
Data structures: sequential vs. linked

32

Sequential data structure

• Put objects next to one another.

• Machine: consecutive memory cells.

• Java: array of objects.

• Fixed size, arbitrary access.

Linked data structure

• Associate with each object a link to another one.

• Machine: link is memory address of next object.

• Java: link is reference to next object.

• Variable size, sequential access.

• Overlooked by novice programmers.

• Flexible, widely used method for organizing data.

i th element

next element

addr value

C0 "Alice"

C1 "Bob"

C2 "Carol"

C3

C4

C5

C6

C7

C8

C9

CA

CB

Array at C0

addr value

C0 "Carol"

C1 null

C2

C3

C4 "Alice"

C5 CA

C6

C7

C8

C9

CA "Bob"

CB C0

Linked list at C4

Simplest singly-linked data structure: linked list

33

Linked list

• A recursive data structure.

• Def. A linked list is null or a reference to a node.

• Def. A node is a data type that contains a reference to a node.

• Unwind recursion: A linked list is a sequence of nodes.

Representation

• Use a private nested class Node to implement the node abstraction.

• For simplicity, start with nodes having two values: a String and a Node.

private class Node
{
 private String item;
 private Node next;
}

"Alice" "Bob" "Carol"first

null
item next

A linked list

Singly-linked data structures

34

Even with just one link () a wide variety of data structures are possible.

Multiply linked structures: many more possibilities!

From the point of view of a particular object,

all of these structures look the same.

Circular list (TSP)

Linked list (this lecture)
Rho

General case

Tree

Building a linked list

Node third = new Node();
third.item = "Carol";
third.next = null;

Node second = new Node();
second.item = "Bob";
second.next = third;

Node first = new Node();
first.item = "Alice";
first.next = second;

35

addr value

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB"Bob"

second

"Alice"

first

third C0

first C4

second CA

"Carol"

third

null

"Carol"

null

"Bob"

C0

"Alice"

CA

List processing code

36

Standard operations for processing data structured as a singly-linked list

• Add a node at the beginning.

• Remove and return the node at the beginning.

• Add a node at the end (requires a reference to the last node).

• Traverse the list (visit every node, in sequence).

An operation that calls for a doubly-linked list (slightly beyond our scope)

• Remove and return the node at the end.

List processing code: Remove and return the first item

37

item = first.item;

return item;

first = first.next;

Goal. Remove and return the first 
 item in a linked list first.

"Alice" "Bob" "Carol"first

"Alice" "Bob" "Carol"first"Alice"

item

first "Bob" "Carol""Alice"

item

first "Alice" "Bob" "Carol""Alice"

item

available for
garbage collection

List processing code: Add a new node at the beginning

38

Node second = first;

first.item = item;
first.next = second;

first = new Node();

Goal. Add item to a linked list first.

"Alice" "Bob" "Carol"first

second

first "Alice" "Bob" "Carol"

second

"Dave"

first "Alice" "Bob" "Carol"

second

"Alice" "Bob" "Carol"first

"Dave"

item

List processing code: Traverse a list

39

Goal. Visit every node on a linked list first.

"Alice" "Bob" "Carol"first

Node x = first;
while (x != null)
{
 StdOut.println(x.item);
 x = x.next;
}

x

Alice
Bob
Carol

StdOut

Pop quiz 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

40

...
Node list = null;
while (!StdIn.isEmpty())
{
 Node old = list;
 list = new Node();
 list.item = StdIn.readString();
 list.next = old;
}
for (Node t = list; t != null; t = t.next)
 StdOut.println(t.item);
...

Pop quiz 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

42

...
Node list = new Node();
list.item = StdIn.readString();
Node last = list;
while (!StdIn.isEmpty())
{
 last.next = new Node();
 last = last.next;
 last.item = StdIn.readString();
}
...

