
2.3 Recursion

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 9/14/11 10:07 AM	

2

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
  New mode of thinking.
  Powerful programming paradigm.

Many computations are naturally self-referential.
  Mergesort, FFT, gcd, depth-first search.
  Linked data structures.
  A folder contains files and other folders.

Closely related to mathematical induction.

Reproductive Parts
M. C. Escher, 1948

3

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. gcd(4032, 1272) = 24.

Applications.
  Simplify fractions: 1272/4032 = 53/168.
  RSA cryptosystem.

4032 = 26 × 32 × 71

 1272 = 23 × 31 × 531

 gcd = 23 × 31 = 24

4

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

gcd(4032, 1272) = gcd(1272, 216)
 = gcd(216, 192)
 = gcd(192, 24)
 = gcd(24, 0)

 = 24.

€

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case

reduction step,
converges to base case

4032 = 3 × 1272 + 216

5

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

p

p % q q

x x x x x x x x

p = 8x
q = 3x
gcd(p, q) = x

q

gcd

€

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case
reduction step,
converges to base case

6

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Java implementation.

base case
reduction step

public static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
}

€

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case
reduction step,
converges to base case

Recursive Graphics

9

10

Htree

H-tree of order n.
  Draw an H.
  Recursively draw 4 H-trees of order n-1, one connected to each tip.

and half the size

order 1 order 2 order 3

tip

size

public class Htree {
 public static void draw(int n, double sz, double x, double y) {
 if (n == 0) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;

 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1);
 StdDraw.line(x1, y0, x1, y1);

 draw(n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1);
 draw(n-1, sz/2, x1, y0);
 draw(n-1, sz/2, x1, y1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
 }
}

11

Htree in Java

draw the H, centered on (x, y)

recursively draw 4 half-size Hs

12

20% 40% 60% 80% 100%

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

http://en.wikipedia.org/wiki/Image:Hanoiklein.jpg

Towers of Hanoi

14

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
  Only one disc may be moved at a time.
  A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

start finish

Edouard Lucas (1883)

15

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
  64 golden discs on 3 diamond pegs.
  World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

16

Towers of Hanoi: Recursive Solution

Move n-1 smallest discs right.

Move n-1 smallest discs right. Move largest disc left.
cyclic wrap-around

17

Towers of Hanoi: Recursive Solution

public class TowersOfHanoi {

 public static void moves(int n, boolean left) {
 if (n == 0) return;
 moves(n-1, !left);
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right");
 moves(n-1, !left);
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 moves(N, true);
 }

}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right

smallest disc

18

Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left

subdivisions of ruler

every other move is smallest disc

19

Towers of Hanoi: Recursion Tree

3, true

2, false

1, true 1, true

2, false

1, true 1, true

1 left 2 right 1 left 3 left 2 right 1 left 1 left

n, left

1 14

2 7

3 4 6 5 9 10 12 11 17 18 20 19 23 24 26 25

13 8 16 21 27 22

28 15

20

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
  Takes 2n - 1 moves to solve n disc problem.
  Sequence of discs is same as subdivisions of ruler.
  Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
  Alternate between two moves:

–  move smallest disc to right if n is even
–  make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
  Takes 585 billion years for n = 64 (at rate of 1 disc per second).
  Reassuring fact: any solution takes at least this long!

to left if n is odd

21

Divide-and-Conquer

Divide-and-conquer paradigm.
  Break up problem into smaller subproblems of same structure.
  Solve subproblems recursively using same method.
  Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
  FFT for signal processing.
  Parsers for programming languages.
  Multigrid methods for solving PDEs.
  Quicksort and mergesort for sorting.
  Hilbert curve for domain decomposition.
  Quad-tree for efficient N-body simulation.
  Midpoint displacement method for fractional Brownian motion.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Fibonacci Numbers

23

Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)

€

F(n) =

0 if n = 0
1 if n =1
F(n−1) + F(n−2) otherwise

⎧

⎨
⎪

⎩
⎪

24

Fibonacci Numbers and Nature

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

€

F(n) =

0 if n = 0
1 if n =1
F(n−1) + F(n−2) otherwise

⎧

⎨
⎪

⎩
⎪

pinecone

cauliflower

25

A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

A natural for recursion?

public static long F(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

€

F(n) =

0 if n = 0
1 if n =1
F(n−1) + F(n−2) otherwise

⎧

⎨
⎪

⎩
⎪

26

Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute F(50)?

A. No, no, no! This code is spectacularly inefficient.

public static long F(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

F(50)

F(49) F(48)

F(48)

F(47) F(46)

F(47)

F(46) F(45)

F(46)

F(45) F(44)

F(47)

F(46) F(45)

F(50) is called once.
F(49) is called once.

F(48) is called 2 times.

F(47) is called 3 times.
F(46) is called 5 times.

F(45) is called 8 times.
...

F(1) is called 12,586,269,025 times. recursion tree for naïve Fibonacci function

F(50)

27

Recursion Challenge 2 (easy and also important)

Q. Is this a more efficient way to compute F(50)?

A. Yes. This code does it with 50 additions.
Lesson. Don’t use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique
known as dynamic programming (stay tuned).

€

F(n) =
φ n − (1−φ)n

5
= φ n 5⎣ ⎦

φ = golden ratio ≈ 1.618

FYI: classic math
public static long F(int n) {
 if (n == 0) return 0;
 long[] F = new long[n+1];
 F[0] = 0;
 F[1] = 1;
 for (int i = 2; i <= n; i++)
 F[i] = F[i-1] + F[i-2];
 return F[n];
}

28

Summary

How to write simple recursive programs?
  Base case, reduction step.
  Trace the execution of a recursive program.
  Use pictures.

Why learn recursion?
  New mode of thinking.
  Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Towers of Hanoi by W. A. Schloss.

