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Linear Combinations

An expression
α1v1 + · · ·+ αnvn

is a linear combination of the vectors v1, . . . , vn.

The scalars α1, . . . , αn are the coefficients of the linear combination.

Example: One linear combination of [2, 3.5] and [4, 10] is

−5 [2, 3.5] + 2 [4, 10]

which is equal to [−5 · 2,−5 · 3.5] + [2 · 4, 2 · 10]

Another linear combination of the same vectors is

0 [2, 3.5] + 0 [4, 10]

which is equal to the zero vector [0, 0].

Definition: A linear combination is trivial if the coefficients are all zero.



Linear Combinations: JunkCo
The JunkCo factory makes five products:

using various resources.

metal concrete plastic water electricity

garden gnome 0 1.3 0.2 0.8 0.4
hula hoop 0 0 1.5 0.4 0.3

slinky 0.25 0 0 0.2 0.7
silly putty 0 0 0.3 0.7 0.5

salad shooter 0.15 0 0.5 0.4 0.8

For each product, there is a vector specifying how much of each resource is used per
unit of product.

For making one gnome:
v1 ={metal:0, concrete:1.3, plastic:0.2, water:.8, electricity:0.4}



Linear Combinations: JunkCo

For making one gnome:
v1 ={metal:0, concrete:1.3, plastic:0.2, water:0.8, electricity:0.4}
For making one hula hoop:
v2 ={metal:0, concrete:0, plastic:1.5, water:0.4, electricity:0.3}
For making one slinky:
v3 ={metal:0.25, concrete:0, plastic:0, water:0.2, electricity:0.7}
For making one silly putty:
v4 ={metal:0, concrete:0, plastic:0.3, water:0.7, electricity:0.5}
For making one salad shooter:
v5 ={metal:1.5, concrete:0, plastic:0.5, water:0.4, electricity:0.8}

Suppose the factory chooses to make α1 gnomes, α2 hula hoops, α3 slinkies, α4 silly
putties, and α5 salad shooters.

Total resource utilization is b = α1 v1 + α2 v2 + α3 v3 + α4 v4 + α5 v5



Linear Combinations: JunkCo: Industrial espionage
Total resource utilization is b = α1 v1 + α2 v2 + α3 v3 + α4 v4 + α5 v5

Suppose I am spying on JunkCo.

I find out how much metal, concrete, plastic, water, and electricity are consumed by
the factory.
That is, I know the vector b. Can I use this knowledge to figure out how many gnomes

they are making?

Computational Problem: Expressing a given vector as a linear combination of
other given vectors

I input: a vector b and a list [v1, . . . , vn] of vectors

I output: a list [α1, . . . , αn] of coefficients such that

b = α1 v1 + · · ·+ αn vn

or a report that none exists.

Question: Is the solution unique?



Lights Out

Button vectors for 2× 2 Lights Out:
• •
•

• •
•

•
• •

•
• •

For a given initial state vector s =
•
• ,

Which subset of button vectors sum to s?

Reformulate in terms of linear combinations.
Write

•
• = α1

• •
• + α2

• •
• + α3

•
• • + α4

•
• •

What values for α1, α2, α3, α4 make this equation true?

Solution: α1 = 0, α2 = 1, α3 = 0, α4 = 0

Solve an instance of Lights Out ⇒ Which set of button vectors sum to s?

⇒ Find subset of GF (2) vectors
v1, . . . , vn whose sum equals s

⇒ Express s as a linear combina-
tion of v1, . . . , vn



Lights Out

We can solve the puzzle if we have an algorithm for

Computational Problem: Expressing a given vector as a linear combination of
other given vectors



Span

Definition: The set of all linear combinations of some vectors v1, . . . , vn is called the
span of these vectors

Written Span {v1, . . . , vn}.



Span: Attacking the authentication scheme
If Eve knows the password satisfies

a1 · x = β1
...

am · x = βm

Then she can calculate right response to any challenge in Span {a1, . . . ,am}:

Proof: Suppose a = α1 a1 + · · ·+ αm am. Then

a · x = (α1 a1 + · · ·+ αm am) · x
= α1 a1 · x + · · ·+ αm am · x by distributivity

= α1 (a1 · x) + · · ·+ αm (am · x) by homogeneity

= α1 β1 + · · ·+ αm βm

Question: Any others? Answer will come later.



Span: GF (2) vectors

Quiz: How many vectors are in Span {[1, 1], [0, 1]} over the field GF (2)?

Answer: The linear combinations are

0 [1, 1] + 0 [0, 1] = [0, 0]

0 [1, 1] + 1 [0, 1] = [0, 1]

1 [1, 1] + 0 [0, 1] = [1, 1]

1 [1, 1] + 1 [0, 1] = [1, 0]

Thus there are four vectors in the span.



Span: GF (2) vectors

Question: How many vectors in Span {[1, 1]} over GF (2)?

Answer: The linear combinations are

0 [1, 1] = [0, 0]

1 [1, 1] = [1, 1]

Thus there are two vectors in the span.

Question:How many vectors in Span {}?

Answer: Only one: the zero vector

Question: How many vectors in Span {[2, 3]} over R?

Answer: An infinite number: {α [2, 3] : α ∈ R}
Forms the line through the origin and (2, 3).



Generators

Definition: Let V be a set of vectors. If v1, . . . , vn are vectors such that
V = Span {v1, . . . , vn} then

I we say {v1, . . . , vn} is a generating set for V;

I we refer to the vectors v1, . . . , vn as generators for V.

Example: {[3, 0, 0], [0, 2, 0], [0, 0, 1]} is a generating set for R3.

Proof: Must show two things:

1. Every linear combination is a vector in R3.

2. Every vector in R3 is a linear combination.

First statement is easy: every linear combination of 3-vectors over R is a 3-vector over
R, and R3 contains all 3-vectors over R.

Proof of second statement: Let [x , y , z ] be any vector in R3. I must show it is a linear
combination of my three vectors....

[x , y , z ] = (x/3) [3, 0, 0] + (y/2) [0, 2, 0] + z [0, 0, 1]



Generators
Claim: Another generating set for R3 is {[1, 0, 0], [1, 1, 0], [1, 1, 1]}

Another way to prove that every vector in R3 is in the span:

I We already know R3 = Span {[3, 0, 0], [0, 2, 0], [0, 0, 1]},
I so just show [3, 0, 0], [0, 2, 0], and [0, 0, 1] are in Span {[1, 0, 0], [1, 1, 0], [1, 1, 1]}

[3, 0, 0] = 3 [1, 0, 0]

[0, 2, 0] = −2 [1, 0, 0] + 2 [1, 1, 0]

[0, 0, 1] = −1 [1, 0, 0]− 1 [1, 1, 0] + 1 [1, 1, 1]

Why is that sufficient?

I We already know any vector in R3 can be written as a linear combination of the
old vectors.

I We know each old vector can be written as a linear combination of the new
vectors.

I We can convert a linear combination of linear combination of new vectors into a
linear combination of new vectors.

Mobile User



Generators
We can convert a linear combination of linear combination of new vectors into a linear
combination of new vectors.

I Write [x , y , z ] as a linear combination of the old vectors:

[x , y , z ] = (x/3) [3, 0, 0] + (y/2) [0, 2, 0] + z [0, 0, 1]

I Replace each old vector with an equivalent linear combination of the new vectors:

[x , y , z ] = (x/3)

(
3 [1, 0, 0]

)
+ (y/2)

(
− 2 [1, 0, 0] + 2 [1, 1, 0]

)
+ z

(
− 1 [1, 0, 0]− 1 [1, 1, 0] + 1 [1, 1, 1]

)
I Multiply through, using distributivity and associativity:

[x , y , z ] = x [1, 0, 0]− y [1, 0, 0] + y [1, 1, 0]− z [1, 0, 0]− z [1, 1, 0] + z [1, 1, 1]

I Collect like terms, using distributivity:

[x , y , z ] = (x − y − z) [1, 0, 0] + (y − z) [1, 1, 0] + z [1, 1, 1]

Mobile User



Generators

Question: How to write each of the old vectors [3, 0, 0], [0, 2, 0], and [0, 0, 1] as a
linear combination of new vectors [2, 0, 1], [1, 0, 2], [2, 2, 2], and [0, 1, 0]?

Answer:

[3, 0, 0] = 2 [2, 0, 1]− 1 [1, 0, 2] + 0 [2, 2, 2]

[0, 2, 0] = −2

3
[2, 0, 1]− 2

3
[1, 0, 2] + 1 [2, 2, 2]

[0, 0, 1] = −1

3
[2, 0, 1] +

2

3
[1, 0, 2] + 0 [2, 2, 2]



Standard generators

Writing [x , y , z ] as a linear combination of the vectors [3, 0, 0], [0, 2, 0], and [0, 0, 1] is
simple.

[x , y , z ] = (x/3) [3, 0, 0] + (y/2) [0, 2, 0] + z [0, 0, 1]

Even simpler if instead we use [1, 0, 0], [0, 1, 0], and [0, 0, 1]:

[x , y , z ] = x [1, 0, 0] + y [0, 1, 0] + z [0, 0, 1]

These are called standard generators for R3.
Written e1,e2,e3



Standard generators
Question: Can 2× 2 Lights Out be solved from every starting configuration?

Equivalent to asking whether the 2× 2 button vectors

• •
•

• •
•

•
• •

•
• •

are generators for GF (2)D , where D = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Yes! For proof, we show that each standard generator can be written as a linear
combination of the button vectors:

•
= 1

• •
• + 1

• •
• + 1

•
• • + 0

•
• •

•
= 1

• •
• + 1

• •
• + 0

•
• • + 1

•
• •

• = 1
• •
• + 0

• •
• + 1

•
• • + 1

•
• •

• = 0
• •
• + 1

• •
• + 1

•
• • + 1

•
• •



Geometry of sets of vectors: span of vectors over R
Span of a single nonzero vector v:

Span {v} = {α v : α ∈ R}

This is the line through the origin and v. One-dimensional

Span of the empty set:just the origin. Zero-dimensional

Span {[1, 2], [3, 4]}: all points in the plane. Two-dimensional

Span of two 3-vectors? Span {[1, 0, 1.65], [0, 1, 1]} is a plane in three dimensions:

Two-dimensional



Geometry of sets of vectors: span of vectors over R

Is the span of k vectors always k-dimensional?
No.

I Span {[0, 0]} is 0-dimensional.

I Span {[1, 3], [2, 6]} is 1-dimensional.

I Span {[1, 0, 0], [0, 1, 0], [1, 1, 0]} is 2-dimensional.

Fundamental Question: How can we predict the dimensionality of the span of
some vectors?



Geometry of sets of vectors: span of vectors over R

Span of two 3-vectors? Span {[1, 0, 1.65], [0, 1, 1]} is a plane in three dimensions:

Two-dimensional

Useful for plotting the plane

{α [1, 0.1.65]+β [0, 1, 1] :
α ∈ {−5,−4, . . . , 3, 4},
β ∈ {−5,−4, . . . , 3, 4}}



Geometry of sets of vectors: span of vectors over R
Span of two 3-vectors? Span {[1, 0, 1.65], [0, 1, 1]} is a plane in three dimensions:

Two-dimensional

Perhaps a more familiar way to specify a plane:

{(x , y , z) : ax + by + cz = 0}

Using dot-product, we could rewrite as

{[x , y , z ] : [a, b, c] · [x , y , z ] = 0}

Set of vectors satisfying a linear equation with right-hand side zero.

We can similarly specify a line in three dimensions:

{[x , y , z ] : a1 · [x , y , z ] = 0,a2 · [x , y , z ] = 0}

Two ways to represent a geometric object (line, plane, etc.) containing the origin:
I Span of some vectors
I Solution set of some system of linear equations with zero right-hand sides



Geometry of sets of vectors: Two representations
Two ways to represent a geometric object (line, plane, etc.) containing the origin:

I Span of some vectors

I Solution set of some system of linear equations with zero right-hand sides

Span {[4,−1, 1], [0, 1, 1]} {[x , y , z ] : [1, 2,−2] · [x , y , z ] = 0}

Span {[1, 2,−2]}
{[x , y , z ] :
[4,−1, 1] · [x , y , z ] = 0,
[0, 1, 1] · [x , y , z ] = 0}



Geometry of sets of vectors: Two representations
Two ways to represent a geometric object (line, plane, etc.) containing the origin:

I Span of some vectors
I Solution set of some system of linear equations with zero right-hand sides

Each representation has its uses.

Suppose you want to find the plane containing two given lines

I First line is Span {[4,−1, 1]}.
I Second line is Span {[0, 1, 1]}.

I The plane containing these two lines is
Span {[4,−1, 1], [0, 1, 1]}



Geometry of sets of vectors: Two representations
Two ways to represent a geometric object (line, plane, etc.) containing the origin:

I Span of some vectors
I Solution set of some system of linear equations with zero right-hand sides

Each representation has its uses.

Suppose you want to find the intersection of two given planes:

I First plane is
{[x , y , z ] : [4,−1, 1] · [x , y , z ] = 0}.

I Second plane is
{[x , y , z ] : [0, 1, 1] · [x , y , z ] = 0}.

I The intersection is {[x , y , z ] :
[4,−1, 1] · [x , y , z ] = 0, [0, 1, 1] · [x , y , z ] = 0}



Two representations: What’s common?

Subset of FD that satisfies three properties:

Property V1 Subset contains the zero vector 0

Property V2 If subset contains v then it contains α v for every scalar α

Property V3 If subset contains u and v then it contains u + v

Span {v1, . . . , vn} satisfies

I Property V1 because
0 v1 + · · ·+ 0 vn

I Property V2 because
if v = β1 v1 + · · ·+ βn vn then α v = αβ1v1 + · · ·+ αβn vn

I Property V3 because
if u = α1 v1 + · · ·+ αn vn

and v = β1 v1 + · · ·+ βn vn

then u + v = (α1 + β1)v1 + · · ·+ (αn + βn) vn

Solution set {x : a1 · x = 0, . . . , am · x = 0} satisfies

I Property V1 because
a1 · 0 = 0, . . . , am · 0 = 0

I Property V2 because
if a1 · v = 0, . . . , am · v = 0

then a1 · (α v) = α (a1 · v) = 0, · · · ,am · (α v) = α (am · v) = 0

I Property V3 because
if a1 · u = 0, . . . , am · u = 0

and a1 · v = 0, . . . , am · v = 0
then a1 · (u + v) = a1 · u + a1 · v = 0, . . . , am · (u + v) = am · u + am · v = 0

Any subset V of FD satisfying the three properties is called a vector space.

Example: Span {v1, . . . , vn} and {x : a1 · x = 0, . . . , am · x = 0} are vector
spaces.

If U is also a vector space and U is a subset of V then U is called a subspace of V.

Example: Span {v1, . . . , vn} and {x : a1 · x = 0, . . . , am · x = 0} are subspaces
of RD

Possibly profound fact we will learn later: Every subspace of RD

I can be written in the form Span {v1, . . . , vn}
I can be written in the form {x : a1 · x = 0, . . . , am · x = 0}



Abstract vector spaces

In traditional, abstract approach to linear algebra:

I We don’t define vectors as sequences [1,2,3] or even functions {a:1, b:2, c:3}.

I We define a vector space over a field F to be any set V that is equipped with
I an addition operation, and
I a scalar-multiplication operation

satisfying certain axioms (e.g. commutate and distributive laws) and
Properties V1, V2, V3.

Abstract approach has the advantage that it avoids committing to specific structure
for vectors.

I avoid abstract approach in this class because more concrete notion of vectors is
helpful in developing intuition.



Geometric objects that exclude the origin

How to represent a line that does not contain the origin?

Start with a line that does contain the origin.

We know that points of such a line form a vector space V.

Translate the line by adding a vector c to every vector in V:

{c + v : v ∈ V}

(abbreviated c + V)

Result is line through c instead of through origin.



Geometric objects that exclude the origin

How to represent a plane that does not contain the origin?

I

Start with a plane that does contain the
origin.

We know that points of such a plane form a
vector space V.

I

Translate it by adding a vector c to every vector in V

{c + v : v ∈ V}

(abbreviated c + V)

I Result is plane containing c.



Affine space

Definition: If c is a vector and V is a vector space then

c + V

is called an affine space.

Examples: A plane or a line not necessarily containing the origin.



Affine space and affine combination

Example: The plane containing u1 = [3, 0, 0], u2 = [−3, 1,−1], and u3 = [1,−1, 1].

Want to express this plane as u1 + V
where V is the span of two vectors
(a plane containing the origin)

Let V = Span {a,b} where

a = u2 − u1 and b = u3 − u1

Since u1 + V is a translation of a plane, it is also a plane.

I Span {a,b} contains 0, so u1 + Span {a,b} contains u1.

I Span {a,b} contains u2 − u1 so u1 + Span {a,b} contains u2.

I Span {a,b} contains u3 − u1 so u1 + Span {a,b} contains u3.

Thus the plane u1 + Span {a,b} contains u1,u2,u3.
Only one plane contains those three points, so this is that one.



Affine space and affine combination

Example: The plane containing u1 = [3, 0, 0], u2 = [−3, 1,−1], and u1 = [1,−1, 1]:

u1 + Span {u2 − u1,u3 − u1}

Cleaner way to write it?

u1 + Span {u2 − u1,u3 − u1} = {u1 + α (u2 − u1) + β (u3 − u1) : α, β ∈ R}
= {u1 + αu2 − αu1 + β u3 − β u1 : α, β ∈ R}
= {(1− α− β) u1 + αu2 + β u3 : α, β ∈ R}
= {γ u1 + αu2 + β u3 : γ + α + β = 1}

Definition: A linear combination γ u1 + αu2 + β u3 where γ + α + β = 1 is an affine
combination.



Affine combination

Definition: A linear combination

α1 u1 + α2 u2 + · · ·+ αn un

where
α1 + α2 + · · ·+ αn = 1

is an affine combination.

Definition: The set of all affine combinations of vectors u1,u2, . . . ,un is called the
affine hull of those vectors.

Affine hull of u1,u2, . . . ,un = u1 + Span {u2 − u1, . . . ,un − u1}

This shows that the affine hull of some vectors is an affine space..



Geometric objects not containing the origin: equations
Can express a plane as u1 + V or affine hull of u1,u2, . . . ,un.
More familiar way to express a plane:
The solution set of an equation ax + by + cz = d

In vector terms,
{[x , y , z ] : [a, b, c] · [x , y , z ] = d}

In general, a geometric object (point, line, plane, ...) can be expressed as the solution
set of a system of linear equations.

{x : a1 · x = β1, . . . ,am · x = βm}

Conversely, is the solution set an affine space?

Consider solution set of a contradictory system of equations, e.g. 1 x = 1, 2 x = 1:
I Solution set is empty....
I ...but a vector space V always contains the zero vector,
I ...so an affine space u1 + V always contains at least one vector.

Turns out this the only exception:

Theorem: The solution set of a linear system is either empty or an affine space.



Affine spaces and linear systems

Theorem: The solution set of a linear system is either empty or an affine space.

Each linear system corresponds to a linear system with zero right-hand sides:

a1 · x = β1
...

am · x = βm

=⇒
a1 · x = 0

...

am · x = 0

Definition:
A linear equation a · x = 0 with zero right-hand side is a homogeneous linear equation.
A system of homogeneous linear equations is called a homogeneous linear system.

We already know: The solution set of a homogeneous linear system is a vector space.

Lemma: Let u1 be a solution to a linear system. Then, for any other vector u2,
u2 is also a solution

if and only if
u2 − u1 is a solution to the corresponding homogeneous linear system.



Affine spaces and linear systems

a1 · x = β1
...

am · x = βm

=⇒
a1 · x = 0

...

am · x = 0

Lemma: Let u1 be a solution to a linear system. Then, for any other vector u2,
u2 is also a solution

if and only if
u2 − u1 is a solution to the corresponding homogeneous linear system.

Proof: We assume a1 · u1 = β1, . . . ,am · u1 = βm, so

a1 · u2 = β1
...

am · u2 = βm

iff
a1 · u2 − a1 · u1 = 0

...

am · u2 − am · u1 = 0

iff
a1 · (u2 − u1) = 0

...

am · (u2 − u2) = 0

QED



Lemma: Let u1 be a solution to a linear system. Then, for any other vector u2,
u2 is also a solution

if and only if
u2 − u1 is a solution to the corresponding homogeneous linear system.

We use this lemma to prove the theorem:

Theorem: The solution set of a linear system is either empty or an affine space.

I Let V = set of solutions to corresponding homogeneous linear system.

I If the linear system has no solution, its solution set is empty.

I If it does has a solution u1 then

{solutions to linear system} = {u2 : u2 − u1 ∈ V}
(substitute v = u2 − u1)

= {u1 + v : v ∈ V}

QED



Number of solutions to a linear system

We just proved:

If u1 is a solution to a linear system then

{solutions to linear system} = {u1 + v : v ∈ V}

where V = {solutions to corresponding homogeneous linear system}

Implications:

Long ago we asked: How can we tell if a linear system has only one solution?

Now we know: If a linear system has a solution u1 then that solution is unique if the
only solution to the corresponding homogeneous linear system is 0.

Long ago we asked: How can we find the number of solutions to a linear system over
GF (2)?

Now we know: Number of solutions either is zero or is equal to the number of
solutions to the corresponding homogeneous linear system.



Number of solutions: checksum function

A checksum function maps long files to short sequences.
Idea:

I Web page shows the checksum of each file to be downloaded.
I Download the file and run the checksum function on it.
I If result does not match checksum on web page, you know the file has been

corrupted.
I If random corruption occurs, how likely are you to detect it?

Impractical but instructive checksum function:
I input: an n-vector x over GF (2)
I output: [a1 · x,a2 · x, . . . , a64 · x]

where a1,a2, . . . , a64 are sixty-four n-vectors.



Number of solutions: checksum function
Our checksum function:

I input: an n-vector x over GF (2)

I output: [a1 · x,a2 · x, . . . , a64 · x]

where a1,a2, . . . , a64 are sixty-four n-vectors.

Suppose p is the original file, and it is randomly corrupted during download.

What is the probability that the corruption is undetected?

The checksum of the original file is [β1, . . . , β64] = [a1 · p, . . . ,a64 · p].

Suppose corrupted version is p + e.

Then checksum of corrupted file matches checkum of original if and only if

a1 · (p + e) = β1
...

a64 · (p + e) = β64

iff
a1 · p− a1 · (p + e) = 0

...

a64 · p− a64 · (p + e) = 0

iff
a1 · e = 0

...

a64 · e = 0

iff e is a solution to the homogeneous linear system a1 · x = 0, . . . a64 · x = 0.



Number of solutions: checksum function
Suppose corrupted version is p + e.
Then checksum of corrupted file matches checkum of original if and only if e is a
solution to homogeneous linear system

a1 · x = 0
...

a64 · x = 0

If e is chosen according to the uniform distribution,

Probability (p + e has same checksum as p)

= Probability (e is a solution to homogeneous linear system)

=
number of solutions to homogeneous linear system

number of n-vectors

=
number of solutions to homogeneous linear system

2n

Question:
How to find out number of solutions to a homogeneous linear system over GF (2)?



Geometry of sets of vectors: convex hull

Earlier, we saw: The u-to-v line segment is

{αu + β v : α ∈ R, β ∈ R, α ≥ 0, β ≥ 0, α + β = 1}

Definition: For vectors v1, . . . , vn over R, a linear combination

α1 v1 + · · ·+ αn vn

is a convex combination if the coefficients are all nonnegative
and they sum to 1.

I Convex hull of a single vector is a point.

I Convex hull of two vectors is a line segment.

I Convex hull of three vectors is a triangle

Convex hull of more vectors? Could be higher-dimensional...
but not necessarily.

For example, a convex polygon is the convex hull of its vertices


