, until eventually the right subtree
will become empty.

We define the backbone of a tree to be the set of nodes
on the path from the root to the leftmost node in the tree.
When the key in one of those backbone nodes is selected
for deletion, there are two cases to consider. In the first
case, the node has a non-empty right subtree. In this case
the key in the successor replaces the deleted key, and that
node is deleted. Some further adjustments may be
required in the right subtree, but these do not affect the
backbone. The average number of nodes to the right of
the backbone will be reduced, and since this is happening
to all the backbone nodes, the tree will eventually
become skewed. These nodes are the ones indicated in
Fig. 4.

In the case when the right subtree is empty, the node
is simply deleted, and its left son becomes the left son of
the node’s parent (or it becomes the root if the deleted
node was previously the root). These disappearing nodes
make understanding the effects of the process more
difficult. To aid in the presentation, we attach rags to
some of the keys in the tree. These tags are illustrated in
Fig. 4. Whenever a new smallest key is inserted into the
tree, a new tag is created and attached to it. When a
tagged key is deleted, all the attached tags are moved to
the next larger key in the tree, unless the key happens to
be the largest in the tree, in which case the tags are
discarded. Note that several tags can accumulate on any
key. If we initially tag all the keys in the backbone, then
it is easily seen that at any time the keys in the backbone
are exactly those tagged, if we are using the Hibbard

Insertions

AN
IV

Figure 3. Domain splitting by root.

Figure 4. Tag model.

deletion algorithm. For the Knuth algorithm, the only
differences occur in the subtrees where they are of no
concern, or possibly when the leftmost node is deleted
new nodes may be inserted into the backbone. In what
follows we concentrate on the Hibbard algorithm, with
suitable comments on the Knuth algorithm added where
appropriate.

Eventually, with probability one, any given tag will be
removed from the tree. During its lifetime, that is, while
it remains on the tree, the tag performs a random walk
across the domain of keys. It takes a step to the right of
random size with probability 1/N.

In Ref. 6 the domain is restricted so that when a key
is deleted in an update, the following insertion re-inserts
the same value. Trees so restricted are called Exact Fit
Domain (EFD) trees. This restriction simplifies the
analysis considerably, and there we show that in the
steady state, EFD trees have an expected IPL of ®(N%),
although the upper and lower bounds differ by large
constant factors. To derive this result, two asymptotic
conditions were found to be sufficient. First, the expected
size of the right subtree of the jth backbone node from
the root is O(y/N), and secondly, the expected number
of nodes in the backbone is @(1/N). If we could confirm
that these conditions hold for the current case, wherein
new keys are selected at random for the insertion part of
the update, we could then claim the same result.

Let us specify that the domain for our trees is (0,
N+1), and that all keys are independently and uniformly
distributed over this interval. As previously noted, the
details of the distribution are not important as long as it
is fixed. Thus, if the tree has N nodes, the expected
interval size between nodes is one. The probability
distribution of the size of an interval is

x N

This also applies to the intervals at the ends of the
domain.

A tag is created on the smallest key, which has the
above distribution. Its expected position is 1, making the
expected remaining distance to the right end equal to N.
After its creation, the key has probability 1/N of being
deleted on the next update. If it is deleted on the next up-
date, then the tag moves to the next larger key, a distance
which has again the distribution given above. Thus the
tag will move an expected distance of 1/N on the second
update after its creation. If we assume that the tag moves
1/N on every update until it falls off the tree, it would
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Figure 5. Collect data when X deleted.

require N* updates. However, on subsequent updates, the
probability distribution of the distance moved is subtly
different from the above, and has only been partially
analysed (see Ref. 5). Nevertheless, it would appear that
asymptotically the above distribution is a good approxi-
mation to the actual distributions.

Now consider the interval between two tags, such that
initially they are on the two smallest keys in the tree. We
attempt to derive the expected size of the interval to the
right of the lower tag at the time when the upper tag is
removed from the tree under the condition that they
never collide, that is, that they never land on the same
key. If they ever landed on the same key, then of course
they would both be removed at same time. Since only
tagged nodes are in the backbone, and no tag can be
inserted between a pair using the Hibbard algorithm, this
means that the remaining tag is in fact on the root. Thus,
we are looking at the expected size of the interval to the
right of the root just when a new root is created. This is
illustrated in Fig. 5. Under the assumption of a random
distribution of keys over the stated interval, this size is
also the expected number of nodes in the right subtree of
the root at these times.

We assume that it is equally probable that the lower or
upper tag is moved each time the interval is changed, and
that the distribution of the size of the move is given in
each case by the above distribution. We let C be the
random variable indicating the size of the change. The
distribution f{c) in terms of the random variable X is

fl)=3fc))

It is easily seen that, due to symmetry, all odd moments
of this distribution are zero. Also, applying symmetry
again, we find the second moment of C to be

'N+1 N X N-1
C? = 2 1——
aci J; xN+1( N+J dx

_,N+1
T N+2

~2, N-oo.

This is also the variance of C, since the expected value is
Zero.

Now consider how many steps have been made until
the upper tag is removed. The number of steps may be
greater than or less than N, but asymptotically at least it
seems reasonable to assume that taking steps of size
approximately 1 would mean that we require N steps on
average for the tag to fall off the tree. Of course, this is
not strictly true, but as with previous assumptions, it is
a convincing approximation which simplifies the analysis.

Even so there remain difficulties. The major one relates
to the conditional nature of the walk, in that we want
only those walks in which the upper tag always remains
ahead of the lower one. In Ref. 6 this conditional
expectation also appeared, but the walk was discrete and
the solution was easily found.

We approximate the preceding random walk with the
following discrete random walk, which allows us to make
use of the results in Ref. 6. We define a random walk
by

N
SN = E Xi:
i=1
where the distribution density function of the random
variables X, are given by
1
_ ['i X = — \/2
r(x) —‘l% x=1/2.

We have then a simple random walk, as defined for the
EFD analysis,® except that the step sizes are /2. We
choose this step size so that the second moment will be
equivalent to that of the preceding random walk.

It can be readily seen that this distribution has all odd
moments equal to zero, and that the second moment
(and the variance) is equal to 2. We expect S, to behave
then somewhat like the previous random walk. It is easy
to see that asymptotically these two unbounded walks
should converge in distribution. Whether convergence
also holds when we apply the condition that the walks
never go below the origin is open, but it seems reasonable
that first and second moments would be asymptotically
equivalent, and thus that the expected interval should be
equivalent.

In Ref. 6 it was shown that for the EFD the asymptotic
expected size of the interval containing the kth key from
the left of the tree would be 1/(nk). Noting that the step
size for the EFD is one, while in this walk it is 1/2, we see
that the expected interval size for this walk is +/(27k).
The expected size of the right subtree of the root is then
less than 1/(2zN). We could guess that the upper tag
moves N—O(y/(N)) times when it and the lower tag are
known to diverge before falling off the tree. This means
that the estimate may be a bit high for small N.

Using the approximation 4/(2xi) for the size of the
interval following a tag at position i, we find that the
proportion of nodes tagged in the vicinity of the ith node
is approximately 1/+/(27i). Under assumptions of equal
probability, the expected number of backbone nodes is

¥

_w_ 1 _2VN
BBl = X Tom S van

However, this assigns a probability of 1/4/(27) = 0.3989
to the first node being tagged when in fact we know that
it is always tagged. Similarly, this formula slightly
underestimates the other low-order nodes as well. Thus,
for any N the number of nodes predicted by this formula
should be a bit less than the actual expected number.
Assuming that the model outlind above is sufficiently
accurate, we have then @(+/ N) subtrees of the backbone
with O(4/N) nodes in each after sufficiently many
updates. In Ref. 6 these two conditions were shown to be
sufficient to guarantee that the expected IPL of the tree
is ©(N?). Briefly, the sum of the distances to the nodes

~ 0.798..4/N.
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of the right subtrees of the backbone, even assuming that
all the nodes could be clustered at the roots of the
subtrees, is Q(N%). On the other hand, with an average of
O(1/ N) nodes in a subtree, the expected IPL of a subtree,
even if it is linear, is O(N). Since there are O(y/N)
subtrees, we have an expected IPL of O(N?).

We can get a crude estimate of the coefficient of the
leading term for the expected IPL by pushing our
approximation a bit further, although we now depart
somewhat further from full justification. In the idealized
situation in which the ith backbone node is at its
expected position, suppose that the size of the ith subtree
is linear in i. Thus, the ith subtree from the left should
contain

1
v (2nN) V@N/D cx i

nodes, where ¢ is a constant and will now be ignored.
Since there are B, backbone nodes on average, the root
of the ith subtree from the left of the tree is at a depth of
approximately +/(2N/rn)—i from the root. Ignoring any
contribution the IPLs of the right subtrees might make to
the leading coefficient, that is assuming the subtrees are
roughly balanced, we can compute an approximation to
the leading term of the IPL by

V(2N /m)
f ni(v/[2N/n)—i) di

i=1
V(2N /n) V(2N /m)
= J v QrN)idi— f nitdi

i=1 i=1

v(an)ziV n(z—N)E
~ V(4 _ V(4
= 2 3

-4

~ 0.266 N:.

This estimate ignores the contributions of the right
subtrees, other than the distance from the root to the
root of the subtrees. The subtrees themselves should
make some contribution to the internal path length, since
obviously the nodes cannot all be on the backbone of the
tree.

For each subtree other than the one at the root, note
that not only is the subtree root drifting to the right, but
so are the roots of its neighbours. Thus the entire tree can
be thought of as moving to the right. It is reasonable to
expect that the subtrees are not greatly skewed, and the
simulation results we present in subsequent sections
confirm this.

Let us suppose without further justification that in fact
the subtrees have an IPL close to that of the initial
expected IPL of a tree of their respective size. That is,
assuming mi nodes, we expect the IPL to be 2iln
(ni) —2.846 i, where In is the natural log. Thus, over all
the subtrees, we can approximate the total contribution
by

vV (2N/m)
f 27ti In (i) — 2.846 nidi

i=1

=~ 0.693 N log, N—2.008 N+2.445.

Adding this result to the above gives our completed
estimate of

0.266 Nz +0.693 N log N—2.008 N +2.445.

Despite the simplified form of this model (or perhaps
because of it) this value nevertheless agrees quite well
with the simulation results presented in the following
sections.

3. COMPARISON TO PREVIOUS
SIMULATION RESULTS

In this section we evaluate the data from the extensive
simulations of Eppinger® and our own,* using our model
as a guide. Previously, Eppinger conjectured that the IPL
was Q(N log® N) when the Hibbard or Knuth algorithms
were used for many updates. In Ref. 6 it was shown that
for Exact Fit Domains, Knuth’s algorithm gave the same
expected backbone distribution as Hibbard’s. A study of
Knuth’s algorithm shows that it has very little effect
either on the number of nodes in the backbone or on the
size of the right subtrees. The intuitive reason is that it
can only have an effect different from Hibbard’s when
the left subtree is empty. However, for the nodes of the
backbone, this can only happen when the node being
deleted is the smallest node in the tree, which is unlikely
to have many nodes in its right subtree.

Table 1 presents the average IPL from simulations of
the Hibbard algorithm as measured by Eppinger,® and
for the Knuth algorithm by us. These values were
obtained from the published ratios by multiplying by the
expected IPLs of random trees using the formula for
random trees given in Knuth'? (page 427). In these
simulations, a random tree was first generated, then the
prescribed number of iterations were performed. During
this process the IPL was computed at frequent intervals.
The process was repeated for the indicated number of
trees. The average IPLs shown in Table 1 are obtained
only from data collected after the first N? updates, since
only then did the trees appear to be stable. The arguments
of Section 2 show that this conjecture was justified. The
extent of the simulations is shown by the large number of
iterations and the number of trees simulated in Table 1.
The Knuth algorithm was run on 50 trees in each case.

Results of regressions fitting the data from Table 1 to
functions involving N, N log (N) and N are presented in
Table 2. All regressions are unweighted. Note the close
agreement (and low mean square) of the Hibbard re-
gression with four terms 0.259 N:4+0.75NlogN—12N
+18.4 with the analytic prediction of 0.266 N:.

Table 2. Regression coefficients for data of Table 1

N Nlog(N) N Constant Mean square

Hibbard 0.405 — — 634.73  304850.0
0.270 0.570 — —14.38 79.1
0.259 0.726 —1.228 18.44 5.5

Knuth 0434 — — 272.04 60566
0.256 0.582 — -9.51 59
0.248 0.659 —-0.527 —-142 2.0
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Subtree size Backbone
Number of  Millions of =~ Number of
nodes updates subtrees Average Variation  Average Variation
512 7 236 51.9 801.8 18.4 42
1024 22 237 79.6 1765.0 25.4 44
2500 70 209 118.4 3652.2 40.8 6.4
4096 140 188 158.3 6529.5 51.5 8.4
8192 600 270 233.1 15466.2 71.1 14.7
8192 400 169 229.6 15250.6 72.3 13.7
8192 400 181 219.3 13532.8 73.2 10.0

4. CHECKING THE MEASURES FROM
THE MODEL

We now consider simulations designed to measure the
length of the backbone and the number of nodes in the
right subtree as estimated in Section 2. These simulations
were progressively extended to include extra data
gathering as our understanding increased and we required
more detailed information. Originally only the length of
the backbone and the size of the right subtree were
measured. Later, we extended the lengths of the runs
measuring the IPL in addition to the backbone and right
subtree size. The purpose was to allow comparison with
the IPLs obtained by Eppinger. Since we gathered data
at specific times as described below, we wished to test
that this did not significantly affect our measures. Again,
the lengths of the runs were extended even further, this
time gathering information on the structure of the top
five right subtrees of the backbone. Finally, three extra
long simulations were performed for trees of size 8192
gathering all types of data throughout.

Figure S illustrates the times at which the data were
gathered. A new right subtree for the root is created
when the key in the current root is deleted, and the right
subtree of the root is empty. Note that at these times the
interval containing the new subtree has had the maximal
time for growth, since any further change to this interval
can only decrease the interval size by moving the root
towards the right of the domain. This, of course, is not
the same as saying that the right subtree is at its
maximum size, or that it is the maximal subtree in the
tree. However, it should give a good approximation to
the subtree sizes as estimated in Section 2.

Unlike previous simulations, in this one we performed
updates for a long time on a single tree. This makes the
simulation more efficient, since the subtrees in the initial
tree must all be discarded from the analysis, to ensure
that all the measured subtrees are between tags created
during the updating process. The data analysis routines
checked the number of nodes in the backbone of the
initial tree and discarded that many subtrees from the
calculations. This means that approximately N* updates
were wasted on each initial tree. If there are B nodes in
the backbone of a tree at any point in the simulation,
then after B more subtrees have been removed, the tree
is made up entirely of new keys, and the shape of this new
tree will be independent of the shape of the previous
one.

Table 3 summarises the results of these simulations.
These are the cumulative results from all three stages of

the simulations. The column titled ‘ Number of subtrees’
shows how many subtrees were used in computing the
averages. The standard deviation of the subtree sizes is
high, being approximately one-half of the mean in each
case. The variance on the length of the backbone, on the
other hand, is small. The number of updates is the
number performed during the simulation. In general, the
last new subtree occurred slightly prior to this time, and
thus the number of updates required to generate the
indicated subtrees was slightly less.

In Table 4, the averages for the sizes of the subtrees
and the lengths of the backbone given in Table 3 are
expressed as multiples of Nz. As expected, these values
are close to, but generally less than, the value of /27 ~
2.5 computed in the approximation model. The values
range from a low of 2.29 for N = 512 to a high of 2.58 for
N = 8192 and appear to increase with N. If we compute
the average of the three runs of 8192, we find the
coefficient for the subtree size is 2.512 and for the
backbone it is 0.798, which agree fairly well with the
conjected 2.506 and 0.798 respectively.

Table 5 shows the average IPL computed during the
extended simulations. We repeat that these values are
computed using data collected at the special times when
a new right subtree has been created at the root. Deleting
the root when it has no right subtree moves every other
node in the tree up one level. Thus we would expect the
IPL to be reduced by about N from the IPL prior to that
update. Averaging over these two cases would increase
the result by N/2, which is the basis for the adjusted IPL
in the table. In comparing the values obtained for trees
of sizes 512 and 1024 in Table 5 with the values in Table
1, we see that the results are in reasonable agreement.
The column indicating the number of subtrees indicates

Table 4. Average subtree and backbone values expressed as
ratios to /N

Number of nodes Right Standard Backbone Standard

in the tree (N) subtree  deviation length deviation
512 2.29 1.25 0.813 0.091
1024 2.49 1.31 0.793 0.066
2500 2.37 1.21 0.816 0.051
4096 2.47 1.26 0.805 0.045
8192 2.58 1.37 0.786 0.042
8192 2.54 1.36 0.799 0.041
8192 242 1.29 0.809 0.035

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 73

ZT0Z ‘2 eI\ U0 TWHLNID YOI LOIT919/dSNIdY NS e /Biosfeulnopioxo’ julwod//:dny wouy papeojumoq


http://comjnl.oxfordjournals.org/

J. CULBERSON AND J.1. MUNRO

Table S. Average IPL from extended Hibbard simulations

Tree Number of Average Adjusted
size subtrees IPL IPL Variance
512 107 5505 5761 112004
1024 137 13999 14511 645567
2500 112 48604 49854 4230873
4096 118 94987 97035 21450140
8192 270 250201 254297 214230784
8192 169 254515 258611 201874000
8192 181 259200 263296 77005696

Table 6. Regresson coefficients for combined data from
simulations of the Hibbard algorithm

Ni Nig(N) N Constant
0345 — — —
0341 — — 2707.50
0.269 0517 — 191.09
0.266 0537 — —
0317  —0.732  12.003 —567.80
0292  —0.392 5202 —

Table 7. Regression coefficients for combined adjusted data
from simulations of the Hibbard algorithm

N Nlg(N) N Constant
0.301 —0.268 7.833 —382.5
0.284 0.199 3.252 —

0.270 0.547 — 112.7
0.269 0.559 — —

0.346 — e 2771.2
0.351 — — —

the number of data points used in computing the means
and variances.

If we combine this data with that from Eppinger® we
increase the number of data points to 9, at the same time
obtaining duplicate values for 512 and 1024 and of
course 8192. Regression results for various combinations
of Ni, Nlog, N, and N are tabulated in Table 6. In Table
7 are similar regressions using the adjusted IPLs
combined with previous results. These results are in good
agreement with those of Table 2. Also, there seems to be
good evidence for the model, even to reasonable
approximations of the leading coefficient.

Table 8. Left/right balance of the top five subtrees

We now consider the measurements of the right
subtrees themselves. We define the Left Normal Measure
(LNM) of a tree to be the sum over all nodes of the tree
of the number of nodes in the left subtree of the node.
The Right Normal Measure (RNM) is defined anal-
ogously to be the sum over the right subtrees. If the tree
is balanced, we expect LNM ~ RNM.

These measures were taken for each of the topmost
five right subtrees of the backbone each time data was
gathered. We define the Left Measure (L) of a subtree to
be the total over all the samples of the LNM of the
subtree divided by the total over all samples of the
number of nodes in the subtree. That is, it is an average
measure of the LNM, although the term average is a bit
fuzzy here since the size of the subtree also varies from
sample to sample. The Right Measure R is similarly
defined.

Referring to the typical results in Table 8, notice that
the subtrees exhibit a tendency to be skewed to the right.
This would seem to contradict the assumption that the
subtrees are balanced. Also presented is an estimate of
the average search-path length. This is just the sum of the
Left and Right measures. (It is relatively easy to show
that LNM +RNM = IPL. See Ref. 4 for details.) For
comparison, the expected search cost of the random tree
of the nearest integer size (see Knuth,'? chapter 6.2.2), is
also listed. In every case, the random cost exceeds our
average cost. We thus seem to confirm the conjecture
that the subtrees are reasonably well balanced. We
conjecture that the difference R— L is bounded by a
constant, or at least that (R—L/R+L) converges to
zero. That is, we guess that the right subtrees remain well
balanced for large trees.

Finally, we include a plot of the 270 subtrees from the
first simulation of 8192 in Fig. 6. This gives at a glance
an idea of the range and scatter of the subtree sizes when
they first become right sons of the root.

5. CONCLUSION

We have presented extensive evidence that the use of
Hibbard’s deletion algorithm or Knuth’s deletion algor-
ithm when coupled with insertions causes the average
internal path length of binary search trees to increase
significantly if used for prolonged periods. The evidence
indicates that the asymptotic IPL is in fact Q(N%).

If we examine Fig. 1, we notice that the conjectured
curve fits the unadjusted data points more closely than it
fits the data points from Eppinger’s simulations. Looking
at the analysis that led to the formula, we see that we
indeed computed this for the same selection of data
points as that in the simulation. Although the analysis is

Tree size = 8192

Number of subtrees used = 169

Average Average left  Average right

Average path Expected path of

subtree size  measure measure length a random tree
229.621 3.387 3.970 7.356 8.087
218.663 3.341 3.956 7.297 7.983
226.746 3.334 3.993 7.327 8.062
217.970 3.291 3.970 7.261 7.983
218.089 3.267 3.945 7.213 7.983
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Figure 6. The 270 subtrees of 8192, from 600 million updates.

far too slack to engender much faith in the lower-order
terms, it is interesting to speculate that adjusting the
curve in the same way as the data would lead to an even
closer fit of Eppinger’s data. Using the adjusted data
points causes the projections of Eppinger’s curve to fit
even less well for n > 2500.

Eppinger® simulated a modified version of Hibbard’s
algorithm which randomly decided between mirror-
image versions of Hibbard’s replacement criteria. That
is, he modified Hibbard’s algorithm so that it randomly
decided to choose either the predecessor or the successor
as the replacement node. This symmetric version of
Hibbard’s algorithm caused the IPL to be reduced on
average as a large number of updates were performed,
with no evidence of a long-term deterioration. Given our
arguments in Section 2, we would expect that a similar
symmetric version of Knuth’s algorithm might lead to
even greater improvement. We have confirmed these
results by simulations (reported in greater detail in Refs
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