Data structures: sequential vs. linked

Sequential data structure
e Put objects next to one another.
e Machine: consecutive memory cells.
e Java: array of objects.
e Fixed size, arbitrary access. «—— jth element

Linked data structure
e Associate with each object a link to another one.
* Machine: link is memory address of next object.
* Java: link is reference to next object.
e Variable size, sequential access. «<—— next element
e Overlooked by novice programmers.
* Flexible, widely used method for organizing data.

Array at CO

addr
—> (0
C1
C2
C3
c4
C5
C6
Cc7
C8
9
CA
CB

value
"Alice"
IIBObII

"Carol"

Linked list at C4

addr
co
C1
C2

value

"Carol"

null

32

Simplest singly-linked data structure: linked list

Linked list
e A recursive data structure. private class Node
e Def. A linked list is null or a reference to a node. t . :
private String item;
e Def. A node is a data type that contains a reference to a node. private Node next;
}

e Unwind recursion: A linked list is a sequence of nodes.

Representation
e Use a private nested class Node to implement the node abstraction.
e For simplicity, start with nodes having two values: a String and a Node.

A linked list

first —> "Alice" e—> "Bob" e—— "Carol" e

(. ™ nul

item next

33

Singly-linked data structures

Even with just one link ((O—>) a wide variety of data structures are possible.

Linked list (this lecture) i ﬁ%}% o i@ O
O—0—0—0—0—0 éé O/ﬁ\

Circular list (TSP) General case ?

O T

From the point of view of a particular object,

Multiply linked structures: many more possibilities! Al o iz e ces el due s

34

Building a linked list

Node third
third.item
third.next

Node second

second.item =

second.next

Node first
first.item
first.next

new Node();
"Carol";
null;

new Node();
IlBobll ;
third;

new Node();

= "Alice";

second;

first

second

"Alice"

—_—

third CO
second CA

first C4

third

"Bob" — "Carol" e

null

addr
Co
C1
C2
C3

CB

value

"Carol'

null

Co

35

List processing code

Standard operations for processing data structured as a singly-linked list
e Add a node at the beginning.
e Remove and return the node at the beginning.
* Add a node at the end (requires a reference to the last node).
* Traverse the list (visit every node, in sequence).

An operation that calls for a doubly-linked list (slightly beyond our scope)
 Remove and return the node at the end.

36

List processing code: Remove and return the first item

Goal. Remove and return the first
item in a linked list first.

first —>» "Alice" e—> "Bob" e—> "Carol" e

item
-item = -F-i rst--item; ||AI- n . .
Ice first =—>» "Alice" e—> "Bob" e—> "Carol" e

item ///,,——’—“-\\\\‘
first = first.next; "Alice" first "Bob" e—> "Carol"
available for ///ﬂ

garbage collection

item
return 1item; "Alice" first =—>» "Bob" e—> "Carol" e

List processing code: Add a new node at the beginning

Goal. Add itemto a linked list first. item

Node second = first;

first = new Node();

first.item
first.next

item;
second;

"Dave"

first —> "Alice"

second

first —> "Alice"

second

first —>» ° "Alice"

second

first = "Dave" e—> "Alice"

*—>

o*—>

o>

@y

llBobll

"Bob"

"Bob"

"Bob"

o—> "Carol"

o—> "Carol"

o—> "Carol"

o—> "Carol'

38

List processing code: Traverse a list

Goal. Visit every node on a linked list first.

Node x = first; «
while (x !'= null)
{

StdOut.println(x.item);
X = X.next;

N\

first —> "Alice"

o>

StdOut

"Bob"

Alice
Bob
Carol

e—— "Carol"

39

Pop quiz 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node Tlist = null;

while (!StdIn.isEmpty())

{
Node old = Tist;
Tist = new Node();
Tist.item = StdIn.readString(Q);
Tist.next = old;

}

for (Node t = 1list; t != null; t = t.next)
StdOut.printin(t.item);

40

Pop quiz 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node Tist new Node();
Tist.item StdIn.readString();
Node Tlast = Tist;

while (!StdIn.isEmpty())

{

Tast.next = new Node();

last = last.next;

Tast.item = StdIn.readString(Q);
3

42

