PROVA 1

MAT0122 ÁLGEBRA LINEAR I (BCC) 2^{o} SEMESTRE DE 2022

Nome:								
Número USP:								
Instruções: (1) Esta prova (2) A prova con			ões (cor	ntando a	Questão	o 0 nest	a nágina)
(3) Para ter no	ta integramente	ral em u	ıma ques	stão, a es	scrita de	sua sol	lução dev	
 (5) As resposta (6) Não é perm (7) Não destaq (8) Não use fol (9) Não é perm 	uitido o u ue as fol has avul	uso de a has dest sas para	parelhos te caderi i rascunl	s eletrôni no. ho. Não	icos de q é necess	ário apa	agar seus	
Assinatura:								
Sua assinatura aci promete-se a seguir								
]	Boa sorte	e!			-
	Q	0	1	2	3	4	Total	
	Nota							

Q0. [5 pontos] Leia o conteúdo desta página e preencha os itens requisitados. Assine acima, e atente ao significado de sua assinatura.

 $Data \colon 2022/12/14, \: 7{:}46 \mathrm{pm}$

Q1. [30 pontos] Nesta questão, trabalhamos sobre GF(2). Seja $S = \{\mathbf{e}_{ij} \colon 1 \leq i < j \leq 4\}$, onde

$$\mathbf{e}_{12} = \begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}, \ \mathbf{e}_{13} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \ \mathbf{e}_{23} = \begin{bmatrix} 0\\1\\1\\0\\0 \end{bmatrix}, \ \mathbf{e}_{14} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \ \mathbf{e}_{24} = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{e}_{34} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}. \tag{1}$$

(i)É verdade que Span $S=\mathrm{GF}(2)^4?$ Justifique sua resposta.

Resposta:

(ii) Encontre $T\subset S$ tal que $\operatorname{Span} T=\operatorname{Span} S$ com |T|menor possível. Justifique por que seu T é tal que $\operatorname{Span} T=\operatorname{Span} S.$

Resposta	(continuação):				
Justifique	por que seu T	de (ii) acima	tem cardinalie	dade menor pe	ossível.
Resposta:					

Q2. [20 pontos] Considere a matriz

$$M = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix} \in \mathbb{F}^{5 \times 5}$$

$$(2)$$

e considere a função linear associada $f_M\colon \mathbb{F}^5 \to \mathbb{F}^5$ dada por $f_M(\mathbf{v})=M\mathbf{v}$ para todo

(i) Suponha que $a_{33}=0$ e que $a_{44}\neq 0$ e $a_{55}\neq 0.$ Prove que f_M não é sobrejetora exibindo explicitamente um vetor $\mathbf{w} \in \mathbb{F}^5$ que não está na imagem de f_M . Diga por que seu w funciona.

Resposta:	$)=f_M(\mathbf{v}_2)$ co	1	· ·	


 $\mathbf{Q3.}$ [20 pontos] Nesta questão, trabalhamos sobre $\mathrm{GF}(2)$. Considere os vetores

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \tag{3}$$

 $e \mathbf{e}_{12} = \mathbf{e}_1 + \mathbf{e}_2, \ \mathbf{e}_{13} = \mathbf{e}_1 + \mathbf{e}_3 \ e \ \mathbf{e}_{23} = \mathbf{e}_2 + \mathbf{e}_3.$

(i) Prove que existe uma função linear $f \colon GF(2)^3 \to GF(2)^3$ tal que $f(\mathbf{e}_1) = \mathbf{e}_{12}$, $f(\mathbf{e}_2) = \mathbf{e}_{13}$ e $f(\mathbf{e}_3) = \mathbf{e}_{23}$.

Resposta:

(ii) Existe uma função linear $g \colon GF(2)^3 \to GF(2)^3$ tal que $g(\mathbf{e}_{12}) = \mathbf{e}_1$, $g(\mathbf{e}_{13}) = \mathbf{e}_2$ e $g(\mathbf{e}_{23}) = \mathbf{e}_3$? Justifique sua resposta.

Resposta							
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$		na função l	linear h :	$GF(2)^3 -$	→ GF(2)°	tar que	$n(\mathbf{e}_{12})$
	\mathbf{e}_2 .	ma função l	linear h:	$GF(2)^3 -$	→ GF(2)°	tar que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tar que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tar que	<i>n</i> (e ₁₂)
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	n(e ₁₂)
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ —	→ GF(2)°	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	n(e ₁₂)
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	<i>n</i> (e ₁₂)
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	• GF(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	• GF(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	• GF(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	• GF(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	F(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	F(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	F(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	• GF(2)	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	→ GF(2)°	tai que	$n(\mathbf{e}_{12})$
$h(\mathbf{e}_{13}) = \mathbf{e}_{13}$	\mathbf{e}_2 .	ma função]	linear h:	GF(2) ³ –	• GF(2)	tai que	$n(\mathbf{e}_{12})$

Q4. [30 pontos] Nesta questão, trabalhamos sobre \mathbb{C} . Abaixo, $\mathbf{i} = \sqrt{-1}$. Considere os vetores

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} 1\\\mathbf{i}\\-1\\-\mathbf{i} \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix} \quad \text{e} \quad \mathbf{v}_{4} = \begin{bmatrix} 1\\-\mathbf{i}\\-1\\\mathbf{i} \end{bmatrix}. \tag{4}$$

(i) Considere as matrizes $A = [\mathbf{v}_1 \mid \mathbf{v}_2 \mid \mathbf{v}_3 \mid \mathbf{v}_4]$ e $B = [\mathbf{v}_1 \mid \mathbf{v}_4 \mid \mathbf{v}_3 \mid \mathbf{v}_2]$. Calcule AB e BA.

Resposta:				
	$\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\in\mathbf{v}_4$	geram \mathbb{C}^4 .		
Resposta:				

esposta (continuação):
<u> </u>
vetores \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 e \mathbf{v}_4 formam uma base de \mathbb{C}^4 ? Justifique sua resposta.
esposta:

-	Rascunho:
1	

-	Rascunho:
1	