PROLOGUE
THE EXPONENTIAL FUNCTION

This is the most important function in mathematics. It is defined, for every com-
plex number z, by the formula

exp (z) = ZO %} (1)

The series (1) converges absolutely. for every z and converges uniformly on every
bounded subset of the complex plane. Thus exp is a continuous function. The
absolute convergence of (1) shows that the computation

X a z n! Lm— > (a+b)
— _— = _ —  a*b" k_ > @ 7
,Eok! Zm) Eongéokz(n_k)!“ ,Eo n!
is correct. It gives the important addition formula
exp (a) exp (b) = exp (a + b), (2

valid for all complex numbers a and b.
We define the number e to be exp (1), and shall usually replace exp (z) by the
customary shorter expression e”. Note that €® = exp (0) = 1, by (1).

Theorem

(a) For every complex z we have e* # 0.
(b) exp is its own derivative: exp’ (z) = exp (2).
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(¢c) The restriction of exp to the real axis is a monotonically increasing positive
function, and

e*— o0 as x— o0, e*—>0as x— —oo.

(d) There exists a positive number nt such that e™'?

and only if z/(2ni) is an integer.
(e) exp is a periodic function, with period 2i.
(f) The mapping t— €" maps the real axis onto the unit circle.
(9) If wis a complex number and w # 0, then w = €* for some z.

=i and such that e* = 1 if

PROOF By (2), e* - e % = ¢° % = ¢® = 1. This implies (a). Next,

-1
exp’ (z) = lim p = exp (z) lim %
h—-0 h—-0

exp (z + h) — exp (2)

= exp (2).

The first of the above equalities is a matter of definition, the second follows
from (2), and the third from (1), and (b) is proved.

That exp is monotonically increasing on the positive real axis, and that
e*— 00 as x— o0, is clear from (1). The other assertions of (c) are conse-
quences of e* - e™* = 1.

For any real number ¢, (1) shows that e ™" is the complex conjugate of e.
Thus

it

-
i
* e

it|2_____eit_e =e

|e
or
le| =1 ( real). (3)

In other words, if t is real, " lies on the unit circle. We define cos ¢, sin ¢ to
be the real and imaginary parts of e":

cost=Re[e"], sint=Im/[e"] (t real). (4)
If we differentiate both sides of Euler’s identity
e =cost+isint, (5)
which is equivalent to (4), and if we apply (b), we obtain
cos’ t+isin’ t=ie’ = —sint +icost,
so that
cos’ = —sin, sin’ = €os. (6)

The power series (1) yields the representation

2 * t®
COS[=1_5+H—5+M' (7)
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Take t = 2. The terms of the series (7) then decrease in absolute value (except
for the first one) and their signs alternate. Hence cos 2 is less than the sum of
the first three terms of (7), with ¢t = 2; thus cos 2 < —4. Since cos 0 = 1 and
cos 1s a continuous real function on the real axis, we conclude that there is a
smallest positive number ¢, for which cos t, = 0. We define

T =2t,. (8)
It follows from (3) and (5) that sin t, = + 1. Since
sin’ (tf) =cost >0

on the segment (0, t,) and since sin 0 = 0, we have sin ¢, > 0, hence sin t, =
1, and therefore

em? =i, )

It follows that e™ =i? = —1, e*® =(—1)?> =1, and then e**" =1 for
every integer n. Also, (e) follows immediately:

ez+ 2mi ezeZni = e (10)

If z= x + iy, x and y real, then e* = e*e”; hence | e*| = e*. If ¢ = 1, we there-
fore must have ¢* = 1, so that x = 0; to prove that y/27 must be an integer, it
is enough to show that e” # 1if 0 < y < 2z, by (10).

Suppose 0 < y < 27, and

eV* =y +iv  (u and v real). (11)
Since 0 < y/4 < n/2, we have u > 0 and v > 0. Also
e = (u + iv)* = u* — 6u*v* + v* + diuv(u? — v?). (12)

The right side of (12) is real only if u? = v?; since u? + v? = 1, this happens
only when u? = v? = 1, and then (12) shows that

e = —1%#1.

This completes the proof of (d).

We already know that t— ¢ maps the real axis into the unit circle. To
prove (f), fix w so that |w| = 1; we shall show that w = ¢” for some real t.
Write w = u + iv, u and v real, and suppose first that u > 0 and v > 0. Since
u < 1, the definition of = shows that there exists a t, 0 <t < n/2, such that
cos t = u; then sin® t = 1 — u? = v?, and since sint >0 if 0 <t < 7/2, we
have sin t = v. Thus w = €.

If u < 0 and v > 0, the preceding conditions are satisfied by —iw. Hence
—iw = " for some real t, and w = ¢“*™2_ Finally, if v < 0, the preceding
two cases show that —w = ¢ for some real t, hence w = ¢**™, This com-
pletes the proof of (f).

If w#0, put « =w/{w|. Then w=|w|a By (c), there is a real x such
that |w| = €. Since |a| = 1, (f) shows that « = ¢” for some real y. Hence
w = * ", This proves (g) and completes the theorem. //]
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We shall encounter the integral of (1 + x2)~! over the real line. To evaluate
it, put ¢(t) = sin t/cos t in (—n/2, n/2). By (6), ¢’ = 1 + ¢2. Hence ¢ is a mono-
tonically increasing mapping of (—n/2, /2) onto (— o0, 00), and we obtain

©  dx "2 g dt [
ﬁ = 1—2 = dt = =
- + X ~n/2 + @ (t) —n/2



