
PROLOGUE 
THE EXPONENTIAL FUNCTION 

This is the most important function in mathematics. It is defined, for every com-
plex number z, by the formula 

00 z" 
exp (z) = L ,. 

,,=0 n. 
(1) 

The series (1) converges absolutely. for every z and converges uniformly on every 
bounded subset of the complex plane. Thus exp is a continuous function. The 
absolute convergence of (1) shows that the computation 

00 ak 00 bm 00 1" n! 00 (a+bt L -k' L ,= L , L k'( k)' akb,,-k= L , k=O . m=O m. ,,=0 n. k=O . n - . ,,=0 n. 

is correct. It gives the important addition formula 

exp (a) exp (b) = exp (a + b), (2) 

valid for all complex numbers a and b. 
We define the number e to be exp (1), and shall usually replace exp (z) by the 

customary shorter expression e%. Note that eO = exp (0) = 1, by (1). 

Theorem 

(a) For every complex z we have e% =I: O. 
(b) exp is its own derivative: exp' (z) = exp (z). 
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(c) The restriction of exp to the real axis is a monotonically increasing positive 
function, and 

e"'-+ 00 as x-+ 00, 

(d) There exists a positive number n such that e1ti/ 2 = i and such that eZ = 1 if 
and only if z/(2ni) is an integer. 

(e) exp is a periodic function, with period 2ni. 
(f) The mapping t-+ eit maps the real axis onto the unit circle. 
(g) If w is a complex number and w =I- 0, then w = eZ for some z. 

PROOF By (2), eZ • e- z = eZ - z = eO = 1. This implies (a). Next, 

, () I. exp (z + h) - exp (z) ( ) I. exp (h) - 1 ( ) exp z = 1m h = exp z 1m h = exp z. 
h-O h-O 

The first of the above equalities is a matter of definition, the second follows 
from (2), and the third from (1), and (b) is proved. 

That exp is monotonically increasing on the positive real axis, and that 
e"'-+ 00 as x-+ 00, is clear from (1). The other assertions of (c) are conse-
quences of e'" . e-'" = 1. 

For any real number t, (1) shows that e- it is the complex conjugate of e it. 

Thus 

or 

(t real). (3) 

In other words, if t is real, eit lies on the unit circle. We define cos t, sin t to 
be the real and imaginary parts of eit : 

cos t = Re [eit], (t real). (4) 
If we differentiate both sides of Euler's identity 

eit = cos t + i sin t, (5) 

which is equivalent to (4), and if we apply (b), we obtain 

cos' t + i sin' t = ieit = - sin t + i cos t, 

so that 

cos' = -sin, sin' = cos. (6) 

The power series (1) yields the representation 

t 2 t4 t6 
cos t = 1 - - + - - - + ... 2! 4! 6! . (7) 
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Take t = 2. The terms of the series (7) then decrease in absolute value (except 
for the first one) and their signs alternate. Hence cos 2 is less than the sum of 
the first three terms of (7), with t = 2; thus cos 2 < -t. Since cos 0 = 1 and 
cos is a continuous real function on the real axis, we conclude that there is a 
smallest positive number to for which cos to = O. We define 

n = 2to. 

It follows from (3) and (S} that sin to = ± 1. Since 

sin' (t) = cos t > 0 

(8) 

on the segment (0, to) and since sin 0 = 0, we have sin to > 0, hence sin to = 
1, and therefore 

e 1tI/2 = i. (9) 

It follows that e 1t1 = i 2 = -1, e21t1 = (_1)2 = 1, and then e 21tln = 1 for 
every integer n. Also, (e) follows immediately: 

(10) 

If z = x + iy, x and y real, then e Z = eXelY ; hence 1 e Z 1 = eX. If e Z = 1, we there-
fore must have eX = 1, so that x = 0; to prove that yl2n must be an integer, it 
is enough to show that ely "# 1 if 0 < y < 2n, by (10). 

Suppose 0 < y < 2n, and 

ely/4 = u + iv (u and v real). (11) 

Since 0 < yl4 < n12, we have u > 0 and v > O. Also 

ely = (u + iV)4 = u4 - 6U2V2 + v4 + 4iuv(u2 - v2). (12) 

The right side of (12) is real only if u2 = v2 ; since u2 + v2 = 1, this happens 
only when u2 = v2 = t, and then (12) shows that 

ely = -1"# 1. 

This completes the proof of (d). 
We already know that t-+ elt maps the real axis into the unit circle. To 

prove (f), fix w so that 1 wi = 1; we shall show that w = elt for some real t. 
Write w = u + iv, u and v real, and suppose first that u 0 and v O. Since 
u :::;; 1, the definition of n shows that there exists a t, 0 :::;; t :::;; n12, such that 
cos t = u; then sin2 t = 1 - u2 = v2, and since sin t 0 if 0:::;; t :::;; n12, we 
have sin t = v. Thus w = elt. 

If u < 0 and v 0, the preceding conditions are satisfied by - iw. Hence 
- iw = e lt for some real t, and w = e l(t+1t/2). Finally, if v < 0, the preceding 
two cases show that - w = e lt for some real t, hence w = ei(t+1t). This com-
pletes the proof of (f). 

If w "# 0, put IX = wi 1 w I. Then w = 1 wi IX. By (c), there is a real x such 
that 1 wi = eX. Since 1 IX 1 = 1, (f) shows that IX = ely for some real y. Hence 
w = ex+ly. This proves (g) and completes the theorem. IIII 
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We shall encounter the integral of (1 + X2)-1 over the real line. To evaluate 
it, put tp(t) = sin tlcos t in (-nI2, nI2). By (6), tp' = 1 + tp2. Hence tp is a mono-
tonically increasing mapping of ( -nI2, n12) onto ( - 00, (0), and we obtain 

foo = fft/2 tp'(t) :t = f"/2 dt = n. 
-00 1 + X -ft/2 1 + tp (t) -ft/2 


