
2.4 A Case Study: Percolation

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 6/23/10 8:16 AM	

2.4 A Case Study: Percolation

3

A Case Study: Percolation

Percolation. Pour liquid on top of some porous material.
Will liquid reach the bottom?

Applications. [chemistry, materials science, …]
  Chromatography.
  Spread of forest fires.
  Natural gas through semi-porous rock.
  Flow of electricity through network of resistors.
  Permeation of gas in coal mine through a gas mask filter.
  …

4

A Case Study: Percolation

Percolation. Pour liquid on top of some porous material.
Will liquid reach the bottom?

Abstract model.
  N-by-N grid of sites.
  Each site is either blocked or open.

open site

blocked site

5

A Case Study: Percolation

Percolation. Pour liquid on top of some porous material.
Will liquid reach the bottom?

Abstract model.
  N-by-N grid of sites.
  Each site is either blocked or open.
  An open site is full if it is connected to the top via open sites.

open site

blocked site

percolates
(full site connected to top)

full site

does not percolate
(no full site on bottom row)

6

A Scientific Question

Random percolation. Given an N-by-N system where each site is vacant
with probability p, what is the probability that system percolates?

Remark. Famous open question in statistical physics.

Recourse. Take a computational approach: Monte Carlo simulation.

no known mathematical solution

p = 0.3
(does not percolate)

p = 0.4
(does not percolate)

p = 0.5
(does not percolate)

p = 0.6
(percolates)

p = 0.7
(percolates)

7

Data Representation

Data representation. Use one N-by-N boolean matrix to store which
sites are open; use another to compute which sites are full.

Standard array I/O library. Library to support reading and printing 1-
and 2-dimensional arrays.

8 8
0 0 1 1 1 0 0 0
1 0 0 1 1 1 1 1
1 1 1 0 0 1 1 0
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
0 1 0 0 0 0 1 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 0 0

open[][]

shorthand:
0 for blocked, 1 for open blocked site

open site

8

Data Representation

Data representation. Use one N-by-N boolean matrix to store which
sites are open; use another to compute which sites are full.

Standard array I/O library. Library to support reading and printing 1-
and 2-dimensional arrays.

8 8
0 0 1 1 1 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0

full[][]

shorthand:
0 for not full, 1 for full

full site

9

Standard Array IO Library (Program 2.2.2)

public class StdArrayIO {

...

 // read M-by-N boolean matrix from standard input
 public static boolean[][] readBoolean2D() {
 int M = StdIn.readInt();
 int N = StdIn.readInt();
 boolean[][] a = new boolean[M][N];
 for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 if (StdIn.readInt() != 0) a[i][j] = true;
 return a;
 }

 // print boolean matrix to standard output
 public static void print(boolean[][] a) {
 for (int i = 0; i < a.length; i++) {
 for (int j = 0; j < a[i].length; j++) {
 if (a[i][j]) StdOut.print("1 ");
 else StdOut.print("0 ");
 }
 StdOut.println();
 }
 }
}

10

Scaffolding

Approach. Write the easy code first. Fill in details later.

public class Percolation {

 // return boolean matrix representing full sites
 public static boolean[][] flow(boolean[][] open)

 // does the system percolate?
 public static boolean percolates(boolean[][] open) {
 int N = open.length;
 boolean[][] full = flow(open);
 for (int j = 0; j < N; j++)
 if (full[N-1][j]) return true;
 return false;
 }

 // test client
 public static void main(String[] args) {
 boolean[][] open = StdArrayIO.readBoolean2D();
 StdArrayIO.print(flow(open));
 StdOut.println(percolates(open));
 }
}

system percolates if any full site in bottom row

Vertical Percolation

12

Vertical Percolation

Next step. Start by solving an easier version of the problem.

Vertical percolation. Is there a path of open sites from the top
to the bottom that goes straight down?

13

Vertical Percolation

Q. How to determine if site (i, j) is full?
A. It's full if (i, j) is open and (i-1, j) is full.

Algorithm. Scan rows from top to bottom.

row i-1	

row i	

14

Vertical Percolation

Q. How to determine if site (i, j) is full?
A. It's full if (i, j) is open and (i-1, j) is full.

Algorithm. Scan rows from top to bottom.

public static boolean[][] flow(boolean[][] open) {

 int N = open.length;
 boolean[][] full = new boolean[N][N];
 for (int j = 0; j < N; j++)
 full[0][j] = open[0][j];

 for (int i = 1; i < N; i++)
 for (int j = 0; j < N; j++)
 full[i][j] = open[i][j] && full[i-1][j];

 return full;
}

find full sites

initialize

15

% java VerticalPercolation < testT.txt
5
0 1 1 0 1
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
true

% java VerticalPercolation < testF.txt
5
1 0 1 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 0 0
0 0 0 0 0
false

Vertical Percolation: Testing

Testing. Use standard input and output to test small inputs.

% more testT.txt
5
0 1 1 0 1
0 0 1 1 1
1 1 0 1 1
1 0 0 0 1
0 1 1 1 1

% more testF.txt
5
1 0 1 0 0
1 0 1 1 1
1 1 1 0 1
1 0 0 0 1
0 0 0 1 1

16

Vertical Percolation: Testing

Testing. Add helper methods to generate random inputs and
visualize using standard draw.

public class Percolation {

 ...

 // return a random N-by-N matrix; each cell true with prob p
 public static boolean[][] random(int N, double p) {
 boolean[][] a = new boolean[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = StdRandom.bernoulli(p);
 return a;
 }

 // plot matrix to standard drawing
 public static void show(boolean[][] a, boolean foreground)

}

17

Data Visualization

Visualization. Use standard drawing to visualize larger inputs.

public class Visualize {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 double p = Double.parseDouble(args[1]);
 boolean[][] open = Percolation.random(N, p);
 boolean[][] full = Percolation.flow(open);
 StdDraw.setPenColor(StdDraw.BLACK);
 Percolation.show(open, false);
 StdDraw.setPenColor(StdDraw.CYAN);
 Percolation.show(full, true);
 }
}

18

Vertical Percolation: Probability Estimate

Analysis. Given N and p, run simulation T times and report average.

public class Estimate {

 public static double eval(int N, double p, int T) {
 int cnt = 0;
 for (int t = 0; t < T; t++) {
 boolean[][] open = Percolation.random(N, p);
 if (VerticalPercolation.percolates(open)) cnt++;
 }
 return (double) cnt / M;
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 double p = Double.parseDouble(args[1]);
 int T = Integer.parseInt(args[2]);
 StdOut.println(eval(N, p, T));
 }
}

test client

19

Vertical Percolation: Probability Estimate

Analysis. Given N and p, run simulation T times and report average.

Running time. Proportional to T N 2.
Memory consumption. Proportional to N 2.

% java Estimate 20 .7 100000
0.015768

% java Estimate 20 .8 100000
0.206757

% java Estimate 20 .9 100000
0.925191

% java Estimate 40 .9 100000
0.448536

a lot of computation!

agrees with theory
1 – (1 – p N) N

takes about 1 minute

takes about 4 minutes

General Percolation

21

General Percolation: Recursive Solution

Percolation. Given an N-by-N system, is there any path of open sites
from the top to the bottom.

Depth first search. To visit all sites reachable from i-j:
  If i-j already marked as reachable, return.
  If i-j not open, return.
  Mark i-j as reachable.
  Visit the 4 neighbors of i-j recursively.

Percolation solution.
  Run DFS from each site on top row.
  Check if any site in bottom row is marked as reachable.

not just straight down

22

Depth First Search: Java Implementation

public static boolean[][] flow(boolean[][] open) {
 int N = open.length;
 boolean[][] full = new boolean[N][N];
 for (int j = 0; j < N; j++)
 if (open[0][j]) flow(open, full, 0, j);
 return full;
}

public static void flow(boolean[][] open,
 boolean[][] full, int i, int j) {
 int N = full.length;
 if (i < 0 || i >= N || j < 0 || j >= N) return;
 if (!open[i][j]) return;
 if (full[i][j]) return;

 full[i][j] = true; // mark
 flow(open, full, i+1, j); // down
 flow(open, full, i, j+1); // right
 flow(open, full, i, j-1); // left
 flow(open, full, i-1, j); // up
}

23

General Percolation: Probability Estimate

Analysis. Given N and p, run simulation T times and report average.

Running time. Still proportional to T N 2.
Memory consumption. Still proportional to N 2.

% java Estimate 20 .5 100000
0.050953

% java Estimate 20 .6 100000
0.568869

% java Estimate 20 .7 100000
0.980804

% java Estimate 40 .6 100000
0.595995

Adaptive Plot

25

In Silico Experiment

Plot results. Plot the probability that an N-by-N system percolates
as a function of the site vacancy probability p.

Design decisions.
  How many values of p?
  For which values of p?
  How many experiments for each value of p?

too few points too many points judicious choice of points

26

Adaptive Plot

Adaptive plot. To plot f(x) in the interval [x0, x1]:
  Stop if interval is sufficiently small.
  Divide interval in half and compute f(xm).
  Stop if f(xm) is close to ½ (f(x0) + f(x1)).
  Recursively plot f(x) in the interval [x0, xm].
  Plot the point (xm, f(xm)).
  Recursively plot f(x) in the interval [xm, x1].

Net effect. Short program that judiciously chooses values of p
to produce a "good" looking curve without excessive computation.

27

Percolation Plot: Java Implementation

public class PercolationPlot {
 public static void curve(int N, double x0, double y0,
 public static void curve(int N, double x1, double y1) {
 double gap = 0.05;
 double error = 0.005;
 int T = 10000;

 double xm = (x0 + x1) / 2;
 double ym = (y0 + y1) / 2;
 double fxm = Estimate.eval(N, xm, T);

 if (x1 - x0 < gap && Math.abs(ym - fxm) < error) {
 StdDraw.line(x0, y0, x1, y1);
 return;
 }

 curve(N, x0, y0, xm, fxm);
 StdDraw.filledCircle(xm, fxm, .005);
 curve(N, xm, fxm, x1, y1);
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 curve(N, 0.0, 0.0, 1.0, 1.0);
 }
}

28

Adaptive Plot

Plot results. Plot the probability that an N-by-N system percolates as a
function of the site vacancy probability p.

Phase transition. If p < 0.593, system almost never percolates;
if p > 0.593, system almost always percolates.

29

Dependency Call Graph

30

Lessons

Expect bugs. Run code on small test cases.

Keep modules small. Enables testing and debugging.

Incremental development. Run and debug each module as you write it.

Solve an easier problem. Provides a first step.

Consider a recursive solution. An indispensable tool.

Build reusable libraries. StdArrayIO, StdRandom, StdIn, StdDraw, …

