494-F01 23-1/6

2.3 Reference Semantics in Java

m Java, C#, Visual Basic, and Python employ
reference semantics for “objects”.

» Value semantics is employed only built-in
simple types, such as integers and real
numbers, that are not class types.

[a few exceptions in some of the languages, but
not in Javaj

m To understand reference semantics, we must
understand the difference between an

i) an object, and
i) an object reference.

m Consider this Java code (in some method).

494-F01 23-2/6

Poi nt a;

Create a new object reference a (on the run-time stack).
[1 object reference, 0 objects)].

a = new Point(3,4);

Create a new object (on the heap). This object is
anonymous. (We will call it Object #1.)
Assign a to refer to Object #1.

[1 object reference, 1 object].

Point b = a;

Create a new object reference b (on the run-time stack).
Assign b to refer to object #1.
[2 object references, 1 object].

Point ¢ = new Point(7,5);

Create a new object reference c (on the run-time stack).
Create a new object (on the heap). We call it object #2.
Assign ¢ to refer to object #2.

[3 object references, 2 objects].

a = C,
Assign a to refer to object #2.
[3 object references, 2 objects].

494-F01 23-3/6
b = new Point(7,5);
Create a new object (on the heap). We will call it object
#3.
Assign b to refer to object #3.

[3 object references, 3 objects; but object #1 isinaccessible,
and subject to deletion by the system]

Systemout.printin((a ==b) ? "¢ ‘n');
Prints 'n'. The equality operator compares object
references, not objects. arefers to object #2; b to
object #3.

Systemout.printin((a==¢) ? "¢ ‘n');

Prints 'e’. aand c refer to the same object (object #3).

/J//,yeligible for "\

—_— — delehon %

a
b
cC

494-F01 23-4/6

m Some differences between objects and object
references, in Java.

Object references Objects

On the run-time stack |On the heap.
Where (unless object reference
clleeaienl is an element of an array,

’ or a field within an

object).

Independent of the Depends on type of
2@;2? _Of type of the object the object.

y: (typically 4 bytes).

Has a name Always anonymous

Name: (unless it is an element of

an array, or a field within
an object).

Refers to a single Zero or more object
Refers to: / |object, unless it is null. |references may
Referred to refer to it.

by: If 0, the object is
eligible for deletion.

Has two types:

(i) a declared type
(static type), and

(i) an actual type
(dynamic type).

Has only one type
(actual type =

Type(s): declared type).

494-F01

23-5/6

May contain
i) primitive types,
i) array references,

May iii) object references.
contain: .
May not contain
i) arrays,
i) other objects.
Assigning to the object | Invoking a mutating
Modified by: |reference. method of the
object.
Modification | Declaring the object Defining no mutating
disallowed |reference as final. methods in the
by: object’s class.
When control leaves | By the system,
the block in which it |when the garbage
defined. collection process
However, if the object | detects that no
When reference is an element |references the
deleted:

of an array, or field
within an object, it is
deleted when the
containing array or
object is deleted.

object remain.

494-F01 23-6/6

» The actual type of an object reference is the
type of the object to which it refers.

« The actual type must be a subclass of the
declared type.

+ For example, in
Token t = new BinaryQp();

the declared type of t is Token, and the
actual type is Bi naryQp.

