2.4 A Case Study: Percolation

INTRODUCTION TO

Programming

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Introduction to Programming in Java: An Interdisciplinary Approach - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - 6/23/10 8:16 AM

2.4 A Case Study: Percolation

OUR GOAL I5 70 WRITE
BUGFREE SOFTWARE.
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FIX,

5. Adaus E-mails SCOTTADAMS®AOL COM

{he0L

\l/

e
\r\?\\‘c‘\,\
\\

W
NES \\“

NE3
N

AN

113 & 1998 United Feature Syndioate, Inc.(NYC}

1 HOPE
THLS
DRIVES
THE RIGHT
BEHAVIOR,

TM GONNA
WRITE ME A
NEW MINIVAN
THIS AFTER-
NOON!

A Case Study: Percolation

Percolation. Pour liquid on top of some porous material.
Will liquid reach the bottom?

Applications. [chemistry, materials science, ...]
Chromatography.

Spread of forest fires.

Natural gas through semi-porous rock.

Flow of electricity through network of resistors.

« Permeation of gas in coal mine through a gas mask filter.

A Case Study: Percolation

Percolation. Pour liquid on top of some porous material.
Will liquid reach the bottom?

Abstract model.
« N-by-N grid of sites.
« Each site is either blocked or open.

blocked site —

open site —

A Case Study: Percolation

Percolation. Pour liquid on top of some porous material.
Will liquid reach the bottom?

Abstract model.
« N-by-N grid of sites.
« Each site is either blocked or open.
. Anopen site is full if it is connected to the top via open sites.

o

blocked site — «— full site

open site —

/ a7

percolates does not percolate
(full site connected to top) (no full site on bottom row)

A Scientific Question

Random percolation. Given an N-by-N system where each site is vacant
with probability p, what is the probability that system percolates?

p=0.3 p=04 . . .
(does not percolate) (does not percolate) (does not percolate) (percolates) (percolates)

Remark. Famous open question in statistical physics.

no known mathematical solution

Recourse. Take a computational approach: Monte Carlo simulation.

Data Representation

Data representation. Use one N-by-N boolean matrix to store which
sites are open; use another to compute which sites are full.

Standard array I/O library. Library to support reading and printing 1-
and 2-dimensional arrays.

shorthand:
O for blocked, 1 for open

blocked site —

open site —

)P RO O O®RF K O 0
P O R P OF OO ©

HF R OoORKRKRKEOHR
HoOoOOoORrR KHRORHKR
Or OOOOR K
HF R OoOR KERKERO
ORRFER KR KLERRERLRO
O KR OKROZRO

open[] []

Data Representation

Data representation. Use one N-by-N boolean matrix to store which
sites are open; use another to compute which sites are full.

Standard array I/O library. Library to support reading and printing 1-
and 2-dimensional arrays.

shorthand:
O for not full, 1 for full

O O O O O O O O ™
O O O O O O O O ™

O O O O OO0 o mr
O OO oo omr Rk
O R OO OORrRHBRKR
)P RO R KO
orrRKFRKERHLRKLRO
oORrHPrORPR OWHRBRDO

\

full site

fullf][]

Standard Array IO Library (Program 2.2.2)

Scaffolding

Approach. Write the easy code first. Fill in details later.

10

Vertical Percolation

Vertical Percolation

Next step. Start by solving an easier version of the problem.

Vertical percolation. Is there a path of open sites from the top
to the bottom that goes straight down?

vertically percolates does not vertically percolate

site connected to toil)

with a vertical pat no open site connected to
top with a vertical path

12

Vertical Percolation

Q. How to determine if site (i,) is full?
A. It's full if (i,)) is open and (i-1,)) is full.

Algorithm. Scan rows from top to bottom.

connected to top via a
vertical path of filled sites

row i-1
row i .
not connected to top

via such a path connected to top

via such a path

13

Vertical Percolation

Q. How to determine if site (i,) is full?
A. It's full if (i,)) is open and (i-1,)) is full.

Algorithm. Scan rows from top to bottom.

initialize

find full sites

14

Vertical Percolation: Testing

Testing. Use standard input and output to test small inputs.

15

Vertical Percolation: Testing

Testing. Add helper methods to generate random inputs and
visualize using standard draw.

public class Percolation {

// return a random N-by-N matrix; each cell true with prob p
public static boolean[][] random(int N, double p) {
boolean[] [] a = new boolean[N] [N];
for (int i = 0; 1 < N; i++)

for (int j = 0; j < N; j++)
al[i][j] = StdRandom.bernoulli (p) ;
return a;

}

// plot matrix to standard drawing
public static void show(boolean[][] a, boolean foreground)

16

Data Visualization

Visualization. Use standard drawing to visualize larger inputs.

public class Visualize {

public static void main (String[] args) {
int N = Integer.parselnt(args[0]) ;
double p = Double.parseDouble (args[1l]) ;
boolean[][] open = Percolation.random(N, p);
boolean[][] full = Percolation.flow(open) ;
StdDraw.setPenColor (StdDraw.BLACK) ;
Percolation.show (open, false);
StdDraw.setPenColor (StdDraw.CYAN) ;
Percolation.show(full, true);

% java Visualize 20 .95 1 % java Visualize 20 .9 1
[Em []
i [.FI
[(NS || n
. = :h m"n
- u = g B .
n n
[[[n
[] || u
. H N u - u
[
. = _ =
n Ee =

17

Vertical Percolation: Probability Estimate

Analysis. Given N and p, run simulation T times and report average.

18

Vertical Percolation: Probability Estimate

Analysis. Given N and p, run simulation T times and report average.

o\

java Estimate
.015768

(@)

o\

java Estimate
.206757

(@)

agrees with theory
1-(0-pN)WN

o\°

java Estimate
.925191

O

o\

java Estimate
.448536

(@)

20

20

20

40

.7 100000

.8 100000 takes about 1 minute
takes about 4 minutes

.9 100000/

.9 100000

_—a lot of computation!

Running time. Proportional to T N2.

Memory consumption. Proportional to N2.

19

General Percolation

General Percolation: Recursive Solution

Percolation. Given an N-by-N system, is there any path of open sites
from the top to the bottom. \

not just straight down

Depth first search. To visit all sites reachable from i-j:
« If i-j already marked as reachable, return.

- Ifi-j not open, return.

« Mark i-j as reachable.

« Visit the 4 neighbors of i-j recursively.

Percolation solution.
« Run DFS from each site on top row.
« Check if any site in bottom row is marked as reachable.

>

21

Depth First Search: Java Implementation

public static boolean|[][] flow(boolean[][] open) {
int N = open.length;
boolean[][] full = new boolean[N] [N];
for (int j = 0; j < N; j++)
if (open[0][j]) flow(open, full, 0, j);
return full;

}

public static void flow(boolean[][] open,
boolean[] [] full, int i, int j)
int N = full.length;
if (1 <0 |] i > N || J<O0|] j > N) return;
if ('open[i][]j]) return;
if (full[i][j]) return;

full[i] [j] = true; // mark
flow(open, full, i+1, j); // down
flow(open, full, i, j+1); // right
flow(open, full, i, j-1); // left

flow(open, full, i-1, j); // up

General Percolation: Probability Estimate

Analysis. Given N and p, run simulation T times and report average.

o\

java Estimate 20 .5 100000
.050953

(@)

o\

java Estimate 20 .6 100000
.568869

(@)

o\°

java Estimate 20 .7 100000
.980804

O

o\

java Estimate 40 .6 100000
.595995

(@)

Running time. Still proportional o T N2,
Memory consumption. Still proportional o N2,

Adaptive Plot

In Silico Experiment

Plot results. Plot the probability that an N-by-N system percolates
as a function of the site vacancy probability p.

Design decisions.
« How many values of p?
= For which values of p?
« How many experiments for each value of p?

too few points too many points Jjudicious choice of points

25

Adaptive Plot

Adaptive plot. To plot f(x) in the interval [x,, x,]:
. Stop if interval is sufficiently small.
. Divide interval in half and compute f(x,,).
. Stop if fix,) is close to 3 (f(xy) +f(x))).
« Recursively plot f{x) in the interval [x,, x,].
« Plot the point (x,,, fix,)).
. Recursively plot f{x) in the interval [x,, x,].

Net effect. Short program that judiciously chooses values of p

to produce a "good" looking curve without excessive computation.

(%, f(x,,))

- o
error (x Y1)
tolerance

gap tolerance

26

Percolation Plot: Java Implementation

public class PercolationPlot {
public static void curve (int N, double x0, double yO,
double x1, double yl) {

double gap = 0.05;
double error = 0.005;
int T = 10000;

double xm = (x0 + x1) / 2;
double ym = (y0 + yl) / 2;
double fxm = Estimate.eval (N, xm, T);

if (x1 - x0 < gap && Math.abs(ym - fxm) < error) {
StdDraw.line (x0, y0, x1, yl1);
return;

}

curve (N, x0, y0, xm, £xm);
StdDraw.filledCircle (xm, £xm, .005);
curve (N, xm, fxm, x1, yl);

}

public static void main(String[] args) {
int N = Integer.parselnt(args[0]) ;
curve(N, 0.0, 0.0, 1.0, 1.0);

Adaptive Plot

Plot results. Plot the probability that an N-by-N system percolates as a
function of the site vacancy probability p.

% java PercPlot 20 % java PercPlot 100
1- 1-
percolation percolation
probability probability
I I 0+ I I
0 0.593 1 0 0.593 1
site vacancy probability p site vacancy probability p

Phase transition. If p< 0.593, system almost never percolates;
if p > 0593, system almost always percolates.

28

Dependency Call Graph

<§thandoE>

N

Perco]at1o

Est1mate

StdArrayIO

Y

Case study dependencies (not including system calls)

29

Lessons

Expect bugs. Run code on small test cases.

Keep modules small. Enables testing and debugging.

Incremental development. Run and debug each module as you write it.
Solve an easier problem. Provides a first step.

Consider a recursive solution. An indispensable tool.

Build reusable libraries. stdarrayIo, StdRandom, StdIn, StdDraw, ...

30

