[1] The Field

The Field: Introduction to complex numbers

Solutions to $x^2 = -1?$

Mathematicians invented \mathbf{i} to be one solution

Guest Week: Bill Amend (excerpt, http://xkcd.com/824)

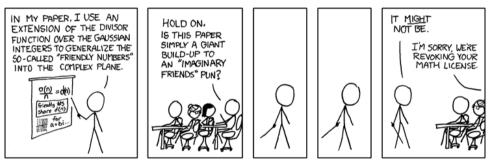
Can use **i** to solve other equations, e.g.:

$$x^2 = -9$$

Solution is x = 3i

Introduction to complex numbers

Numbers such as \mathbf{i} , $-\mathbf{i}$, $3\mathbf{i}$, 2.17 \mathbf{i} are called *imaginary* numbers.



Math Paper (http://xkcd.com/410)

The Field: Introduction to complex numbers

- Solution to $(x 1)^2 = -9?$
- One is $x = 1 + 3\mathbf{i}$.

- A real number plus an imaginary number is a *complex number*.
- A complex number has a *real part* and an *imaginary part*.

complex number = (real part) + (imaginary part) \mathbf{i}

The Field: Complex numbers in Python

Abstracting over Fields

- Overloading: Same names (+, etc.) used in Python for operations on real numbers and for operations complex numbers
- Write procedure solve(a,b,c) to solve ax + b = c: >>> def solve(a,b,c): return (c-b)/a Can now solve equation 10x + 5 = 30: >>> solve(10, 5, 30) 2.5
- Can also solve equation (10 + 5i)x + 5 = 20:
 >>> solve(10+5j, 5, 20) (1.2-0.6j)
- Same procedure works on complex numbers.

Abstracting over Fields

Why does procedure works with complex numbers?

Correctness based on:

- / is inverse of *
- \blacktriangleright is inverse of +

Similarly, much of linear algebra based just on +, -, *, / and algebraic properties

- / is inverse of *
- \blacktriangleright is inverse of +
- addition is commutative: a + b = b + a
- ► multiplication distributes over addition: a * (b + c) = a * b + a * c
- ▶ etc.

You can plug in any collection of "numbers" with arithmetic operators +, -, *, / satisfying the algebraic properties— and much of linear algebra will still "work".

Such a collection of "numbers" with +, -, *, / is called a *field*. Different fields are like different classes obeying the same interface.

Field notation

When we want to refer to a field without specifying which field, we will use the notation $\mathbb{F}.$

Abstracting over Fields

We study three fields:

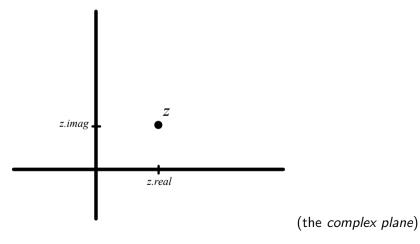
- \blacktriangleright The field $\mathbb R$ of real numbers
- \blacktriangleright The field $\mathbb C$ of complex numbers
- The finite field GF(2), which consists of 0 and 1 under mod 2 arithmetic.

Reasons for studying the field ${\ensuremath{\mathbb C}}$ of complex numbers:

- \blacktriangleright $\mathbb C$ is similar enough to $\mathbb R$ to be familiar but different enough to illustrate the idea of a field.
- Complex numbers are built into Python.
- Complex numbers are the intellectual ancestors of vectors.
- In more advanced parts of linear algebra (to be covered in a follow-on course), complex numbers play an important role.

Complex numbers as points in the complex plane

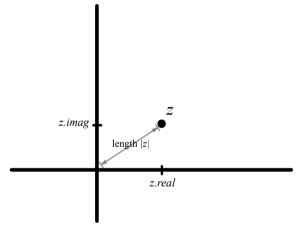
Can interpret *real* and *imaginary* parts of a complex number as x and y coordinates. Thus can interpret a complex number as a *point* in the plane



Playing with $\ensuremath{\mathbb{C}}$

Playing with \mathbb{C} : The absolute value of a complex number

Absolute value of z = distance from the origin to the point z in the complex plane.

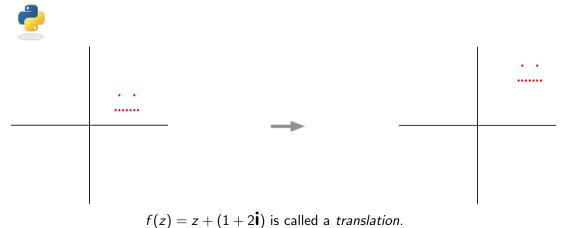


- In Mathese, written |z|.
- In Python, written abs(z).

Playing with \mathbb{C} : Adding complex numbers

Geometric interpretation of f(z) = z + (1 + 2i)?

Increase each real coordinate by 1 and increases each imaginary coordinate by 2.



Playing with \mathbb{C} : Adding complex numbers

► Translation in general:

$$f(z)=z+z_0$$

where z_0 is a complex number.

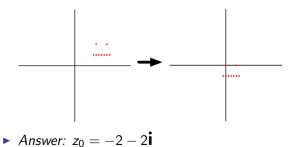
▶ A translation can "move" the picture anywhere in the complex plane.

Playing with \mathbb{C} : Adding complex numbers

• Quiz: The "left eye" of the list L of complex numbers is located at 2 + 2i. For what complex number z_0 does the translation

$$f(z)=z+z_0$$

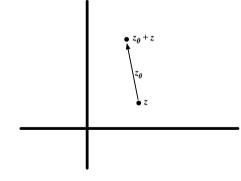
move the left eye to the origin $0 + 0\mathbf{i}$?



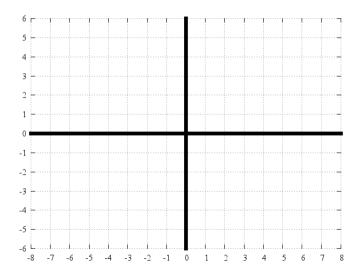
Playing with \mathbb{C} : Adding complex numbers: Complex numbers as arrows

Interpret z_0 as representing the translation $f(z) = z + z_0$.

- ▶ Visualize a complex number *z*₀ as an arrow.
- Arrow's tail located an any point z
- Arrow's head located at $z + z_0$
- Shows an example of what the translation $f(z) = z + z_0$ does

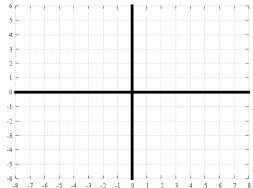


Playing with \mathbb{C} : Adding complex numbers: Complex numbers as arrows *Example:* Represent $-6 + 5\mathbf{i}$ as an arrow.

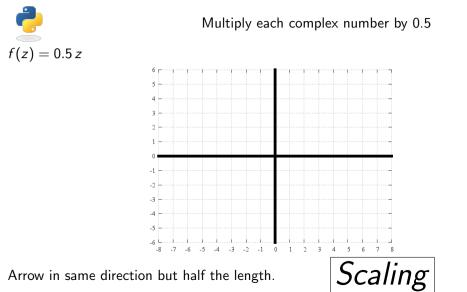


Playing with $\mathbb{C}\colon$ Adding complex numbers: Composing translations, adding arrows

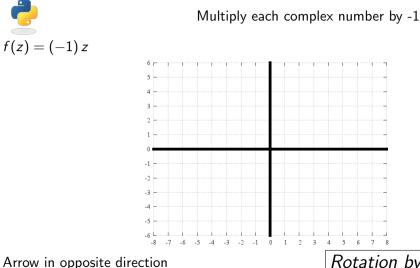
- Consider two complex numbers z_1 and z_2 .
- They correspond to translations $f_1(z) = z + z_1$ and $f_2(z) = z + z_2$
- Functional composition: $(f_1 \circ f_2)(z) = z + z_1 + z_2$
- Represent functional composition by adding arrows.
- Example: $z_1 = 2 + 3i$ and $z_2 = 3 + 1i$



Playing with $\mathbb{C} {:}\xspace$ Multiplying complex numbers by a positive real number



Playing with $\mathbb{C} {:}\xspace$ Multiplying complex numbers by a negative number



Rotation by 180 degrees

Playing with \mathbb{C} : Multiplying by i: rotation by 90 degrees

How to rotate counterclockwise by 90° ?

Need
$$x + y \mathbf{i} \mapsto -y + x \mathbf{i}$$

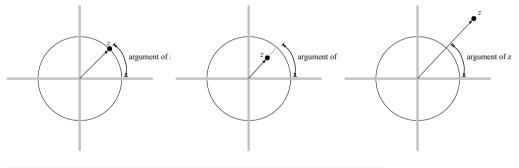
Use $\mathbf{i}(x + y\mathbf{i}) = x \mathbf{i} + y \mathbf{i}^2 = x \mathbf{i} - y$

6	Γ.	Т		Ľ		Ľ.	ч		Т		T.		Ľ	1		Ľ	11		Π		Ľ	1		Ľ	÷Ч	
_														I												
5	F													1												
1														I												
;	_													I												
														I												
2	-													ł												
														I												
L	Γ.													1												
、.		÷		i.							i.					1			÷							
				T					T		E			T												
1	L.													I												
														I												
2	÷													ł												
_														I												
3	E.													1												
4	L.													I												
1														1												
5	Ļ.													ł												
														1												
6																										

Playing with \mathbb{C} : The unit circle in the complex plane: *argument* and angle

What about rotating by another angle?

Definition: Argument of z is the angle in radians between z arrow and $1 + 0\mathbf{i}$ arrow.

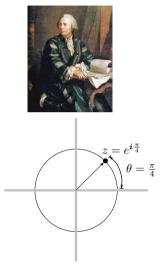


Rotating a complex number *z* means *increasing its argument*.

Playing with \mathbb{C} : Euler's formula

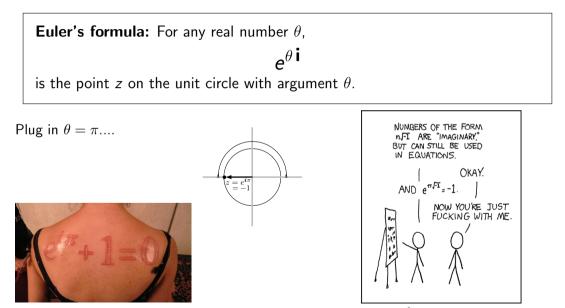
"He calculated just as men breathe, as eagles sustain themselves in the air." Said of Leonhard Euler

Euler's formula: For any real number θ , $e^{\theta \mathbf{i}}$ is the point z on the unit circle with argument θ .



e = 2.718281828...

Playing with \mathbb{C} : Euler's formula



Playing with \mathbb{C} : Euler's formula

Plot

$$e^{0 \cdot \frac{2\pi \mathbf{i}}{20}}, e^{1 \cdot \frac{2\pi \mathbf{i}}{20}}, e^{2 \cdot \frac{2\pi \mathbf{i}}{20}}, e^{3 \cdot \frac{2\pi \mathbf{i}}{20}}, \dots, e^{19 \cdot \frac{2\pi \mathbf{i}}{20}}$$

Playing with \mathbb{C} : Rotation by τ radians

Back to question of rotation by any angle τ .

- Every complex number can be written in the form $z=re^{ heta \mathbf{i}}$
 - r is the absolute value of z
 - θ is the argument of z

.

• Need to increase the argument of z

▶ Use exponentiation law
$$e^a \cdot e^b = e^{a+b}$$

$$\bullet r e^{\theta \mathbf{i}} \cdot e^{\tau \mathbf{i}} = r e^{\theta \mathbf{i} + \tau \mathbf{i}} = r e^{(\theta + \tau) \mathbf{i}}$$

•
$$f(z) = z \cdot e^{\tau \mathbf{I}}$$
 does rotation by angle τ .

Playing with $\mathbb{C}:$ Rotation by τ radians

Rotation by $3\pi/4$

Playing with GF(2)

Galois Field 2 has just two elements: 0 and 1

 $\begin{array}{c|c} \text{Addition is like exclusive-or:} \\ + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}$

Multiplication is like ordinary multiplication

 $\begin{array}{c|ccc} \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$

Evariste Galois, 1811-1832

Usual algebraic laws still hold, e.g. multiplication distributes over addition $a \cdot (b + c) = a \cdot b + a \cdot c$

GF(2) in Python

We provide a module GF2 that defines a value one. This value acts like 1 in GF(2):

```
>>> from GF2 import one
>>> one + one
0
>>> one * one
one
>>> one * 0
0
>>> one * 0
0
>>> one/one
one
```

We will use one in coding with GF(2).

Playing with GF(2): Encryption

Alice wants to arrange with Bob to communicate one bit p (the *plaintext*). To ensure privacy, they use a cryptosystem:

- ► Alice and Bob agree beforehand on a secret key *k*.
- Alice encrypts the plaintext p using the key k, obtaining the cyphertext c according to the table
- **Q:** Can Bob uniquely decrypt the cyphertext?

A: Yes: for any value of k and any value of c, there is just one consistent value for p.

An eavesdropper, Eve, observes the value of c (but does not know the key k). **Question:** Does Eve learn anything about the value of p? **Simple answer:** No:

- if c = 0, Eve doesn't know if p = 0 or p = 1 (both are consistent with c = 0).
- if c = 1, Eve doesn't know if p = 0 or p = 1 (both are consistent with c = 1).

More sophisticated answer: It depends on how the secret key k is chosen. Suppose k is chosen by flipping a coin:

Probability is $\frac{1}{2}$ that k = 0

р	k	С
0	0	0
0	1	1
1	0	1
1	1	0

Playing with GF(2): One-to-one and onto function and perfect secrecy

What is it about this cryptosystem that leads to perfect secrecy? Why does Eve learn nothing from eavesdropping?

Define $f_0: GF(2) \longrightarrow GF(2)$ by $f_0(k) =$ encryption of p = 0 with key kAccording to the first two rows of the table, $f_0(0) = 0$ and $f_0(1) = 1$ This function is one-to-one and onto. When key k is chosen uniformly at random

Prob $[k = 0] = \frac{1}{2}$, Prob $[k = 1] = \frac{1}{2}$ the probability distribution of the output $f_0(k) = p$ is also uniform:

 $Prob[f_0(k) = 0] = \frac{1}{2}, Prob[f_0(k) = 1] = \frac{1}{2}$

 $k \mid$ 0 0 0 0 1 1 1 0 1 1 1 0 Define $f_1: GF(2) \longrightarrow GF(2)$ by $f_1(k) =$ encryption of p = 1 with key k According to the last two rows of the table, $f_1(0) = 1$ and $f_1(1) = 0$ This function is one-to-one and onto. When key k is chosen uniformly at random $Prob[k = 0] = \frac{1}{2}, Prob[k = 1] = \frac{1}{2}$ the probability distribution of the output $f_1(k) = p$ is also uniform: $Prob[f_1(k) = 1] = \frac{1}{2}, Prob[f_1(k) = 0] = \frac{1}{2}$

The probability distribution of the cyphertext does not depend on the plaintext!

Perfect secrecy

Idea is the basis for cryptosystem: the one-time pad.

If each bit is encrypted with its own one-bit key, the cryptosystem is unbreakable

In the 1940's the Soviets started re-using bits of key that had already been used.

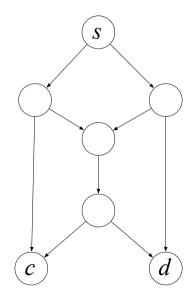
Unfortunately for them, this was discovered by the US Army's Signal Intelligence Service in the top-secret VENONA project.

This led to a tiny but historically significant portion of the Soviet traffic being cracked, including intelligence on

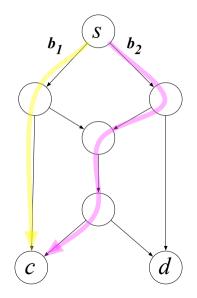
- spies such as Julius Rosenberg and Donald Maclean, and
- Soviet espionage on US technology including nuclear weapons.

The public only learned of VENONA when it was declassified in 1995.

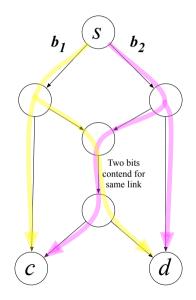
- one customer—no problem
- ▶ two customers—contention! 🔅
- do computation at intermediate nodes avoids contention
- Network coding doubles throughput in this example!



- one customer—no problem
- ▶ two customers—contention! 🔅
- do computation at intermediate nodes avoids contention
- Network coding doubles throughput in this example!



- one customer—no problem
- ▶ two customers—contention! 🔅
- do computation at intermediate nodes avoids contention
- Network coding doubles throughput in this example!



- one customer—no problem
- ▶ two customers—contention! 🔅
- do computation at intermediate nodes avoids contention
- Network coding doubles throughput in this example!

