
Subtyping and Inheritance in Java

Prakash Panangaden

November 16, 2006

1 Inheritance

One of the fundamental advances in the object-oriented paradigm is the ability to reuse

code. It often happens that you find yourself coding a small variation of something that you
had coded before. If your code is organized into classes, you might observe the following
patterns. The new code that you want to write is a new class, but it looks just like an old
class that you wrote a while ago except for a couple of methods. It is to handle situations
like this that we have the notion of inheritance.

The following code is a basic example.

class myInt {

//Instance variable

private int n;

//Constructor

public myInt(int n){

this.n = n;

}

//Instance methods

public int getval(){

return n;

}

public void increment(int n){

this.n += n;

}

public myInt add(myInt N){

return new myInt(this.n + N.getval());

}

1



public void show(){

System.out.println(n);

}

}

This class just has an integer in each object together with some basic methods. It is not a
class we would really write. It is here for illustrative purposes only.

Now imagine that we decide to have “integers” made out of complex numbers. These
numbers are called gaussian integers used by the great mathematician Gauss for his work
in number theory. He discovered that as an algebraic system, these numbers behaved very
much like ordinary integers. We might want to extend our ordinary integers to deal with
these gaussian integers. Here is the code that does it. The keyword extends in the class
declaration tells the system that you want all the code that worked for class myInt to be
present in class gaussInt. We say that gaussInt inherits from myInt. We also say that
myInt is the superclass and that gaussInt is the subclass.

class gaussInt extends myInt {

//Instance variable

private int m; //Represents the imaginary part

/* We do not need the real part that is already present because we

have inherited all the data and methods of myInt. Thus the

private int n is also present in every instance of a gaussInt. */

//Constructor

public gaussInt(int x, int y){

super(x); //Special keyword

this.m = y;

}

//Instance methods

//This method is overridden from the superclass

public void show(){

System.out.println(

"realpart is: " + this.getval() +" imagpart is: " + m);

}

public int realpart(){

return getval();

}

2



/*The method getval is defined in the superclass. It is not defined

here but it is inherited by this class so we can use it. */

public int imagpart(){

return m;

}

//This is an overloaded method

public gaussInt add(gaussInt z){

return new gaussInt(z.realpart() + realpart(),

z.imagpart() + imagpart());

}

public static void main(String[] args){

gaussInt kreimhilde = new gaussInt(3,4);

kreimhilde.show();

kreimhilde.increment(2);

kreimhilde.show();

}

}//class gaussInt

There are a couple of things to note. In the constructor, we first want to use the constructor
for the superclass; this is done with the keyword super. The super keyword invokes the
superclass constructor and then continues with whatever is written next. The picture that
you should have in mind is that an instance of gaussInt contains an instance of myInt.

Now you really want to inherit some of the methods unchanged, but some methods need
to be modified. Obviously the show method of myInt is no use for gaussInt. In the subclass,
you can give a new definition for an old method name. Thus in the above class, we have
inherited getval and increment unchanged but we have modified show. This is called
overriding. From class gaussInt you cannot use the show method of the superclass as it is
well hidden.

There is also a more subtle phenomenon called overloading. Look at the add method in
the two classes. At first sight, this looks like overriding. However the types of the arguments
expected by the two definitions of the add method are different. The types of the arguements
are called the signature of the method. Now when we use the same name for a method but

with a different signature we get two different methods with the same name. Both methods
are available from the subclass. In this case, from the class gaussInt, we can use both add

methods. How does the system know which one to use? It looks at the types of the actual
arguments and decides which one to use. Thus if you want to add an ordinary myInt to a
gaussInt, then the add method of the superclass is used.

3



2 Subtyping and Interfaces

One of the features of object-oriented languages is a sophisticated type system that offers a
possibility called “subtype polymorphism.” In this section we will explain what this is and
how it works in Java. One very important caveat when reading the extant literature: there
is terrible confusion about the words “subtyping” and “inheritance”. They are not the

same thing! Yet one sees in books phrases like “inhertitance (i.e. subtyping) is very easy
...”! My only explanation is that lots of people really are clueless. Do not learn from them.

Recall that a type system classifies values into collections that reflect some structural or
computational similarity. There is no reason that this classification should be into disjoint
collections. Thus, for example, a value like 2 can be both an integer and a floating-point
number. When a value can be in more than one type we say that we have a system that is
polymorphic - from the Greek, meaning “having many shapes.” A type system that allows
procedures to gain in generality by exploiting the possibility that a value may be in many
types is called a polymorphic type system.

The kind of polymorphism that one sees in Java is called “subtype polymorphism”1 which
is based on the idea that there may be a relation between types called the subtyping relation.
Do not confuse subtyping with the notion of subset. We will say that a type A is a subtype
of a type B if whenever the context requires an element of type B it can accept an element
of type A. We write A⊳B to indicate this.

Here is the basic example of subtyping valid in many languages – but not in Sml. Consider
the types int and float. It is easy to see that int is a subtype of float, in symbols
int⊳float. Whenever you need a floating-point value an integer can be used but definitely
not the other way. For example, we may have a method for computing the prime factors of
an integer, obviously such a method would not even make sense of a floating-point number.

How do we set up the subtyping relation? There are some built in instances of subtyping
– such as int⊳float – but, clearly, this is not worth making such a fuss about. Where
subtyping really comes into its own is with user-defined types. In Java, subtyping occurs
automatically when you have inheritance; this does not mean that subtyping and inheritance

are the same thing. You can also have instances of subtyping without any inheritance as we
shall see.

Thus, if we declare a class B to be an extension of class A, we will have - in addition
to all the inheritance - that B⊳A. In other words, if at some point you have a method foo

which expects an argument of type A; foo will always accept an object of type B. If we
extend class B with class C then we have

C⊳B⊳A.

If we extend A with another class D then we will have D⊳A but there will be no subtyping
relation between B and D or C and D. A method expecting an object of type A will accept
objects of type B, C or D. This gives increased generality to the code.

1There are other kinds, most notably parametric polymorphism, which we have seen in Sml.

4



It is often the case that the inheritance hierarchy is not very “wide”. In other words
it is unlikely that a class A can be sensibly extended in many incompatible ways. This is
because the code has to be inherited and usually only a few methods are modified. If we
are modifying all or almost all the methods then it is clear that we are not really using
inheritance. We are really trying to get the generality offered by subtype polymorphism.

Java supports subtype polymorphism independently of inheritance. This is done by
interfaces. An interface is a declaration of a collection of method names - without any

method bodies - and perhaps some constants. They describe a (sub)set of methods that
a class might have. There is no code in an interface, hence there is nothing to inherit.
A concrete class2 may be declared to implement an interface. This is really a subtyping
declaration. An interface names a new type (not a class) and when we say that a class P

implements interface I we have set up the subtyping relation P⊳I. Because there was no
code in the interface, P does not inherit any code; but it must have a method of the same

name and type as every method name in the interface I.
A class can implement many interfaces and thus one can have a complex type hierarchy

with multiple subtyping. One often hears the phrase “interfaces allow Java to fake multiple
inheritance”. This is a source of confusion. What interfaces allow is multiple subtyping. Java
definitely does not have multiple inheritance (C++ does have true multiple inheritance); wat
it has is multiple subtyping.

Here is an example of the use of inheritance. Imagine that you have written code to draw
the graph of a mathematical function. You want this to be abstracted on the function. You
do not want to write code to plot a graph of the sine function and another different - but
almost identical - piece of code to plot a graph of the exp function. You want the function
- a piece of code - to be a parameter. We can do this with objects because objects can be
passed around like any other piece of data but yet they carry code. What kind of object is a
mathematical function? It expects a double argument and returns a double result. There
might be other methods associated with function objects but the plot method does not care.
It only cares that there is a method - called, say, y - such that f.y(3.14159) returns a double.
So instead of having to know all about the details of the class of mathematical functions we
just define an interface plottable with the one method y in it with the appropriate type.
When we define our mathematical function objects we can make them as complicated as we
please as long as we declare that they implement plottable and ensure that they really do
have the method y. If we have another type of object - say fin-data - for financial data
we would expect to define a totally different class with no relation to mathematical function
objects. However, fin-data could also have a method y and be declared to implement
plottable. Then our plot method works on totallly unrelated classes. We have achieves
generality for our plotting method through subtype polymorphism in a situation far more
general than could have been achieved by inheritance.

In between interfaces and classes are abstract classes that have some methods defined
and some that are left blank as in interfaces. You can extend them as you would any class.

2We use the adjective “concrete” to mean that the class is completely defined, i.e. it has all the actual

code for the methods.

5


