
[1] The Field

The Field: Introduction to complex numbers

Solutions to x2 = −1?

Mathematicians invented i to be one solution

Guest Week: Bill Amend (excerpt, http://xkcd.com/824)

Can use i to solve other equations, e.g.:

x2 = −9

Solution is x = 3i

Introduction to complex numbers

Numbers such as i, −i, 3i, 2.17i are called imaginary numbers.

Math Paper (http://xkcd.com/410)

The Field: Introduction to complex numbers

I Solution to (x − 1)2 = −9?

I One is x = 1 + 3i.

I A real number plus an imaginary number is a complex number.

I A complex number has a real part and an imaginary part.

complex number = (real part) + (imaginary part) i

The Field: Complex numbers in Python

Abstracting over Fields

I Overloading: Same names (+, etc.) used in Python for operations on real
numbers and for operations complex numbers

I Write procedure solve(a,b,c) to solve ax + b = c:

>>> def solve(a,b,c): return (c-b)/a

Can now solve equation 10x + 5 = 30:

>>> solve(10, 5, 30)

2.5

I Can also solve equation (10 + 5i)x + 5 = 20:

>>> solve(10+5j, 5, 20)

(1.2-0.6j)

I Same procedure works on complex numbers.

Abstracting over Fields
Why does procedure works with complex numbers?

Correctness based on:

I / is inverse of *

I - is inverse of +

Similarly, much of linear algebra based just on +, -, *, / and algebraic properties

I / is inverse of *

I - is inverse of +

I addition is commutative: a + b = b + a

I multiplication distributes over addition: a ∗ (b + c) = a ∗ b + a ∗ c

I etc.

You can plug in any collection of “numbers” with arithmetic operators +, -, *, /
satisfying the algebraic properties— and much of linear algebra will still “work”.

Such a collection of ”numbers” with +, -, *, / is called a field.
Different fields are like different classes obeying the same interface.

Field notation

When we want to refer to a field without specifying which field, we will use the
notation F.

Abstracting over Fields

We study three fields:

I The field R of real numbers

I The field C of complex numbers

I The finite field GF (2), which consists of 0 and 1 under mod 2 arithmetic.

Reasons for studying the field C of complex numbers:

I C is similar enough to R to be familiar but different enough to illustrate the idea
of a field.

I Complex numbers are built into Python.

I Complex numbers are the intellectual ancestors of vectors.

I In more advanced parts of linear algebra (to be covered in a follow-on course),
complex numbers play an important role.

Complex numbers as points in the complex plane

Can interpret real and imaginary parts of a complex number as x and y coordinates.
Thus can interpret a complex number as a point in the plane

z

z.real

z.imag

(the complex plane)

Playing with C

Playing with C: The absolute value of a complex number
Absolute value of z = distance from the origin to the point z in the complex plane.

z

z.real

z.imag

length |z|

I In Mathese, written |z |.
I In Python, written abs(z).

Playing with C: Adding complex numbers

Geometric interpretation of f (z) = z + (1 + 2i)?

Increase each real coordinate by 1 and increases each imaginary coordinate by 2.

f (z) = z + (1 + 2i) is called a translation.

Playing with C: Adding complex numbers

I Translation in general:
f (z) = z + z0

where z0 is a complex number.

I A translation can “move” the picture anywhere in the complex plane.

Playing with C: Adding complex numbers

I Quiz: The “left eye” of the list L of complex numbers is located at 2 + 2i. For
what complex number z0 does the translation

f (z) = z + z0

move the left eye to the origin 0 + 0i?

I Answer: z0 = −2− 2i

Playing with C: Adding complex numbers: Complex numbers as arrows
Interpret z0 as representing the translation f (z) = z + z0.

I Visualize a complex number z0 as an arrow.

I Arrow’s tail located an any point z

I Arrow’s head located at z + z0
I Shows an example of what the translation f (z) = z + z0 does

z

z0

z0 + z

Playing with C: Adding complex numbers: Complex numbers as arrows
Example: Represent −6 + 5i as an arrow.

Playing with C: Adding complex numbers: Composing translations,
adding arrows

I Consider two complex numbers z1 and z2.
I They correspond to translations f1(z) = z + z1 and f2(z) = z + z2
I Functional composition: (f1 ◦ f2)(z) = z + z1 + z2
I Represent functional composition by adding arrows.
I Example: z1 = 2 + 3i and z2 = 3 + 1i

Playing with C: Multiplying complex numbers by a positive real number

Multiply each complex number by 0.5

f (z) = 0.5 z

Arrow in same direction but half the length. Scaling

Playing with C: Multiplying complex numbers by a negative number

Multiply each complex number by -1

f (z) = (−1) z

Arrow in opposite direction Rotation by 180 degrees

Playing with C: Multiplying by i: rotation by 90 degrees

How to rotate counterclockwise by 90◦?

Need x + y i 7→ −y + x i

Use i(x + y i) = x i + y i2 = x i− y

f (z) = i z

Playing with C: The unit circle in the complex plane: argument and angle

What about rotating by another angle?

Definition: Argument of z is the angle in radians between z arrow and 1 + 0i arrow.

argument of z

z

argument of zz argument of z

z

Rotating a complex number z means increasing its argument.

Playing with C: Euler’s formula

“He calculated just as men breathe, as eagles
sustain themselves in the air.”
Said of Leonhard Euler

Euler’s formula: For any real number θ,

eθ i

is the point z on the unit circle with argument θ.

z = ei⇡
4

✓ = ⇡
4

e = 2.718281828...

Playing with C: Euler’s formula

Euler’s formula: For any real number θ,

eθ i

is the point z on the unit circle with argument θ.

Plug in θ = π....

photo by Cory Doctorow

z = ei⇡

= �1

e to the π times i (http://xkcd.com/179/)

Playing with C: Euler’s formula

Plot

e0·
2πi
20 , e1·

2πi
20 , e2·

2πi
20 , e3·

2πi
20 , . . . , e19·

2πi
20

Playing with C: Rotation by τ radians

Back to question of rotation by any angle τ .

I Every complex number can be written in the form z = reθi

I r is the absolute value of z
I θ is the argument of z

I Need to increase the argument of z

I Use exponentiation law ea · eb = ea+b

I reθi · eτ i = reθi+τ i = re(θ+τ)i

I f (z) = z · eτi does rotation by angle τ .

Playing with C: Rotation by τ radians

Rotation by 3π/4

Playing with GF (2)
Galois Field 2
has just two elements: 0 and 1

Addition is like exclusive-or:
+ 0 1

0 0 1
1 1 0

Multiplication is like ordinary
multiplication
× 0 1

0 0 0
1 0 1 Evariste Galois, 1811-1832

Usual algebraic laws still hold, e.g. multiplication distributes over addition
a · (b + c) = a · b + a · c

GF (2) in Python

We provide a module GF2 that defines a value one.
This value acts like 1 in GF (2):

>>> from GF2 import one

>>> one + one

0

>>> one * one

one

>>> one * 0

0

>>> one/one

one

We will use one in coding with GF (2).

Playing with GF (2): Encryption
Alice wants to arrange with Bob to communicate one bit p (the plaintext).
To ensure privacy, they use a cryptosystem:

I Alice and Bob agree beforehand on a secret key k.

I Alice encrypts the plaintext p using the key k , obtaining
the cyphertext c according to the table

p k c

0 0 0
0 1 1
1 0 1
1 1 0

Q: Can Bob uniquely decrypt the cyphertext?
A: Yes: for any value of k and any value of c, there is just one consistent value for p.

An eavesdropper, Eve, observes the value of c (but does not know the key k).
Question: Does Eve learn anything about the value of p?
Simple answer: No:

I if c = 0, Eve doesn’t know if p = 0 or p = 1 (both are consistent with c = 0).
I if c = 1, Eve doesn’t know if p = 0 or p = 1 (both are consistent with c = 1).

More sophisticated answer: It depends on how the secret key k is chosen.
Suppose k is chosen by flipping a coin:

Probability is 1
2 that k = 0

Probability is 1
2 that k = 1

There are two possibilities:
I Suppose p = 0. Then (looking at first two rows of encryption table)

Probability is 1
2 that c = 0

Probability is 1
2 that c = 1

I Now suppose p = 1. Then (looking at last two rows of encryption table)
Probability is 1

2 that c = 1
Probability is 1

2 that c = 0

Thus the choice of the value of p does not affect the probability distribution of c .
This shows that Eve learns nothing about p from observing c . Perfect secrecy!

Playing with GF (2): One-to-one and onto function and perfect secrecy

What is it about this cryptosystem that leads to perfect
secrecy? Why does Eve learn nothing from eavesdropping?

p k c

0 0 0
0 1 1
1 0 1
1 1 0

Define f0 : GF (2) −→ GF (2) by
f0(k) =encryption of p = 0 with key k

According to the first two rows of the table,
f0(0) = 0 and f0(1) = 1

This function is one-to-one and onto.
When key k is chosen uniformly at random

Prob[k = 0] = 1
2 ,Prob[k = 1] = 1

2
the probability distribution of the output
f0(k) = p is also uniform:
Prob[f0(k) = 0] = 1

2 ,Prob[f0(k) = 1] = 1
2

Define f1 : GF (2) −→ GF (2) by
f1(k) =encryption of p = 1 with key k

According to the last two rows of the table,
f1(0) = 1 and f1(1) = 0

This function is one-to-one and onto.
When key k is chosen uniformly at random

Prob[k = 0] = 1
2 ,Prob[k = 1] = 1

2
the probability distribution of the output
f1(k) = p is also uniform:
Prob[f1(k) = 1] = 1

2 ,Prob[f1(k) = 0] = 1
2

The probability distribution of the cyphertext does not depend on the plaintext!

Perfect secrecy

Idea is the basis for cryptosystem: the one-time pad.

If each bit is encrypted with its own one-bit key, the
cryptosystem is unbreakable

p k c

0 0 0
0 1 1
1 0 1
1 1 0

In the 1940’s the Soviets started re-using bits of key that had already been used.

Unfortunately for them, this was discovered by the US Army’s Signal Intelligence
Service in the top-secret VENONA project.

This led to a tiny but historically significant portion of the Soviet traffic being cracked,
including intelligence on

I spies such as Julius Rosenberg and Donald Maclean, and

I Soviet espionage on US technology including nuclear weapons.

The public only learned of VENONA when it was declassified in 1995.

Playing with GF (2): Network coding

Streaming video through a network

I one customer—no problem

I two customers—contention! /
I do computation at intermediate nodes —

avoids contention

I Network coding doubles throughput in this
example!

s

c d

Playing with GF (2): Network coding

Streaming video through a network

I one customer—no problem

I two customers—contention! /
I do computation at intermediate nodes —

avoids contention

I Network coding doubles throughput in this
example!

s

c d

b1 b2

Playing with GF (2): Network coding

Streaming video through a network

I one customer—no problem

I two customers—contention! /
I do computation at intermediate nodes —

avoids contention

I Network coding doubles throughput in this
example!

s

c d

b1 b2

Two bits
contend for
same link

Playing with GF (2): Network coding

Streaming video through a network

I one customer—no problem

I two customers—contention! /
I do computation at intermediate nodes —

avoids contention

I Network coding doubles throughput in this
example!

s

c d

b1 b2

b1 + b2

