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Running Time 

Charles Babbage (1864) 

“As soon as an Analytic Engine exists, it will necessarily 
  guide the future course of the science.  Whenever any result 
  is sought by its aid, the question will arise - By what course 
  of calculation can these results be arrived at by the machine 
  in the shortest time?”  – Charles Babbage 

Analytic Engine 

how many times do you 
have to turn the crank? 
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The Challenge 

Q.  Will my program be able to solve a large practical problem? 

Key insight.  [Knuth 1970s] 
Use the scientific method to understand performance. 

compile debug on 
test case 

solve problems 
in practice 
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Scientific Method 

Scientific method. 
  Observe some feature of the natural world. 
  Hypothesize a model that is consistent with the observations. 
  Predict events using the hypothesis. 
  Verify the predictions by making further observations. 
  Validate by repeating until the hypothesis and observations agree. 

Principles. 
  Experiments we design must be reproducible. 
  Hypothesis must be falsifiable. 
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Reasons to Analyze Algorithms 

Predict performance. 
  Will my program finish? 
  When will my program finish? 

Compare algorithms. 
  Will this change make my program faster? 
  How can I make my program faster? 

Basis for inventing new ways to solve problems. 
  Enables new technology. 
  Enables new research. 
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Algorithmic Successes 

Discrete Fourier transform. 
  Break down waveform of N samples into periodic components. 
  Applications:  DVD, JPEG, MRI, astrophysics, …. 
  Brute force:  N2 steps. 
  FFT algorithm:  N log N steps, enables new technology. 

Freidrich Gauss 
1805 
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Algorithmic Successes 

N-body Simulation. 
  Simulate gravitational interactions among N bodies. 
  Brute force:  N2 steps. 
  Barnes-Hut:  N log N steps, enables new research. Andrew Appel 

PU '81  
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Three-Sum Problem 

Three-sum problem.  Given N integers, find triples that sum to 0. 
Context.  Deeply related to problems in computational geometry. 

Q.  How would you write a program to solve the problem? 

% more 8ints.txt 
30 -30 -20 -10 40 0 10 5 

% java ThreeSum < 8ints.txt 
 4 
 30 -30   0 
 30 -20 -10 
-30 -10  40 
-10   0  10 
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Three-Sum:  Brute-Force Solution 

public class ThreeSum { 

   // return number of distinct triples (i, j, k) 
   // such that (a[i] + a[j] + a[k] == 0) 
   public static int count(int[] a) { 
      int N = a.length; 
      int cnt = 0; 
      for (int i = 0; i < N; i++) 
         for (int j = i+1; j < N; j++) 
            for (int k = j+1; k < N; k++) 
               if (a[i] + a[j] + a[k] == 0) cnt++; 
      return cnt; 
   } 

   public static void main(String[] args) { 
      int[] a = StdArrayIO.readInt1D();  
      StdOut.println(count(a)); 
   } 
}  

all possible triples i < j < k 



Empirical Analysis 
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17.18 4096 

2.16 2048 

0.26 1024 

0.03 512 

time † N 

136.76 8192 

Empirical Analysis 

Empirical analysis.  Run the program for various input sizes. 

† Running Linux on Sun-Fire-X4100 with 16GB RAM 
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Stopwatch 

Q.  How to time a program? 
A.  A stopwatch. 
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Stopwatch 

Q.  How to time a program? 
A.  A Stopwatch object. 

public class Stopwatch { 
   private final long start; 

   public Stopwatch() { 
      start = System.currentTimeMillis(); 
   } 

   public double elapsedTime() { 
      return (System.currentTimeMillis() - start) / 1000.0; 
   } 
}  
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Stopwatch 

Q.  How to time a program? 
A.  A Stopwatch object. 

public static void main(String[] args) { 
   int[] a = StdArrayIO.readInt1D(); 
   Stopwatch timer = new Stopwatch(); 
   StdOut.println(count(a)); 
   StdOut.println(timer.elapsedTime()); 
} 
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Data analysis.  Plot running time vs. input size N. 

Q.  How fast does running time grow as a function of input size N ? 

Empirical Analysis 
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Initial hypothesis. Running time obeys power law  f (N) = a N b.  

Data analysis.  Plot running time vs. input size N on a 
log-log scale. 

Consequence.  Power law yields straight line 
(slope = b). 

Refined hypothesis.  Running time grows as cube of input size:  a N 3. 

Empirical Analysis 

slope 

slope = 3 
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7.96 17.18 4096 

8.43 2.16 2048 

7.88 0.26 1024 

- 0.033 512 

7.96 

ratio time † N 

136.76 8192 

Doubling Hypothesis 

Doubling hypothesis.  Quick way to estimate b in a power law hypothesis. 

Run program, doubling the size of the input? 

Hypothesis.  Running time is about a N b with b = lg c. 

seems to converge to a constant c = 8 
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Performance Challenge 1 

Let F(N) be running time of main() as a function of input N. 

Scenario 1.  F(2N) / F(N) converges to about 4. 

Q.  What is order of growth of the running time? 

public static void main(String[] args) { 
   ... 
   int N = Integer.parseInt(args[0]); 
   ... 
} 
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Performance Challenge 2 

Let F(N) be running time of main() as a function of input N. 

Scenario 2.  F(2N) / F(N) converges to about 2. 

Q.  What is order of growth of the running time? 

public static void main(String[] args) { 
   ... 
   int N = Integer.parseInt(args[0]); 
   ... 
} 
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Prediction and Validation 

Hypothesis. Running time is about a N 3 for input of size N. 

Q.  How to estimate a? 
A.  Run the program! 

Refined hypothesis. Running time is about  2.5 × 10 –10 × N 3 seconds. 

Prediction.  1,100 seconds for N = 16,384. 

Observation. 

17.17 = a 4096 3 

⇒  a = 2.5 × 10 –10  

validates hypothesis! 

17.17 4096 

17.15 4096 

17.18 4096 

time † N 

1118.86 16384 

time † N 



Mathematical Analysis 

Donald Knuth 
Turing award '74 
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Mathematical Analysis 

Running time.  Count up frequency of execution of each instruction and 
weight by its execution time. 

int count = 0; 
for (int i = 0; i < N; i++) 
   if (a[i] == 0) count++; 

N equal to comparison 

N + 1 less than comparison 

2 variable assignment 

2 variable declaration 

frequency operation 

N array access 

between N  (no zeros) 
and 2N  (all zeros) 

≤  2 N increment 
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int count = 0; 
   for (int i = 0; i < N; i++) 
      for (int j = i+1; j < N; j++) 
         if (a[i] + a[j] == 0) count++; 

Mathematical Analysis 

Running time.  Count up frequency of execution of each instruction and 
weight by its execution time. 

becoming very tedious to count 1/2 N (N – 1) equal to comparison 

1/2 (N + 1) (N + 2) less than comparison 

N + 2 variable assignment 

N + 2 variable declaration 

frequency operation 

N (N – 1) array access 

≤  N 2 increment 

€ 

0  +  1 +  2  +  ...  +  (N −1)  =  1/2  N(N −1)
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Tilde Notation 

Tilde notation. 
  Estimate running time as a function of input size N. 
  Ignore lower order terms. 

–  when N is large, terms are negligible 
–  when N is small, we don't care 

Ex 1.  6 N 3   +  17 N 2   +  56    ~   6 N 3 
Ex 2.  6 N 3   +  100 N 4/3  +  56  ~   6 N 3 
Ex 3.  6 N 3   +  17 N 2 log N  ~   6 N 3 

Technical definition.   f(N) ~ g(N) means  

€ 

lim
N→ ∞

 f (N)
g(N)

 =  1

discard lower-order terms 
(e.g., N = 1000:  6 trillion vs. 169 million) 
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Mathematical Analysis 

Running time.  Count up frequency of execution of each instruction and 
weight by its execution time. 

Inner loop.  Focus on instructions in "inner loop." 
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Constants in Power Law 

Power law.  Running time of a typical program is   ~ a N b. 

Exponent b depends on:  algorithm. 

Leading constant a depends on: 
  Algorithm. 
  Input data.  
  Caching. 
  Machine. 
  Compiler. 
  Garbage collection. 
  Just-in-time compilation. 
  CPU use by other applications. 

Our approach.  Use doubling hypothesis (or mathematical analysis) 
to estimate exponent b, run experiments to estimate a. 

system dependent effects 

system independent effects 
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Analysis:  Empirical vs. Mathematical 

Empirical analysis. 
  Measure running times, plot, and fit curve. 
  Easy to perform experiments. 
  Model useful for predicting, but not for explaining. 

Mathematical analysis. 
  Analyze algorithm to estimate # ops as a function of input size. 
  May require advanced mathematics.  
  Model useful for predicting and explaining. 

Critical difference.  Mathematical analysis is independent of a 
particular machine or compiler; applies to machines not yet built. 
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Order of Growth Classifications 

Observation.  A small subset of mathematical functions suffice to 
describe running time of many fundamental algorithms. 

for (int i = 0; i < N; i++) 
   ... 

N 

for (int i = 0; i < N; i++) 
   for (int j = 0; j < N; j++) 
      ... 

N2 

while (N > 1) { 
   N = N / 2; 
   ... 
} 

lg N 

public static void f(int N) { 
   if (N == 0) return;    
   f(N-1); 
   f(N-1); 
   ...   
} 

2N 

public static void g(int N) { 
   if (N == 0) return; 
   g(N/2); 
   g(N/2); 
   for (int i = 0; i < N; i++) 
      ... 
} 

N lg N 

lg N = log 2 N 



29 

Order of Growth Classifications 
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Order of Growth:  Consequences 



Dynamic Programming 
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Binomial Coefficients 

Binomial coefficient.             number of ways to choose k of n elements. 

Ex.  Number of possible 7-card poker hands =         = 2,598,960. 

Ex.  Probability of "quads" in Texas hold 'em: 
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   (about  594 :1)
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Binomial Coefficients 

Binomial coefficient.             number of ways to choose k of n elements. 

Pascal's identity. 

Pascal's triangle. 
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Binomial Coefficients:  Sierpinski Triangle 

Binomial coefficient.             number of ways to choose k of n elements. 

Sierpinski triangle.  Color black the odd integers in Pascal's triangle. € 

n
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Binomial Coefficients:  First Attempt 

public class SlowBinomial { 

   // natural recursive implementation 
   public static long binomial(long n, long k) { 
      if (k == 0) return 1; 
      if (n == 0) return 0; 
      return binomial(n-1, k-1) + binomial(n-1, k); 
   } 

   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      int K = Integer.parseInt(args[1]); 
      StdOut.println(binomial(N, K)); 
   } 

} 

Pascal’s identity 
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(6, 4) 

(5, 4) (5, 3) 

(4, 4) (4, 3) 

(3, 3) (3, 2) 

(2, 2) (2, 1) 

(1, 1) (1, 0) 

(4, 2) (4, 3) 

(3, 3) (3, 2) 

(2, 2) (2, 1) 

(1, 1) (1, 0) 

(3, 2) 

(2, 2) (2, 1) 

(1, 1) (1, 0) 

(3, 1) 

(3, 0) (2, 1) 

(1, 1) (1, 0) 

Performance Challenge 3 

Q.  Is this an efficient way to compute binomial coefficients? 
A.  No, no, no!  [same essential recomputation flaw as naïve Fibonacci] 

recomputed twice 
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Timing experiments:  direct recursive solution. 

Q.  Is running time linear, quadratic, cubic, exponential in N? 

Timing Experiments 

15.69 (32, 16) 

4.30 (30, 15) 

1.27 (28, 14) 

0.46 (26, 13) 

time † (2N, N) 

57.40 (34, 17) 

230.42 (36, 18) 

increase N by 1, running time  
increases by about 4x 
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Performance Challenge 4 

Let F(N) be running time to compute binomial(2N, N). 

Observation.  F(N+1) / F(N) converges to about 4. 

Q.  What is order of growth of the running time? 

A.  Exponential:  a 4N.    

public static long binomial(long n, long k) { 
   if (k == 0) return 1; 
   if (n == 0) return 0; 
   return binomial(n-1, k-1) + binomial(n-1, k); 
} 

will not finish unless N is small 
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Key idea.  Save solutions to subproblems to avoid recomputation. 

Tradeoff.  Trade (a little) memory for (a huge amount of) time. 

Dynamic Programming 

0 1 2 3 4 

0 1 0 0 0 0 

1 1 1 0 0 

2 1 2 1 0 0 

3 1 3 3 1 0 

4 1 4 6 4 1 

5 1 5 10 10 5 

6 1 6 15 20 15 
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Binomial Coefficients:  Dynamic Programming 

public class Binomial { 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      int K = Integer.parseInt(args[1]); 
      long[][] bin = new long[N+1][K+1]; 

      // base cases 
      for (int k = 1; k <= K; k++) bin[0][K] = 0; 
      for (int n = 0; n <= N; n++) bin[N][0] = 1; 

      // bottom-up dynamic programming 
      for (int n = 1; n <= N; n++) 
         for (int k = 1; k <= K; k++) 
            bin[n][k] = bin[n-1][k-1] + bin[n-1][k]; 

      // print results 
      StdOut.println(bin[N][K]); 
   } 
} 
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Timing experiments for binomial coefficients via dynamic programming. 

Q.  Is running time linear, quadratic, cubic, exponential in N? 

Timing Experiments 

instant (32, 16) 

instant (30, 15) 

instant (28, 14) 

instant (26, 13) 

time † (2N, N) 

instant (34, 17) 

instant (36, 18) 
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Performance Challenge 5 

Let F(N) be running time to compute binomial(2N, N) using DP. 

Q.  What is order of growth of the running time? 

A.  Quadratic:  a N2. 

Remark.  There is a profound difference between 4N and N2. 

for (int n = 1; n <= N; n++) 
   for (int k = 1; k <= K; k++) 
      bin[n][k] = bin[n-1][k-1] + bin[n-1][k]; 

effectively instantaneous for small N 

cannot solve 
a large problem 

can solve 
a large problem 
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Digression:  Stirling's Approximation 

Alternative: 

Caveat.  52! overflows a long, even though final result doesn't. 

Instead of computing exact values, use Stirling's approximation: 

Application.   Probability of exact k heads in n flips with a biased coin. 
€ 
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2

 +  1
12n

 −  1
360n3  +  1

1260n5

€ 

n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  =  n!

k! (n − k)!

€ 

n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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Memory 
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Typical Memory Requirements for Java Data Types 

Bit.  0 or 1. 
Byte.  8 bits. 
Megabyte (MB).  1 million bytes  ~  210 bytes. 
Gigabyte (GB).  1 billion bytes  ~  220 bytes. 

Q. What's the biggest double[] array you can store on your computer? 

typical computer ’10 has about 2GB memory 
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Performance Challenge 6 

Q.  How much memory does this program require as a function of N? 

A.   

public class RandomWalk { 
   public static void main(String[] args) { 
      int N = Integer.parseInt(args[0]); 
      int[][] count = new int[N][N]; 
      int x = N/2; 
      int y = N/2; 

      for (int i = 0; i < N; i++)  { 
         // no new variable declared in loop 
         ... 
         count[x][y]++; 
      } 
   }  
} 
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Summary 

Q.  How can I evaluate the performance of my program? 
A. Computational experiments, mathematical analysis, scientific method. 

Q.  What if it's not fast enough? Not enough memory? 
  Understand why. 
  Buy a faster computer. 
  Learn a better algorithm (COS 226, COS 423). 
  Discover a new algorithm. 

does not apply to 
some problems 

makes "everything" 
run faster applicability 

dramatic qualitative 
improvements possible 

$ or less 

better algorithm better machine attribute 

$$$ or more cost 

quantitative 
improvements improvement 


