0.4. LAB: INTRODUCTION TO PYTHON

0.5 Lab: Introduction to Python—sets, lists, dictionaries, and
comprehensions

YOURE FLYING
COHOW? s
l’. . I\..'\ \-:-:

ARG YN NS . 3
NN Q) RN
) %

15

T DUNNO... /
DYNAMIC TYPING? T JUST TYPED
MHITEGRRCE? import Cd'Ti'J‘gmwiy
/ COME JoN US! | | THATS 1T [
T LEARNED IT LAST PROGRAMTMING ... T ALSO SAMPLED
NIGHT! EVERYTHING IS FUN AGAIN] EVERYTHING IN THE
15 S0 SIMPLE ! ITS A WHOLE MEDICINE CPBINET
I NEW WORLD FOR COMPARISON.
HELLO WORLD 1S TUST _ UP HERE! |
print "Hello, world!' BUT HOW ARE BUT T THINK THIS
YOU FLYING? IS THE PYTHON.

Python http://xkcd.com/353/

We will be writing all our code in Python (Version 3.x). In writing Python code, we empha-
size the use of comprehensions, which allow one to express computations over the elements
of a set, list, or dictionary without a traditional for-loop. Use of comprehensions leads to
more compact and more readable code, code that more clearly expresses the mathematical
idea behind the computation being expressed. Comprehensions might be new to even some
readers who are familiar with Python, and we encourage those readers to at least skim the
material on this topic.

To start Python, simply open a console (also called a shell or a terminal or, under
Windows, a “Command Prompt” or “MS-DOS Prompt”), and type python3 (or perhaps
just python) to the console (or shell or terminal or Command Prompt) and hit the Enter
key. After a few lines telling you what version you are using (e.g., Python 3.3.3), you should
see >>> followed by a space. This is the prompt; it indicates that Python is waiting for you
to type something. When you type an expression and hit the Enter key, Python evaluates
the expression and prints the result, and then prints another prompt. To get out of this
environment, type quit () and Enter, or Control-D. To interrupt Python when it is running
too long, type Control-C.

This environment is sometimes called a REPL, an acronym for “read-eval-print loop.”
It reads what you type, evaluates it, and prints the result if any. In this assignment, you
will interact with Python primarily through the REPL. In each task, you are asked to come
up with an expression of a certain form.

16

CHAPTER 0. THE FUNCTION

There are two other ways to run Python code. You can import a module from within the
REPL, and you can run a Python script from the command line (outside the REPL). We
will discuss modules and importing in the next lab assignment. This will be an important
part of your interaction with Python.

0.5.1 Simple expressions
Arithmetic and numbers

You can use Python as a calculator for carrying out arithmetic computations. The binary
operators +, *, -, / work as you would expect. To take the negative of a number, use -
as a unary operator (as in -9). Exponentiation is represented by the binary operator **
and truncating integer division is //. Finding the remainder when one integer is divided by
another (modulo) is done using the % operator. As usual, ** has precedence over * and /
and //, which have precedence over + and -, and parentheses can be used for grouping.

To get Python to carry out a calculation, type the expression and press the Enter/Return
key:

>>> 44+11%x4-6/11.
87 .454545454545454
>>>

Python prints the answer and then prints the prompt again.

Task 0.5.1: Use Python to find the number of minutes in a week.

Task 0.5.2: Use Python to find the remainder of 2304811 divided by 47 without using
the modulo operator %. (Hint: Use //.)

Python uses a traditional programming notation for scientific notation. The notation
6.022e23 denotes the value 6.02 x 1023, and 6.626e-34 denotes the value 6.626 x 10734, As
we will discover, since Python uses limited-precision arithmetic, there are round-off errors:

>>> lel6 + 1
lel6
Strings

A string is a series of characters that starts and ends with a single-quote mark. Enter a
string, and Python will repeat it back to you:

>>> 'This sentence is false.'
'This sentence is false.'

You can also use double-quote marks; this is useful if your string itself contains a single-quote
mark:

>>> "So's this one."
"So's this one."

Python is doing what it usually does: it evaluates (finds the value of) the expression it is
given and prints the value. The value of a string is just the string itself.
Comparisons and conditions and Booleans

You can compare values (strings and numbers, for example) using the operators ==, < ,
>, <=, >=, and !=. (The operator != is inequality.)

0.4. LAB: INTRODUCTION TO PYTHON
>>> 5 == 4
False
>>> 4 == 4
True

The value of such a comparison is a Boolean value (True or False). An expression whose
value is a boolean is called a Boolean expression.

Boolean operators such as and and or and not can be used to form more complicated
Boolean expressions.

>> True and False

False

>>> True and not (5 == 4)
True

Task 0.5.3: Enter a Boolean expression to test whether the sum of 673 and 909 is divisible
by 3.

0.5.2 Assignment statements

The following is a statement, not an expression. Python executes it but produces neither
an error message nor a value.

>>> mynum = 4+1

The result is that henceforth the variable mynum is bound to the value 5. Consequently,
when Python evaluates the expression consisting solely of mynum, the resulting value is 5.
We say therefore that the value of mynum is 5.

A bit of terminology: the variable being assigned to is called the left-hand side of an
assignment, and the expression whose value is assigned is called the right-hand side.

A variable name must start with a letter and must exclude certain special symbols such
as the dot (period). The underscore _ is allowed in a variable name. A variable can be
bound to a value of any type. You can rebind mynum to a string:

>>> mynum = 'Brown'

This binding lasts until you assign some other value to mynum or until you end your Python
session. It is called a top-level binding. We will encounter cases of binding variables to
values where the bindings are temporary.

It is important to remember (and second nature to most experienced programmers) that
an assignment statement binds a variable to the value of an expression, not to the expression
itself. Python first evaluates the right-hand side and only then assigns the resulting value
to the left-hand side. This is the behavior of most programming languages.

Consider the following assignments.

>>> x = b+4
>>> y = 2 x X
>>> y

18

>>> x = 12
>>> y

18

In the second assignment, y is assigned the value of the expression 2 * x. The value of that
expression is 9, so y is bound to 18. In the third assignment, x is bound to 12. This does
not change the fact that y is bound to 18.

17

18 CHAPTER 0. THE FUNCTION

0.5.3 Conditional expressions
There is a syntax for conditional expressions:
(expression) if (condition) else (expression)

The condition should be a Boolean expression. Python evaluates the condition; depending
on whether it is True or False, Python then evaluates either the first or second expression,
and uses the result as the result of the entire conditional expression.

For example, the value of the expression x if x>0 else -x is the absolute value of x.

Task 0.5.4: Assign the value -9 to x and 1/2 to y. Predict the value of the following
expression, then enter it to check your prediction:
2% (y+1/2) if x+10<0 else 2x*(y-1/2)

0.5.4 Sets

Python provides some simple data structures for grouping together multiple values, and
integrates them with the rest of the language. These data structures are called collections.
We start with sets.

A set is an unordered collection in which each value occurs at most once. You can use
curly braces to give an expression whose value is a set. Python prints sets using curly braces.

>>> {1+2, 3, "a"
{'a', 3}

>>> {2, 1, 3}
{1, 2, 3}

Note that duplicates are eliminated and that the order in which the elements of the output
are printed does not necessarily match the order of the input elements.

The cardinality of a set S is the number of elements in the set. In Mathese we write
|S| for the cardinality of set S. In Python, the cardinality of a set is obtained using the
procedure len(-).

>>> len({lal, lbl, ICI, |a|, Ial})
3
Summing

The sum of elements of collection of values is obtained using the procedure sum(-).

>>> sum({1,2,3})
6

If for some reason (we’ll see one later) you want to start the sum not at zero but at some
other value, supply that value as a second argument to sum(-):

>>> sum({1,2,3}, 10)
16

Testing set membership

Membership in a set can be tested using the in operator and the not in operator. If S is
a set, z in S is a Boolean expression that evaluates to True if the value of z is a member
of the set S, and False otherwise. The value of a not in expression is just the opposite

0.4. LAB: INTRODUCTION TO PYTHON

>>> S={1,2,3}
>>> 2 in S
True

>>> 4 in S
False

>>> 4 not in S
True

Set union and intersection

The union of two sets S and T is a new set that contains every value that is a member of
S or a member of T (or both). Python uses the vertical bar | as the union operator:

>>> {1,2,3} | {2,3,4}
{1, 2, 3, 4}

The intersection of S and T is a new set that contains every value that is a member of both
S and T'. Python uses the ampersand & as the intersection operator:

>>> {1,2,3} & {2,3,4}
{2, 3}

Mutating a set

A value that can be altered is a mutable value. Sets are mutable; elements can be added
and removed using the add and remove methods:

>>> S={1,2,3}
>>> S.add(4)
>>> S.remove(2)
>>> S

{1, 3, 4}

The syntax using the dot should be familiar to students of object-oriented programming
languages such as Java and C++. The operations add(-) and remove(:) are methods.
You can think of a method as a procedure that takes an extra argument, the value of the
expression to the left of the dot.

Python provides a method update(...) to add to a set all the elements of another
collection (e.g. a set or a list):

>>> S.update({4, 5, 61})
>>> S
{1, 3, 4, 5, 6}

Similarly, one can intersect a set with another collection, removing from the set all elements
not in the other collection:

>>> S.intersection_update({5,6,7,8,9})
>>> S

{5, 6}

Suppose two variables are bound to the same value. A mutation to the value made
through one variable is seen by the other variable.

>>> T=S

>>> T.remove(5)
>>> 8

{6}

19

CHAPTER 0. THE FUNCTION

This behavior reflects the fact that Python stores only one copy of the underlying data

structure. After Python executes the assignment statement T=S, both T and S point to

the same data structure. This aspect of Python will be important to us: many different

variables can point to the same huge set without causing a blow-up of storage requirements.
Python provides a method for copying a collection such as a set:

>>> U=S.copy ()
>>> U.add(5)
>>> S

{1, 3}

The assignment statement binds U not to the value of S but to a copy of that value, so
mutations to the value of U don’t affect the value of S.

Set comprehensions

Python provides for expressions called comprehensions that let you build collections out of
other collections. We will be using comprehensions a lot because they are useful in con-
structing an expression whose value is a collection, and they mimic traditional mathematical
notation. Here’s an example:

>>> {2%x for x in {1,2,3} }
{2, 4, 6}

This is said to be a set comprehension over the set {1,2,3%}. It is called a set comprehension
because its value is a set. The notation is similar to the traditional mathematical notation
for expressing sets in terms of other sets, in this case {2z : z € {1,2,3}}. To compute
the value, Python iterates over the elements of the set {1,2,3%}, temporarily binding the
control variable x to each element in turn and evaluating the expression 2*x in the context
of that binding. Each of the values obtained is an element of the final set. (The bindings of
x during the evaluation of the comprehension do not persist after the evaluation completes.)

Task 0.5.5: Write a comprehension over {1,2,3, 4,5} whose value is the set consisting of
the squares of the first five positive integers.

Task 0.5.6: Write a comprehension over {0, 1,2, 3,4} whose value is the set consisting of
the first five powers of two, starting with 2°.

Using the union operator | or the intersection operator &, you can write set expressions
for the union or intersection of two sets, and use such expressions in a comprehension:

>>> {x*x for x in S | {5, 7}}
{1, 25, 49, 9}

By adding the phrase if (condition) at the end of the comprehension (before the closing
brace “}”), you can skip some of the values in the set being iterated over:

>>> {x*x for x in S | {5, 7} if x > 2}
{9, 49, 25}

I call the conditional clause a filter.
You can write a comprehension that iterates over the Cartesian product of two sets:

>>>{xxy for x in {1,2,3} for y in {2,3,4}}
{2, 3, 4, 6, 8, 9, 12}

0.4. LAB: INTRODUCTION TO PYTHON

This comprehension constructs the set of the products of every combination of x and y. I
call this a double comprehension.

Task 0.5.7: The value of the previous comprehension,

{x*y for x in {1,2,3} for y in {2,3,4}}
is a seven-element set. Replace {1,2,3} and {2,3,4} with two other three-element sets
so that the value becomes a nine-element set.

Here is an example of a double comprehension with a filter:

>>> {x*y for x in {1,2,3} for y in {2,3,4} if x != y}
{2, 3, 4, 6, 8, 12}

Task 0.5.8: Replace {1,2,3} and {2,3,4} in the previous comprehension with two dis-
joint (i.e. non-overlapping) three-element sets so that the value becomes a five-element
set.

Task 0.5.9: Assume that S and T are assigned sets. Without using the intersection oper-
ator &, write a comprehension over S whose value is the intersection of S and T. Hint: Use
a membership test in a filter at the end of the comprehension.

Try out your comprehension with 8 = {1,2,3,4} and T = {3,4,5,6}.

Remarks

The empty set is represented by set(). You would think that {} would work but, as we
will see, that notation is used for something else.

You cannot make a set that has a set as element. This has nothing to do with Cantor’s
Paradox—Python imposes the restriction that the elements of a set must not be mutable,
and sets are mutable. The reason for this restriction will be clear to a student of data
structures from the error message in the following example:

>>> {{1,2},3%}

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

There is a nonmutable version of set called frozenset. Frozensets can be elements of sets.
However, we won’t be using them.

0.5.5 Lists

Python represents sequences of values using lists. In a list, order is significant and repeated
elements are allowed. The notation for lists uses square brackets instead of curly braces.
The empy list is represented by [J.

>>> [1,1+1,3,2,3]
[1, 2, 3, 2, 3]

There are no restrictions on the elements of lists. A list can contain a set or another list.

>>> [[1,1+1,4-1],{2%2,5,6}, "yo"]
(f1, 2, 31, {4, 5, 6}, 'yo'l

21

22

CHAPTER 0. THE FUNCTION

However, a set cannot contain a list since lists are mutable.

The length of a list, obtained using the procedure len(-), is the number of elements in
the list, even though some of those elements may themselves be lists, and even though some
elements might have the same value:

>>> len([[1,1+1,4-1],{2%2,5,6}, "yo", "yo"1)
4

As we saw in the section on sets, the sum of elements of a collection can be computed using
sum(-)

>>> sum([1,1,0,1,0,1,0])

4

>>> sum([1,1,0,1,0,1,0], -9)
-5

In the second example, the second argument to sum(-) is the value to start with.

Task 0.5.10: Write an expression whose value is the average of the elements of the list
[20, 10, 15, 75].

List concatenation

You can combine the elements in one list with the elements in another list to form a new
list (without changing the original lists) using the + operator.

>>> [1,2,3]+["my", "word"]
[1, 2, 3, 'my', 'word']
>>> mylist = [4,8,12]

>>> mylist + ["my", "word"]
[4, 8, 12, 'my', 'word']
>>> mylist

[4, 8, 12]

You can use sum(-) on a collection of lists, obtaining the concatenation of all the lists, by
providing [] as the second argument.

>>> sum([[1,2,3], [4,5,6], [7,8,9] 1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'list’'
>>> sum([[1,2,3], [4,5,6], [7,8,9]1 1, [1)
(1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions

Next we discuss how to write a list comprehension (a comprehension whose value is a list).
In the following example, a list is constructed by iterating over the elements in a set.

>>> [2%x for x in {2,1,3,4,5}]
[2’ 4, 6’ 8’ 10]

Note that the order of elements in the resulting list might not correspond to the order of
elements in the set since the latter order is not significant.

You can also use a comprehension that constructs a list by iterating over the elements
in a list:

>>> [2*x for x in [2,1,3,4,5]]
[4, 2, 6, 8, 10]

0.4.

LAB: INTRODUCTION TO PYTHON

Note that the list [2,1,3,4,5] specifies the order among its elements. In evaluating the
comprehension Python iterates through them in that order. Therefore the order of elements
in the resulting list corresponds to the order in the list iterated over.

You can also write list comprehensions that iterate over multiple collections using two

control variables. As I mentioned in the context of sets, I call these “double comprehensions”.
Here is an example of a list comprehension over two lists.

>>> [xxy for x in [1,2,3] for y in [10,20,30]]
[10, 20, 30, 20, 40, 60, 30, 60, 90]

The resulting list has an element for every combination of an element of [1,2,3] with an
element of [10,20,30].

We can use a comprehension over two sets to form the Cartesian product.

Task 0.5.11: Write a double list comprehension over the lists ['A','B','C'] and [1,2,3]
whose value is the list of all possible two-element lists [letter, number]. That is, the value
is

(['A', 11, ['A', 2], ['A', 3], ['B', 1], ['B', 2],['B', 3],
te, 11, r'c', 21, ['c', 311

Task 0.5.12: Suppose LofL has been assigned a list whose elements are themselves lists
of numbers. Write an expression that evaluates to the sum of all the numbers in all the
lists. The expression has the form

sum([sum(. ..
and includes one comprehension. Test your expression after assigning [[.25, .75, .1],
[-1, 0], [4, 4, 4, 4]1] to LofL. Note that your expression should work for a list of
any length.

Obtaining elements of a list by indexing

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FRoM ONE, SOME FRom ZERD,

DIFFERENT CONVENTIONS. TO ‘
QUOTE STANFORD ALGORITHMS WELL, THAT’ WHAT HE
EAPERT DONALD KNUTH, SAID WHEN | ASKED
“WHO ARE You? HOW DID. Him ABOUT IT.
YOU GET IN MY HOUSE? }

/

Donald Knuth http://xkcd.com/163/

There are two ways to obtain an individual element of a list. The first is by indexing. As in
some other languages (Java and c++, for example) indexing is done using square brackets
around the index. Here is an example. Note that the first element of the list has index 0.

>>> mylist [0]

4

24 CHAPTER 0. THE FUNCTION

>>> ['in','the','CIT'] [1]
'the'

Slices: A slice of a list is a new list consisting of a consecutive subsequence of elements
of the old list, namely those indexed by a range of integers. The range is specified by a
colon-separated pair ¢ : j consisting of the index 7 as the first element and j as one past the
index of the last element. Thus mylist[1:3] is the list consisting of elements 1 and 2 of
mylist.

Prefixes: If the first element ¢ of the pair is 0, it can be omitted, so mylist[:2] consists
of the first 2 elements of mylist. This notation is useful for obtaining a prefix of a list.

Suffixes: If the second element j of the pair is the length of the list, it can be omitted, so
mylist[1:] consists of all elements of mylist except element 0.

>>> L = [0,10,20,30,40,50,60,70,80,90]
>>> L[:5]

[0, 10, 20, 30, 40]

>>> L[5:]

[50, 60, 70, 80, 90]

Slices that skip You can use a colon-separated triple a:b: c if you want the slice to include
every c'? element. For example, here is how you can extract from L the list consisting of
even-indexed elements and the list consisting of odd-indexed elements:

>>> L[::2]
[0, 20, 40, 60, 80]
>>> L[1::2]
[10, 30, 50, 70, 90]

Obtaining elements of a list by unpacking

The second way to obtain individual elements is by unpacking. Instead of assigning a list
to a single variable as in mylist =[4,8,12], one can assign to a list of variables:

>>> [x,y,z] = [4%1, 4*2, 4x3]
>>> x

4

>>> y

8

I called the left-hand side of the assignment a “list of variables,” but beware: this is a
notational fiction. Python does not allow you to create a value that is a list of variables.
The assignment is simply a convenient way to assign to each of the variables appearing in
the left-hand side.

Task 0.5.13: Find out what happens if the length of the left-hand side list does not match
the length of the right-hand side list.

Unpacking can similarly be used in comprehensions:

>>> listoflists = [[1,1],[2,4],[3, 9]]
>>> [y for [x,y] in listoflists]
(1, 4, 9]

Here the two-element list [x,y] iterates over all elements of listoflists. This would
result in an error message if some element of listoflists were not a two-element list.

0.4. LAB: INTRODUCTION TO PYTHON

Mutating a list: indexing on the left-hand side of =

You can mutate a list, replacing its i*" element, using indexing on the left-hand side of the
=, analogous to an assignment statement:

>>> mylist = [30, 20, 10]
>>> mylist[1] = 0

>>> mylist

[30, 0, 10]

Slices can also be used on the left-hand side but we will not use this.

0.5.6 Tuples

Like a list, a tuple is an ordered sequence of elements. However, tuples are immutable so
they can be elements of sets. The notation for tuples is the same as that for lists except
that ordinary parentheses are used instead of square brackets.

>>> (1,1+1,3)

(1, 2, 3)

>>> {0, (1,2)} | {(3,4,5)}
{1, 2), 0, (3, 4, 5}

Obtaining elements of a tuple by indexing and unpacking

You can use indexing to obtain an element of a tuple.

>>> mytuple = ("all", "my", "books")
>>> mytuple[1]

Im-yl

>>> (1, {"A", "B"}, 3.14)[2]

3.14

You can also use unpacking with tuples. Here is an example of top-level variable assignment:

>>> (a,b) = (1,5-3)
>>> a
1

In some contexts, you can get away without the parentheses, e.g.

>>> a,b = (1,5-3)

or even

>>> a,b = 1,5-3

You can use unpacking in a comprehension:

>>> [y for (x,y) in [(1,'A"),(2,'B'),(3,'C")]]
[*a', 'B', 'C']

Task 0.5.14: Suppose S is a set of integers, e.g. {—4,—-2,1,2,5,0}. Write a triple
comprehension whose value is a list of all three-element tuples (i, j, k) such that 7, j, k are
elements of S whose sum is zero.

Task 0.5.15: Modify the comprehension of the previous task so that the resulting list does
not include (0,0,0). Hint: add a filter.

25

26

CHAPTER 0. THE FUNCTION

Task 0.5.16: Further modify the expression so that its value is not the list of all such
tuples but is the first such tuple.

The previous task provided a way to compute three elements i, j, k of S whose sum is
zero—if there exist three such elements. Suppose you wanted to determine if there were a
hundred elements of S whose sum is zero. What would go wrong if you used the approach
used in the previous task? Can you think of a clever way to quickly and reliably solve the
problem, even if the integers making up S are very large? (If so, see me immediately to
collect your Ph.D.)

Obtaining a list or set from another collection

Python can compute a set from another collection (e.g. a list) using the constructor set (-).
Similarly, the constructor 1ist(-) computes a list, and the constructor tuple(-) computes
a tuple

>>> set(range(10))

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> set([1,2,3])

{1, 2, 3}

>>> 1list({1,2,3})

[1, 2, 3]

>>>

>>> set((1,2,3))

{1, 2, 3}

Task 0.5.17: Find an example of a list L such that 1en(L) and len(list(set(L))) are
different.

0.5.7 Other things to iterate over
Tuple comprehensions—not! Generators

One would expect to be able to create a tuple using the usual comprehension syntax, e.g.
(i for i in range(10)) but the value of this expression is not a tuple. It is a generator.
Generators are a very powerful feature of Python but we don’t study them here. Note,
however, that one can write a comprehension over a generator instead of over a list or set or
tuple. Alternatively, one can use set(-) or 1ist(:) or tuple(:) to transform a generator
into a set or list or tuple.

Ranges

A range plays the role of a list consisting of the elements of an arithmetic progression. For
any integer n, range (n) represents the sequence of integers from 0 through n—1. For exam-
ple, range (10) represents the integers from 0 through 9. Therefore, the value of the following
comprehension is the sum of the squares of these integers: sum({i*i for i in range(10)}).

Even though a range represents a sequence, it is not a list. Generally we will either
iterate through the elements of the range or use set(-) or 1ist(:) to turn the range into a
set or list.

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Task 0.5.18: Write a comprehension over a range of the form range(n) such that the
value of the comprehension is the set of odd numbers from 1 to 99.

0.4. LAB: INTRODUCTION TO PYTHON

You can form a range with one, two, or three arguments. The expression range(a,b)
represents the sequence of integers a,a + 1,a + 2,...,b — 1. The expression range(a,b,c)
represents a,a + ¢, a + 2c¢, . .. (stopping just before b).

Zip
Another collection that can be iterated over is a zip. A zip is constructed from other

collections all of the same length. Each element of the zip is a tuple consisting of one
element from each of the input collections.

>>> list(zip([1,3,5],[2,4,61))

[1, 2), 3, 4), (5, 6)]
>>> characters = ['Neo', 'Morpheus', 'Trinity']
>>> actors = ['Keanu', 'Laurence', 'Carrie-Anne'l]
>>> set(zip(characters, actors))
{('Trinity', 'Carrie-Anne'), ('Neo', 'Keanu'), ('Morpheus', 'Laurence')}
>>> [character+' is played by '+actor

for (character,actor) in zip(characters,actors)]
['Neo is played by Keanu', 'Morpheus is played by Laurence',
'Trinity is played by Carrie-Anne']

Task 0.5.19: Assign to L the list consisting of the first five letters ['A','B','C','D','E'].
Next, use L in an expression whose value is

[(o, °A°), (1, °B?), (2, °C’), (3, ’D’), (4, ’E’)]
Your expression should use a range and a zip, but should not use a comprehension.

Task 0.5.20: Starting from the lists [10, 25, 40] and [1, 15, 20], write a compre-
hension whose value is the three-element list in which the first element is the sum of 10
and 1, the second is the sum of 25 and 15, and the third is the sum of 40 and 20. Your
expression should use zip but not list.

reversed

To iterate through the elements of a list L in reverse order, use reversed (L), which does
not change the list L:

>>> [x*x for x in reversed([4, 5, 10])]
[100, 25, 16]

0.5.8 Daictionaries

We will often have occasion to use functions with finite domains. Python provides collec-
tions, called dictionaries, that are suitable for representing such functions. Conceptually, a
dictionary is a set of key-value pairs. The syntax for specifying a dictionary in terms of its
key-value pairs therefore resembles the syntax for sets—it uses curly braces—except that
instead of listing the elements of the set, one lists the key-value pairs. In this syntax, each
key-value pair is written using colon notation: an expression for the key, followed by the
colon, followed by an expression for the value:

key : value

The function f that maps each letter in the alphabet to its rank in the alphabet could be
written as

27

28 CHAPTER 0. THE FUNCTION

{'A':0, 'B':1, 'C':2, 'D':3, 'E':4, 'F':5, 'G':6, 'H':7, 'I':8,
'J':9, 'K':10, 'L':11, 'M':12, 'N':13, '0':14, 'P':15, 'Q':16,
'R':17, 'S':18, 'T':19, 'U':20, 'V':21, 'W':22, 'X':23, 'Y':24,
1Z':25}

As in sets, the order of the key-value pairs is irrelevant, and the keys must be immutable
(no sets or lists or dictionaries). For us, the keys will mostly be integers, strings, or tuples
of integers and strings.

The keys and values can be specified with expressions.

>>> {2+1:'thr'+'ee', 2*%2:'fo'+'ur'}
{3: 'three', 4: 'four'}

To each key in a dictionary there corresponds only one value. If a dictionary is given multiple
values for the same key, only one value will be associated with that key.

>>> {0:'zero', 0:'nothing'}
{0: 'nothing'}

Indexing into a dictionary

Obtaining the value corresponding to a particular key uses the same syntax as indexing a
list or tuple: right after the dictionary expression, use square brackets around the key:

>>> {4:"four", 3:'three'}[4]

'four'

>>> mydict = {'Neo':'Keanu', 'Morpheus':'Laurence',
'"Trinity':'Carrie-Anne'}

>>> mydict['Neo']

'Keanu'

If the key is not represented in the dictionary, Python considers it an error:

>>> mydict['Oracle']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'Oracle'’

Testing dictionary membership

You can check whether a key is in a dictionary using the in operator we earlier used for
testing membership in a set:

>>> 'Oracle' in mydict

False

>>> mydict['Oracle'] if 'Oracle' in mydict else 'NOT PRESENT'
'NOT PRESENT'

>>> mydict['Neo'] if 'Neo' in mydict else 'NOT PRESENT'
'Keanu'

Lists of dictionaries

Task 0.5.21: Suppose dlist is a list of dictionaries and k is a key that appears in all the
dictionaries in dlist. Write a comprehension that evaluates to the list whose i*" element
is the value corresponding to key k in the i dictionary in dlist.

Test your comprehension with some data. Here are some example data.

dlist = [{'James':'Sean', 'director':'Terence'}, {'James':'Roger',
'director':'Lewis'}, {'James':'Pierce', 'director':'Roger'}]
k = 'James'

0.4. LAB: INTRODUCTION TO PYTHON

Task 0.5.22: Modify the comprehension in Task 0.5.21 to handle the case in which k
might not appear in all the dictionaries. The comprehension evaluates to the list whose i
element is the value corresponding to key k in the i*" dictionary in dlist if that dictionary
contains that key, and 'NOT PRESENT' otherwise.

Test your comprehension with k = 'Bilbo' and k = 'Frodo' and with the following
list of dictionaries:

dlist = [{'Bilbo':'Ian','Frodo':'Elijah'},
{'Bilbo':'Martin', 'Thorin':'Richard'}]

Mutating a dictionary: indexing on the left-hand side of =

You can mutate a dictionary, mapping a (new or old) key to a given value, using the syntax
used for assigning a list element, namely using the index syntax on the left-hand side of an
assignment:

>>> mydict['Agent Smith'] = 'Hugo'

>>> mydict['Neo'] = 'Philip'

>>> mydict

{'Neo': 'Philip', 'Agent Smith': 'Hugo', 'Trinity': 'Carrie-Anne',
'Morpheus': 'Laurence'}

Dictionary comprehensions

You can construct a dictionary using a comprehension.

>>> { k:v for (k,v) in [(3,2),(4,0),(100,1)] }

{3: 2, 4: 0, 100: 1}

>>> { (x,y):x*y for x in [1,2,3] for y in [1,2,3] }
{@, 2): 2, (3, 2): 6, (1, 3): 3, (3, 3): 9, (3, 1): 3,
(2, 1: 2, (2, 3): 6, (2, 2): 4, (1, 1): 1}

Task 0.5.23: Using range, write a comprehension whose value is a dictionary. The keys
should be the integers from 0 to 99 and the value corresponding to a key should be the
square of the key.

Task 0.5.24: Assign some set to the variable D, e.g. D ={'red', 'white', 'blue'}.
Now write a comprehension that evaluates to a dictionary that represents the identity
function on D.

29

30 CHAPTER 0. THE FUNCTION

Task 0.5.25: Using the variables base=10 and digits=set (range (base)), write a dic-
tionary comprehension that maps each integer between zero and nine hundred ninety nine
to the list of three digits that represents that integer in base 10. That is, the value should be

{o: [0, o0, 01, 1: [0, O, 1], 2: [0, O, 2], 3: [0, O, 3], ...,
10: [0, 1, 0], 11: [0, 1, 1], 12: [0, 1, 2], ...,
999: [9, 9, 91}

Your expression should work for any base. For example, if you instead assign 2 to base and
assign {0,1} to digits, the value should be

{o: [0, o0, 0], 1: [0, O, 1], 2: [0, 1, O], 3: [0, 1, 1],
., 7: [1, 1, 11}

Comprehensions that iterate over dictionaries

You can write list comprehensions that iterate over the keys or the values of a dictionary,
using keys () or values():

>>> [2#x for x in {4:'a',3:'b'}.keys() 1]
[6, 8]

>>> [x for x in {4:'a', 3:'b'}.values()]
['b', 'a']

Given two dictionaries A and B, you can write comprehensions that iterate over the union
or intersection of the keys, using the union operator | and intersection operator & we learned
about in Section 0.5.4.

>>> [k for k in {'a':1, 'b':2}.keys() | {'b':3, 'c':4}.keys(]
[lal’ IC', |b|]

>>> [k for k in {'a':1, 'b':2}.keys() & {'b':3, 'c':4}.keys(O]
['b']

Often you’ll want a comprehension that iterates over the (key, value) pairs of a dictionary,
using items (). Each pair is a tuple.

>>> [myitem for myitem in mydict.items()]
[('Neo', 'Philip'), ('Morpheus', 'Laurence'),
('Trinity', 'Carrie-Anne'), ('Agent Smith', 'Hugo')]

Since the items are tuples, you can access the key and value separately using unpacking:

>>> [k + " is played by " + v for (k,v) in mydict.items()]

['Neo is played by Philip, 'Agent Smith is played by Hugo',

'"Trinity is played by Carrie-Anne', 'Morpheus is played by Laurence']
>>> [2xk+v for (k,v) in {4:0,3:2, 100:1}.items() 1]

[8, 8, 201]

Task 0.5.26: Suppose d is a dictionary that maps some employee IDs (a subset of the
integers from 0 to n — 1) to salaries. Suppose L is an n-element list whose i'" element is
the name of employee number i. Your goal is to write a comprehension whose value is a
dictionary mapping employee names to salaries. You can assume that employee names are
distinct. However, not every employee ID is represented in d.

Test your comprehension with the following data:

id2salary = {0:1000.0, 3:990, 1:1200.50}
names = ['Larry', 'Curly', '', 'Moe']

0.4. LAB: INTRODUCTION TO PYTHON 31

0.5.9 Defining one-line procedures

The procedure twice : R — R that returns twice its input can be written in Python as
follows:

def twice(z): return 2%z

The word def introduces a procedure definition. The name of the function being defined is
twice. The variable z is called the formal argument to the procedure. Once this procedure
is defined, you can invoke it using the usual notation: the name of the procedure followed
by an expression in parenthesis, e.g. twice (1+2)

The value 3 of the expression 1+2 is the actual argument to the procedure. When the
procedure is invoked, the formal argument (the variable) is temporarily bound to the actual
argument, and the body of the procedure is executed. At the end, the binding of the actual
argument is removed. (The binding was temporary.)

Task 0.5.27: Try entering the definition of twice(z). After you enter the definition, you
will see the ellipsis. Just press enter. Next, try invoking the procedure on some actual
arguments. Just for fun, try strings or lists. Finally, verify that the variable z is now not
bound to any value by asking Python to evaluate the expression consisting of z.

Task 0.5.28: Define a one-line procedure nextInts (L) specified as follows:

e input: list L of integers
e output: list of integers whose i*" element is one more than the i*" element of L

e example: input [1,5,7], output [2,6,8].

Task 0.5.29: Define a one-line procedure cubes (L) specified as follows:
e input: list L of numbers
e output: list of numbers whose i*" element is the cube of the i element of L

e example: input [1,2, 3], output [1,8,27].

Task 0.5.30: Define a one-line procedure dict2list(dct, keylist) with this spec:
e input: dictionary dct, list keylist consisting of the keys of dct
e output: list L such that L[i] = dctlkeylist[i]] for ¢ = 0,1,2,...,len(keylist) — 1

e example: input det={"a':'A', 'b':'B', 'c':'C'}and keylist=['b','c','a'],
output ['B', 'C', 'A']

Task 0.5.31: Define a one-line procedure list2dict (L, keylist) specified as follows:
e input: list L, list keylist of immutable items
e output: dictionary that maps keylist[i] to L[i] for i =0,1,2,...,len(L) — 1

e example: input L=[’A’,’B’,’C’] and keylist=[’a’,’b’,’c’],
output {'a':'A', 'b':'B', 'c':'C'}

Hint: Use a comprehension that iterates over a zip or a range.

32

CHAPTER 0. THE FUNCTION

Task 0.5.32: Write a procedure all_3_digit numbers(base, digits) with the follow-
ing spec:

e input: a positive integer base and the set digits which should be {0,1,2,..., base—1}.
e output: the set of all three-digit numbers where the base is base
For example,

>>> all_3_digit_numbers(2, {0,1})

{0, 1, 2, 3, 4, 5, 6, T}

>>> all_3_digit_numbers(3, {0,1,2})

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26}

>>> all_3_digit_numbers(10, {0,1,2,3,4,5,6,7,8,9})

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999}

0.6 Lab: Python—modules and control structures—and inverse
index

In this lab, you will create a simple search engine. One procedure will be responsible for

reading in a large collection of documents and indexing them to facilitate quick responses to

subsequent search queries. Other procedures will use the index to answer the search queries.
The main purpose of this lab is to give you more Python programming practice.

0.6.1 Using existing modules

Python comes with an extensive library, consisting of components called modules. In order
to use the definitions defined in a module, you must either import the module itself or
import the specific definitions you want to use from the module. If you import the module,
you must refer to a procedure or variable defined therein by using its qualified name, i.e.
the name of the module followed by a dot followed by the short name.

For example, the library math includes many mathematical procedures such as square-
root, cosine, and natural logarithm, and mathematical constants such as 7 and e.

Task 0.6.1: Import the math module using the command

>>> import math

Call the built-in procedure help(modulename) on the module you have just imported:
>>> help(math)

This will cause the console to show documentation on the module. You can move forward
by typing £ and backward by typing b, and you can quit looking at the documentation by
typing q.

Use procedures defined by the math module to compute the square root of 3, and raise
it to the power of 2. The result might not be what you expect. Keep in mind that Python
represents nonintegral real numbers with limited precision, so the answers it gives are only
approximate.

Next compute the square root of -1, the cosine of 7, and the natural logarithm of e.

The short name of the square-root function is sqrt so its qualified name is math.sqrt.
The short names of the cosine and the natural logarithm are cos and log, and the short
names of 7 and e are pi and e.

0.5. LAB: PYTHON AND INVERSE INDEX 33

The second way to bring a procedure or variable from a module into your Python envi-
ronment is to specifically import the item itself from the module, using the syntax

from (module name) import (short name)

after which you can refer to it using its short name.

Task 0.6.2: The module random defines a procedure randint (a,b) that returns an inte-
ger chosen uniformly at random from among {a,a+1,...,b}. Import this procedure using
the command

>>> from random import randint

Try calling randint a few times. Then write a one-line procedure movie_review(name)
that takes as argument a string naming a movie, and returns a string review selected
uniformly at random from among two or more alternatives (Suggestions: “See it!", “A
gem!”, “Ideological claptrap!”)

0.6.2 Creating your own modules

You can create your own modules simply by entering the text of your procedure definitions
and variable assignments in a file whose name consists of the module name you choose,
followed by .py. Use a text editor such as kate or vim or, my personal favorite, emacs.
The file can itself contain import statements, enabling the code in the file to make use
of definitions from other modules.
If the file is in the current working directory when you start up Python, you can import
the module.*

Task 0.6.3: In Tasks 0.5.30 and 0.5.31 of Lab 0.5, you wrote procedures

dict2list(dct, keylist) and list2dict(L, keylist). Download the filedictutil.py
from http://resources.codingthematrix.com. (That site hosts support code and sam-

ple data for the problems in this book.) Edit the provided file dictutil.py and edit it,
replacing each occurence of pass with the appropriate statement. Import this module, and
test the procedures. We will have occasion to use this module in the future.

®There is an environment variable, PYTHONPATH, that governs the sequence of directories in which Python
searches for modules.

Reloading

You will probably find it useful when debugging your own module to be able to edit it and
load the edited version into your current Python session. Python provides the procedure
reload(module) in the module imp. To import this procedure, use the command

>>> from imp import reload

Note that if you import a specific definition using the from ... import ... syntax
then you cannot reload it.

CHAPTER 0. THE FUNCTION

Task 0.6.4: Edit dictutil.py. Define a procedure listrange2dict (L) with this spec:
e input: alist L
e output: a dictionary that, for i = 0,1,2,...,len(L) — 1, maps i to L[i]

You can write this procedure from scratch or write it in terms of list2dict (L, keylist).
Use the statement

>>> reload(dictutil)

to reload your module, and then test 1istrange2dict on the list ['A','B','C'].

0.6.3 Loops and conditional statements

Comprehensions are not the only way to loop over elements of a set, list, dictionary, tuple,
range, or zip. For the traditionalist programmer, there are for-loops: for x in {1,2,3}: print(x).
In this statement, the variable x is bound to each of the elements of the set in turn, and the
statement print(x) is executed in the context of that binding.

There are also while-loops: while v[i] == 0: i = i+1.

There are also conditional statements (as opposed to conditional expressions):
if x > 0: print("positive")

0.6.4 Grouping in Python using indentation

You will sometimes need to define loops or conditional statements in which the body consists
of more than one statement. Most programming languages have a way of grouping a series
of statements into a block. For example, ¢ and Java use curly braces around the sequence
of statements.

Python uses indentation to indicate grouping of statements. All the statements form-
ing a block should be indented the same number of spaces. Python is very picky
about this. Python files we provide will use four spaces to indent. Also, don’t mix tabs
with spaces in the same block. In fact, I recommend you avoid using tabs for indentation
with Python.

Statements at the top level should have no indentation. The group of statements forming
the body of a control statement should be indented more than the control statement. Here’s
an example:

for x in [1,2,3]:
Yy = X*X
print (y)

This prints 1, 4, and 9. (After the loop is executed, y remains bound to 9 and x remains
bound to 3.)

Task 0.6.5: Type the above for-loop into Python. You will see that, after you enter the
first line, Python prints an ellipsis (...) to indicate that it is expecting an indented block of
statements. Type a space or two before entering the next line. Python will again print the
ellipsis. Type a space or two (same number of spaces as before) and enter the next line.
Once again Python will print an ellipsis. Press enter, and Python should execute the loop.

The same use of indentation can be used used in conditional statements and in procedure
definitions.

def quadratic(a,b,c):
discriminant = math.sqrt(b*b - 4x*ax*c)
return ((-b + discriminant)/(2*a), (-b - discriminant)/(2*a))

0.5. LAB: PYTHON AND INVERSE INDEX

You can nest as deeply as you like:

def print_greater_quadratic(L):
for a, b, ¢ in L:
plus, minus = quadratic(a, b, c)
if plus > minus:
print (plus)
else:
print (minus)

Many text editors help you handle indentation when you write Python code. For exam-
ple, if you are using emacs to edit a file with a .py suffix, after you type a line ending with
a colon and hit return, emacs will automatically indent the next line the proper amount,
making it easy for you to start entering lines belonging to a block. After you enter each line
and hit Return, emacs will again indent the next line. However, emacs doesn’t know when
you have written the last line of a block; when you need to write the first line outside of
that block, you should hit Delete to unindent.

0.6.5 Breaking out of a loop

As in many other programming languages, when Python executes the break statement,
the loop execution is terminated, and execution continues immediately after the innermost
nested loop containing the statement.

>>> s = "There is no spoon."
>>> for i in range(len(s)):
if s[i] == 'n':
break
>>> i
9

0.6.6 Reading from a file

In Python, a file object is used to refer to and access a file. The expression
open('stories_small.txt') returns a file object that allows access to the file with the
name given. You can use a comprehension or for-loop to loop over the lines in the file

>>> f = open('stories_big.txt')
>>> for line in f:
print(line)

or, if the file is not too big, use 1ist () to directly obtain a list of the lines in the file, e.g.

>>> f = open('stories_small.txt')
>>> stories = list(f)

>>> len(stories)

50

In order to read from the file again, one way is to first create a new file object by calling
open again.

0.6.7 Mini-search engine

Now, for the core of the lab, you will be writing a program that acts as a sort of search
engine.

Given a file of “documents” where each document occupies a line of the file, you are to
build a data structure (called an inverse indez) that allows you to identify those documents
containing a given word. We will identify the documents by document number: the document

35

36 CHAPTER 0. THE FUNCTION

represented by the first line of the file is document number 0, that represented by the second
line is document number 1, and so on.

You can use a method defined for strings, split (), which splits the string at spaces into
substrings, and returns a list of these substrings:

>>> mystr = 'Ask not what you can do for your country.'
>>> mystr.split()
['Ask', 'mot', 'what', 'you', 'can', 'do', 'for', 'your', 'country.']

Note that the period is considered part of a substring. To make this lab easier, we have
prepared a file of documents in which punctuation are separated from words by spaces.

Often one wants to iterate through the elements of a list while keeping track of the
indices of the elements. Python provides enumerate (L) for this purpose.

>>> list(enumerate(['A','B','C']))

[CO, 'A"), (1, 'B"), (2, 'C"]

>>> [i*x for (i,x) in enumerate([10,20,30,40,50])]

[0, 20, 60, 120, 200]

>>> [i*s for (i,s) in enumerate(['A','B','C','D','E'])]
[, 'B', 'CcC', 'DDD', 'EEEE']

Task 0.6.6: Write a procedure makeInverseIndex(strlist) that, given a list of strings
(documents), returns a dictionary that maps each word to the set consisting of the document
numbers of documents in which that word appears. This dictionary is called an inverse index.
(Hint: use enumerate.)

Task 0.6.7: Write a procedure orSearch(inverseIndex, query) which takes an in-
verse index and a list of words query, and returns the set of document numbers specifying
all documents that conain any of the words in query.

Task 0.6.8: Write a procedure andSearch(inverseIndex, query) which takes an in-
verse index and a list of words query, and returns the set of document numbers specifying
all documents that contain all of the words in query.

Try out your procedures on these two provided files:
e stories_small.txt

e stories_big.txt

0.7 Review questions
e What does the notation f: A — B mean?
e What are the criteria for f to be an invertible function?
e What is associativity of functional composition?

e What are the criteria for a function to be a probability function?

What is the Fundamental Principle of Probability Theory?

If the input to an invertible function is chosen randomly according to the uniform distri-
bution, what is the distribution of the output?

