The Vector Space

[3] The Vector Space

Linear Combinations

An expression

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

is a *linear combination* of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$.

The scalars $\alpha_1, \ldots, \alpha_n$ are the *coefficients* of the linear combination.

Example: One linear combination of [2,3.5] and [4,10] is

$$-5[2,3.5]+2[4,10]$$

which is equal to $[-5 \cdot 2, -5 \cdot 3.5] + [2 \cdot 4, 2 \cdot 10]$

Another linear combination of the same vectors is

$$0\,[2,3.5] + 0\,[4,10]$$

which is equal to the zero vector [0,0].

Definition: A linear combination is *trivial* if the coefficients are all zero.

Linear Combinations: JunkCo

The JunkCo factory makes five products:

using various resources.

	metal	concrete	plastic	water	electricity
garden gnome	0	1.3	0.2	0.8	0.4
hula hoop	0	0	1.5	0.4	0.3
slinky	0.25	0	0	0.2	0.7
silly putty	0	0	0.3	0.7	0.5
salad shooter	0.15	0	0.5	0.4	0.8

For each product, there is a vector specifying how much of each resource is used per unit of product.

For making one gnome:

 $\mathbf{v}_1 = \{ \text{metal:0, concrete:1.3, plastic:0.2, water:.8, electricity:0.4} \}$

Linear Combinations: JunkCo

For making one gnome:

 $\mathbf{v}_1 = \{ \text{metal:0, concrete:1.3, plastic:0.2, water:0.8, electricity:0.4} \}$ For making one hula hoop:

 $\mathbf{v}_2 = \{ \text{metal:0, concrete:0, plastic:1.5, water:0.4, electricity:0.3} \}$ For making one slinky:

 $\mathbf{v}_3 = \{ \text{metal:} 0.25, \text{ concrete:} 0, \text{ plastic:} 0, \text{ water:} 0.2, \text{ electricity:} 0.7 \}$ For making one silly putty:

 $\mathbf{v}_4 = \{ \text{metal:0, concrete:0, plastic:0.3, water:0.7, electricity:0.5} \}$ For making one salad shooter:

 $\mathbf{v}_5 = \{ \text{metal:1.5, concrete:0, plastic:0.5, water:0.4, electricity:0.8} \}$

Suppose the factory chooses to make α_1 gnomes, α_2 hula hoops, α_3 slinkies, α_4 silly putties, and α_5 salad shooters.

Total resource utilization is $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5$

Linear Combinations: JunkCo: Industrial espionage

Total resource utilization is $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5$

Suppose I am spying on JunkCo.

I find out how much metal, concrete, plastic, water, and electricity are consumed by the factory.

That is, I know the vector \mathbf{b} . Can I use this knowledge to figure out how many gnomes they are making?

Computational Problem: Expressing a given vector as a linear combination of other given vectors

- input: a vector **b** and a list $[\mathbf{v}_1, \dots, \mathbf{v}_n]$ of vectors
- output: a list $[\alpha_1, \ldots, \alpha_n]$ of coefficients such that

$$\mathbf{b} = \alpha_1 \, \mathbf{v}_1 + \dots + \alpha_n \, \mathbf{v}_n$$

or a report that none exists.

Question: Is the solution unique?

Lights Out

Button vectors for 2 × 2 *Lights Out:*

For a given initial state vector
$$\mathbf{s} = \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}$$
,

Which subset of button vectors sum to **s**?

Reformulate in terms of linear combinations.

Write

$$= \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_4$$

What values for $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ make this equation true?

Solution:
$$\alpha_1 = 0, \alpha_2 = 1, \alpha_3 = 0, \alpha_4 = 0$$

Solve an instance of Lights Out \Rightarrow Which set of button vectors sum to s?

$$\Rightarrow$$
 Find subset of $GF(2)$ vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ whose sum equals \mathbf{s}

Express **s** as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$

Lights Out

We can solve the puzzle if we have an algorithm for

Computational Problem: Expressing a given vector as a linear combination of other given vectors

Span

Definition: The set of all linear combinations of some vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ is called the *span* of these vectors

Written Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.

Span: Attacking the authentication scheme

If Eve knows the password satisfies

$$\mathbf{a}_1 \cdot \mathbf{x} = \beta_1$$

 \vdots
 $\mathbf{a}_m \cdot \mathbf{x} = \beta_m$

Then she can calculate right response to any challenge in Span $\{a_1, \ldots, a_m\}$:

Proof: Suppose
$$\mathbf{a} = \alpha_1 \, \mathbf{a}_1 + \dots + \alpha_m \, \mathbf{a}_m$$
. Then
$$\mathbf{a} \cdot \mathbf{x} = (\alpha_1 \, \mathbf{a}_1 + \dots + \alpha_m \, \mathbf{a}_m) \cdot \mathbf{x}$$
$$= \alpha_1 \, \mathbf{a}_1 \cdot \mathbf{x} + \dots + \alpha_m \, \mathbf{a}_m \cdot \mathbf{x} \quad \text{by distributivity}$$
$$= \alpha_1 \, (\mathbf{a}_1 \cdot \mathbf{x}) + \dots + \alpha_m \, (\mathbf{a}_m \cdot \mathbf{x}) \quad \text{by homogeneity}$$
$$= \alpha_1 \, \beta_1 + \dots + \alpha_m \, \beta_m$$

Question: Any others? Answer will come later.

Span: GF(2) vectors

Quiz: How many vectors are in Span $\{[1,1],[0,1]\}$ over the field GF(2)?

Answer: The linear combinations are

$$\begin{aligned} 0 & [1, 1] + 0 & [0, 1] = [0, 0] \\ 0 & [1, 1] + 1 & [0, 1] = [0, 1] \\ 1 & [1, 1] + 0 & [0, 1] = [1, 1] \\ 1 & [1, 1] + 1 & [0, 1] = [1, 0] \end{aligned}$$

Thus there are four vectors in the span.

Span: GF(2) vectors

Question: How many vectors in Span $\{[1,1]\}$ over GF(2)?

Answer: The linear combinations are

$$0[1,1] = [0,0]$$

 $1[1,1] = [1,1]$

Thus there are two vectors in the span.

Question: How many vectors in Span $\{\}$?

Answer: Only one: the zero vector

Question: How many vectors in Span $\{[2,3]\}$ over \mathbb{R} ?

Answer: An infinite number: $\{\alpha [2,3] : \alpha \in \mathbb{R}\}$

Forms the line through the origin and (2,3).

Definition: Let \mathcal{V} be a set of vectors. If $\mathbf{v}_1, \dots, \mathbf{v}_n$ are vectors such that

- $\mathcal{V} = \mathsf{Span}\ \{oldsymbol{v}_1, \dots, oldsymbol{v}_n\}$ then
 - we say $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a generating set for \mathcal{V} ;
 - ightharpoonup we refer to the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ as generators for \mathcal{V} .

Example: $\{[3,0,0],[0,2,0],[0,0,1]\}$ is a generating set for \mathbb{R}^3 .

Proof: Must show two things:

- 1. Every linear combination is a vector in \mathbb{R}^3 .
- 2. Every vector in \mathbb{R}^3 is a linear combination.

First statement is easy: every linear combination of 3-vectors over \mathbb{R} is a 3-vector over \mathbb{R} , and \mathbb{R}^3 contains all 3-vectors over \mathbb{R} .

Proof of second statement: Let [x, y, z] be any vector in \mathbb{R}^3 . I must show it is a linear combination of my three vectors....

$$[x, y, z] = (x/3)[3, 0, 0] + (y/2)[0, 2, 0] + z[0, 0, 1]$$

Claim: Another generating set for \mathbb{R}^3 is $\{[1,0,0],[1,1,0],[1,1,1]\}$

Another way to prove that every vector in \mathbb{R}^3 is in the span:

- ▶ We already know $\mathbb{R}^3 = \text{Span } \{[3,0,0],[0,2,0],[0,0,1]\},$
- ightharpoonup so just show [3,0,0], [0,2,0], and [0,0,1] are in Span $\{[1,0,0],[1,1,0],[1,1,1]\}$

$$\begin{aligned} &[3,0,0] = 3 \, [1,0,0] \\ &[0,2,0] = -2 \, [1,0,0] + 2 \, [1,1,0] \\ &[0,0,1] = -1 \, [1,0,0] - 1 \, [1,1,0] + 1 \, [1,1,1] \end{aligned}$$

Why is that sufficient?

- ▶ We already know any vector in \mathbb{R}^3 can be written as a linear combination of the old vectors.
- ▶ We know each old vector can be written as a linear combination of the new vectors.
- ▶ We can convert a linear combination of linear combination of new vectors into a linear combination of new vectors.

We can convert a linear combination of linear combination of new vectors into a linear combination of new vectors.

• Write [x, y, z] as a linear combination of the old vectors:

$$[x, y, z] = (x/3)[3, 0, 0] + (y/2)[0, 2, 0] + z[0, 0, 1]$$

▶ Replace each old vector with an equivalent linear combination of the new vectors:

$$[x, y, z] = (x/3) \left(3[1, 0, 0]\right) + (y/2) \left(-2[1, 0, 0] + 2[1, 1, 0]\right) + z \left(-1[1, 0, 0] - 1[1, 1, 0] + 1[1, 1, 1]\right)$$

Multiply through, using distributivity and associativity:

$$[x, y, z] = x[1, 0, 0] - y[1, 0, 0] + y[1, 1, 0] - z[1, 0, 0] - z[1, 1, 0] + z[1, 1, 1]$$

Collect like terms, using distributivity:

$$[x, y, z] = (x - y - z)[1, 0, 0] + (y - z)[1, 1, 0] + z[1, 1, 1]$$

Question: How to write each of the old vectors [3,0,0], [0,2,0], and [0,0,1] as a linear combination of new vectors [2,0,1], [1,0,2], [2,2,2], and [0,1,0]?

Answer:

$$[3,0,0] = 2[2,0,1] - 1[1,0,2] + 0[2,2,2]$$
$$[0,2,0] = -\frac{2}{3}[2,0,1] - \frac{2}{3}[1,0,2] + 1[2,2,2]$$
$$[0,0,1] = -\frac{1}{3}[2,0,1] + \frac{2}{3}[1,0,2] + 0[2,2,2]$$

Standard generators

Writing [x, y, z] as a linear combination of the vectors [3, 0, 0], [0, 2, 0], and [0, 0, 1] is simple.

$$[x, y, z] = (x/3)[3, 0, 0] + (y/2)[0, 2, 0] + z[0, 0, 1]$$

Even simpler if instead we use [1,0,0], [0,1,0], and [0,0,1]:

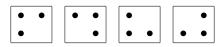
$$[x, y, z] = x[1, 0, 0] + y[0, 1, 0] + z[0, 0, 1]$$

These are called *standard generators* for \mathbb{R}^3 . Written $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$

Standard generators

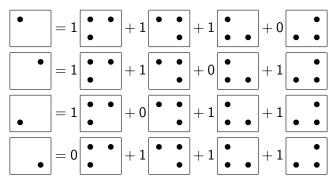
Question: Can 2×2 *Lights Out* be solved from every starting configuration?

Equivalent to asking whether the 2×2 button vectors



are generators for $GF(2)^D$, where $D = \{(0,0), (0,1), (1,0), (1,1)\}.$

Yes! For proof, we show that each standard generator can be written as a linear combination of the button vectors:



Geometry of sets of vectors: span of vectors over ${\mathbb R}$

Span of a single nonzero vector **v**:

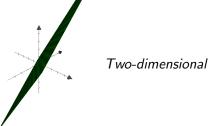
$$\mathsf{Span}\ \{\mathbf{v}\} = \{\alpha\,\mathbf{v}\ :\ \alpha \in \mathbb{R}\}$$

This is the line through the origin and v. One-dimensional

Span of the empty set:just the origin. Zero-dimensional

Span $\{[1,2],[3,4]\}$: all points in the plane. *Two-dimensional*

Span of two 3-vectors? Span $\{[1,0,1.65],[0,1,1]\}$ is a plane in three dimensions:



Geometry of sets of vectors: span of vectors over ${\mathbb R}$

Is the span of k vectors always k-dimensional? No.

- ▶ Span $\{[0,0]\}$ is 0-dimensional.
- ▶ Span $\{[1,3],[2,6]\}$ is 1-dimensional.
- ▶ Span $\{[1,0,0],[0,1,0],[1,1,0]\}$ is 2-dimensional.

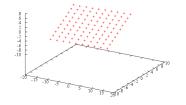
Fundamental Question: How can we predict the dimensionality of the span of some vectors?

Geometry of sets of vectors: span of vectors over $\ensuremath{\mathbb{R}}$

Span of two 3-vectors? Span $\{[1,0,1.65],[0,1,1]\}$ is a plane in three dimensions:

Two-dimensional

Useful for plotting the plane



$$\begin{cases} \alpha \left[1, 0.1.65 \right] + \beta \left[0, 1, 1 \right] : \\ \alpha \in \left\{ -5, -4, \dots, 3, 4 \right\}, \\ \beta \in \left\{ -5, -4, \dots, 3, 4 \right\} \end{cases}$$

Geometry of sets of vectors: span of vectors over ${\mathbb R}$

Span of two 3-vectors? Span $\{[1,0,1.65],[0,1,1]\}$ is a plane in three dimensions:

Two-dimensional

Perhaps a more familiar way to specify a plane:

$$\{(x, y, z) : ax + by + cz = 0\}$$

Using dot-product, we could rewrite as

$$\{[x, y, z] : [a, b, c] \cdot [x, y, z] = 0\}$$

Set of vectors satisfying a linear equation with right-hand side zero.

We can similarly specify a line in three dimensions:

$$\{[x, y, z] : \mathbf{a}_1 \cdot [x, y, z] = 0, \mathbf{a}_2 \cdot [x, y, z] = 0\}$$

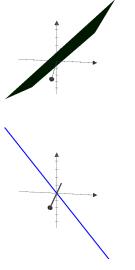
Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors
- ▶ Solution set of some system of linear equations with zero right-hand sides

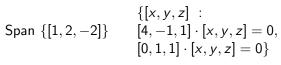
Geometry of sets of vectors: Two representations

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- ► Span of some vectors
- ▶ Solution set of some system of linear equations with zero right-hand sides



```
\mathsf{Span}\ \{[4,-1,1],[0,1,1]\} \qquad \ \{[x,y,z]\ :\ [1,2,-2]\cdot [x,y,z]=0\}
```



Geometry of sets of vectors: Two representations

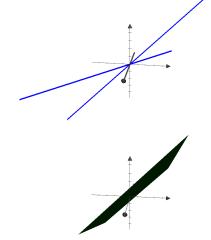
Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors
- ► Solution set of some system of linear equations with zero right-hand sides *Each representation has its uses.*

Suppose you want to find the plane containing two given lines

- First line is Span $\{[4, -1, 1]\}$.
- ▶ Second line is Span $\{[0,1,1]\}$.

► The plane containing these two lines is Span $\{[4, -1, 1], [0, 1, 1]\}$



Geometry of sets of vectors: Two representations

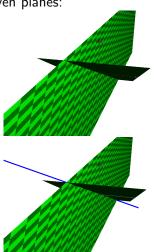
Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- ► Span of some vectors
- ► Solution set of some system of linear equations with zero right-hand sides *Each representation has its uses*.

Suppose you want to find the intersection of two given planes:

- ► First plane is $\{[x, y, z] : [4, -1, 1] \cdot [x, y, z] = 0\}.$
- ► Second plane is $\{[x, y, z] : [0, 1, 1] \cdot [x, y, z] = 0\}.$

► The intersection is $\{[x, y, z] : [4, -1, 1] \cdot [x, y, z] = 0, [0, 1, 1] \cdot [x, y, z] = 0\}$



Two representations: What's common?

Subset of \mathbb{F}^D that satisfies three properties:

Property V1 Subset contains the zero vector **0**

Property V2 If subset contains ${\bf v}$ then it contains $\alpha\,{\bf v}$ for every scalar α

Property V3 If subset contains \mathbf{u} and \mathbf{v} then it contains $\mathbf{u} + \mathbf{v}$

Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ satisfies

► Property V1 because

$$0 \mathbf{v}_1 + \cdots + 0 \mathbf{v}_n$$

Property V2 because

if
$$\mathbf{v} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$$
 then $\alpha \mathbf{v} = \alpha \beta_1 \mathbf{v}_1 + \dots + \alpha \beta_n \mathbf{v}_n$

Property V3 because

$$\begin{aligned} &\text{if } \mathbf{u} = \alpha_1 \, \mathbf{v}_1 + \dots + \alpha_n \, \mathbf{v}_n \\ &\text{and } \mathbf{v} = \beta_1 \, \mathbf{v}_1 + \dots + \beta_n \, \mathbf{v}_n \\ &\text{then } \mathbf{u} + \mathbf{v} = (\alpha_1 + \beta_1) \mathbf{v}_1 + \dots + (\alpha_n + \beta_n) \, \mathbf{v}_n \end{aligned}$$

Abstract vector spaces

In traditional, abstract approach to linear algebra:

- ▶ We don't define vectors as sequences [1,2,3] or even functions {a:1, b:2, c:3}.
- lacktriangle We define a vector space over a field $\mathbb F$ to be any set $\mathcal V$ that is equipped with
 - an addition operation, and
 - ▶ a scalar-multiplication operation

satisfying certain axioms (e.g. commutate and distributive laws) and Properties V1, V2, V3.

Abstract approach has the advantage that it avoids committing to specific structure for vectors.

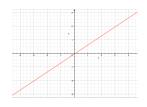
I avoid abstract approach in this class because more concrete notion of vectors is helpful in developing intuition.

Geometric objects that exclude the origin

How to represent a line that does not contain the origin?

Start with a line that does contain the origin.

We know that points of such a line form a vector space $\ensuremath{\mathcal{V}}.$

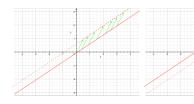


Translate the line by adding a vector \mathbf{c} to every vector in \mathcal{V} :

$$\{c+v\ :\ v\in\mathcal{V}\}$$

(abbreviated
$$\mathbf{c} + \mathcal{V}$$
)

Result is line through ${\boldsymbol c}$ instead of through origin.



Geometric objects that exclude the origin

How to represent a plane that does not contain the origin?

Start with a plane that *does* contain the origin.

We know that points of such a plane form a vector space \mathcal{V} .

Translate it by adding a vector ${\boldsymbol c}$ to every vector in ${\mathcal V}$

$$\{c+v\ :\ v\in\mathcal{V}\}$$

(abbreviated $\mathbf{c} + \mathcal{V}$)

▶ Result is plane containing **c**.

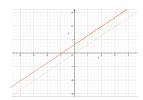
Affine space

Definition: If c is a vector and \mathcal{V} is a vector space then

$$\mathbf{c} + \mathcal{V}$$

is called an affine space.

Examples: A plane or a line not necessarily containing the origin.



Affine space and affine combination

Example: The plane containing $\mathbf{u}_1 = [3, 0, 0]$, $\mathbf{u}_2 = [-3, 1, -1]$, and $\mathbf{u}_3 = [1, -1, 1]$.

Want to express this plane as $\mathbf{u}_1 + \mathcal{V}$ where \mathcal{V} is the span of two vectors (a plane containing the origin)

Let
$$V = \mathsf{Span} \ \{\mathbf{a}, \mathbf{b}\}$$
 where

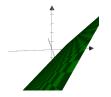
$$\mathbf{a} = \mathbf{u}_2 - \mathbf{u}_1$$
 and $\mathbf{b} = \mathbf{u}_3 - \mathbf{u}_1$

Since $\mathbf{u}_1 + \mathcal{V}$ is a translation of a plane, it is also a plane.

- ▶ Span $\{a,b\}$ contains $\mathbf{0}$, so $\mathbf{u}_1 + \mathsf{Span}\ \{a,b\}$ contains $\mathbf{u}_1.$
- ▶ Span $\{a, b\}$ contains $u_2 u_1$ so $u_1 + \text{Span } \{a, b\}$ contains u_2 .
- ▶ Span $\{a,b\}$ contains $u_3 u_1$ so $u_1 + \text{Span } \{a,b\}$ contains u_3 .

Thus the plane $\mathbf{u}_1 + \mathsf{Span}\ \{\mathbf{a},\mathbf{b}\}\ \mathsf{contains}\ \mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3.$

Only one plane contains those three points, so this is that one.



Affine space and affine combination

Example: The plane containing $\mathbf{u}_1 = [3,0,0]$, $\mathbf{u}_2 = [-3,1,-1]$, and $\mathbf{u}_1 = [1,-1,1]$: $\mathbf{u}_1 + \text{Span } \{\mathbf{u}_2 - \mathbf{u}_1, \mathbf{u}_3 - \mathbf{u}_1\}$

Cleaner way to write it?

$$\begin{array}{lll} \mathbf{u}_{1} + \operatorname{Span} \; \{ \mathbf{u}_{2} - \mathbf{u}_{1}, \mathbf{u}_{3} - \mathbf{u}_{1} \} & = & \{ \mathbf{u}_{1} + \alpha \left(\mathbf{u}_{2} - \mathbf{u}_{1} \right) + \beta \left(\mathbf{u}_{3} - \mathbf{u}_{1} \right) : \alpha, \beta \in \mathbb{R} \} \\ & = & \{ \mathbf{u}_{1} + \alpha \, \mathbf{u}_{2} - \alpha \, \mathbf{u}_{1} + \beta \, \mathbf{u}_{3} - \beta \, \mathbf{u}_{1} \; : \; \alpha, \beta \in \mathbb{R} \} \\ & = & \{ (1 - \alpha - \beta) \, \mathbf{u}_{1} + \alpha \, \mathbf{u}_{2} + \beta \, \mathbf{u}_{3} \; : \; \alpha, \beta \in \mathbb{R} \} \\ & = & \{ \gamma \, \mathbf{u}_{1} + \alpha \, \mathbf{u}_{2} + \beta \, \mathbf{u}_{3} \; : \; \gamma + \alpha + \beta = 1 \} \end{array}$$

Definition: A linear combination $\gamma \mathbf{u}_1 + \alpha \mathbf{u}_2 + \beta \mathbf{u}_3$ where $\gamma + \alpha + \beta = 1$ is an *affine combination*.

Affine combination

Definition: A linear combination

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_n \mathbf{u}_n$$

where

$$\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$$

is an affine combination.

Definition: The set of all affine combinations of vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ is called the *affine hull* of those vectors.

Affine hull of
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n = \mathbf{u}_1 + \operatorname{Span} \{\mathbf{u}_2 - \mathbf{u}_1, \dots, \mathbf{u}_n - \mathbf{u}_1\}$$

This shows that the affine hull of some vectors is an affine space..

Geometric objects not containing the origin: equations

Can express a plane as $\mathbf{u}_1 + \mathcal{V}$ or affine hull of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.

More familiar way to express a plane:

The solution set of an equation ax + by + cz = d

In vector terms,

$$\{[x, y, z] : [a, b, c] \cdot [x, y, z] = d\}$$

In general, a geometric object (point, line, plane, \dots) can be expressed as the solution set of a system of linear equations.

$$\{\mathbf{x} : \mathbf{a}_1 \cdot \mathbf{x} = \beta_1, \dots, \mathbf{a}_m \cdot \mathbf{x} = \beta_m\}$$

Conversely, is the solution set an affine space?

Consider solution set of a contradictory system of equations, e.g. 1x = 1, 2x = 1:

- Solution set is empty....
- \blacktriangleright ...but a vector space $\mathcal V$ always contains the zero vector,
- \blacktriangleright ...so an affine space $\mathbf{u}_1 + \mathcal{V}$ always contains at least one vector.

Turns out this the only exception:

Theorem: The solution set of a linear system is either empty or an affine space.

Affine spaces and linear systems

Theorem: The solution set of a linear system is either empty or an affine space.

Each linear system corresponds to a linear system with zero right-hand sides:

$$\mathbf{a}_{1} \cdot \mathbf{x} = \beta_{1} \\ \vdots \\ \mathbf{a}_{m} \cdot \mathbf{x} = \beta_{m}$$

$$\Rightarrow \qquad \qquad \mathbf{a}_{1} \cdot \mathbf{x} = 0 \\ \vdots \\ \mathbf{a}_{m} \cdot \mathbf{x} = 0$$

Definition:

A linear equation $\mathbf{a} \cdot \mathbf{x} = \mathbf{0}$ with zero right-hand side is a homogeneous linear equation.

A system of homogeneous linear equations is called a *homogeneous* linear system.

We already know: The solution set of a homogeneous linear system is a vector space.

Lemma: Let \mathbf{u}_1 be a solution to a linear system. Then, for any other vector \mathbf{u}_2 , \mathbf{u}_2 is also a solution if and only if $\mathbf{u}_2 - \mathbf{u}_1$ is a solution to the corresponding homogeneous linear system.

Affine spaces and linear systems

$$\mathbf{a}_{1} \cdot \mathbf{x} = \beta_{1} \qquad \qquad \Rightarrow \qquad \mathbf{a}_{1} \cdot \mathbf{x} = 0$$

$$\vdots \qquad \qquad \vdots$$

$$\mathbf{a}_{m} \cdot \mathbf{x} = \beta_{m} \qquad \qquad \mathbf{a}_{m} \cdot \mathbf{x} = 0$$

Lemma: Let \mathbf{u}_1 be a solution to a linear system. Then, for any other vector \mathbf{u}_2 , \mathbf{u}_2 is also a solution if and only if $\mathbf{u}_2 - \mathbf{u}_1$ is a solution to the corresponding homogeneous linear system.

Proof: We assume $\mathbf{a}_1 \cdot \mathbf{u}_1 = \beta_1, \dots, \mathbf{a}_m \cdot \mathbf{u}_1 = \beta_m$, so

$$\mathbf{a}_{1} \cdot \mathbf{u}_{2} = \beta_{1} \qquad \mathbf{a}_{1} \cdot \mathbf{u}_{2} - \mathbf{a}_{1} \cdot \mathbf{u}_{1} = 0 \qquad \mathbf{a}_{1} \cdot (\mathbf{u}_{2} - \mathbf{u}_{1}) = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{a}_{m} \cdot \mathbf{u}_{2} = \beta_{m} \qquad \mathbf{a}_{m} \cdot \mathbf{u}_{2} - \mathbf{a}_{m} \cdot \mathbf{u}_{1} = 0 \qquad \mathbf{a}_{m} \cdot (\mathbf{u}_{2} - \mathbf{u}_{2}) = 0$$

QED

We use this lemma to prove the theorem:

Theorem: The solution set of a linear system is either empty or an affine space.

- Let V = set of solutions to corresponding homogeneous linear system.
- ▶ If the linear system has no solution, its solution set is empty.
- ▶ If it does has a solution **u**₁ then

Number of solutions to a linear system

We just proved:

If \mathbf{u}_1 is a solution to a linear system then

$$\{\text{solutions to linear system}\} = \{ \boldsymbol{u}_1 + \boldsymbol{v} : \boldsymbol{v} \in \mathcal{V} \}$$

where $V = \{$ solutions to corresponding homogeneous linear system $\}$

Implications:

Long ago we asked: How can we tell if a linear system has only one solution?

Now we know: If a linear system has a solution \mathbf{u}_1 then that solution is unique if the only solution to the corresponding homogeneous linear system is $\mathbf{0}$.

Long ago we asked: How can we find the number of solutions to a linear system over GF(2)?

Now we know: Number of solutions either is zero or is equal to the number of solutions to the corresponding *homogeneous* linear system.

Number of solutions: checksum function

MD5 checksums and sizes of the released files:

```
3c63a6d97333f4da35976b6a0755eb67
                                 12732276
                                           Python-3.2.2.tgz
9d763097a13a59ff53428c9e4d098a05
                                 10743647
                                          Python-3.2.2.tar.bz2
                                  8923224 Python-3.2.2.tar.xz
3720ce9460597e49264bbb63b48b946d
f6001a9b2be57ecfbefa865e50698cdf
                                19519332 python-3.2.2-macosx10.3.dmg
                                16226426 python-3.2.2-macosx10.6.dmg
8fe82d14dbb2e96a84fd6fa1985b6f73
cccb03e14146f7ef82907cf12bf5883c
                                18241506 pvthon-3.2.2-pdb.zip
72d11475c986182bcb0e5c91acec45bc
                                19940424
                                           pvthon-3.2.2.amd64-pdb.zip
ddeb3e3fb93ab5a900adb6f04edab21e
                                18542592
                                           python-3.2.2.amd64.msi
                                           python-3.2.2.msi
8afb1b01e8fab738e7b234eb4fe3955c
                                18034688
```

A checksum function maps long files to short sequences.

Idea:

- ▶ Web page shows the checksum of each file to be downloaded.
- Download the file and run the checksum function on it.
- If result does not match checksum on web page, you know the file has been corrupted.
- ▶ If random corruption occurs, how likely are you to detect it?

Impractical but instructive checksum function:

- ▶ input: an n-vector \mathbf{x} over GF(2)
- ightharpoonup output: $[\mathbf{a}_1 \cdot \mathbf{x}, \mathbf{a}_2 \cdot \mathbf{x}, \ldots, \mathbf{a}_{64} \cdot \mathbf{x}]$

where $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_{64}$ are sixty-four *n*-vectors.

Number of solutions: checksum function

Our checksum function:

- input: an n-vector \mathbf{x} over GF(2)
- ightharpoonup output: $[\mathbf{a}_1 \cdot \mathbf{x}, \mathbf{a}_2 \cdot \mathbf{x}, \ldots, \mathbf{a}_{64} \cdot \mathbf{x}]$

where $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_{64}$ are sixty-four *n*-vectors.

Suppose **p** is the original file, and it is randomly corrupted during download.

What is the probability that the corruption is undetected?

The checksum of the original file is $[\beta_1, \dots, \beta_{64}] = [\mathbf{a}_1 \cdot \mathbf{p}, \dots, \mathbf{a}_{64} \cdot \mathbf{p}].$

Suppose corrupted version is $\mathbf{p} + \mathbf{e}$.

Then checksum of corrupted file matches checkum of original if and only if

iff ${\bf e}$ is a solution to the homogeneous linear system ${\bf a}_1\cdot{\bf x}=0,\ \dots\ {\bf a}_{64}\cdot{\bf x}=0.$

Number of solutions: checksum function

Suppose corrupted version is $\mathbf{p} + \mathbf{e}$.

Then checksum of corrupted file matches checkum of original if and only if \mathbf{e} is a solution to homogeneous linear system

$$\mathbf{a}_1 \cdot \mathbf{x} = 0$$

$$\vdots$$

$$\mathbf{a}_{64} \cdot \mathbf{x} = 0$$

If **e** is chosen according to the uniform distribution,

```
Probability (\mathbf{p} + \mathbf{e} has same checksum as \mathbf{p})

= Probability (\mathbf{e} is a solution to homogeneous linear system)

= \frac{\text{number of solutions to homogeneous linear system}}{\text{number of } n\text{-vectors}}
= \frac{\text{number of solutions to homogeneous linear system}}{2^n}
```

Question:

How to find out number of solutions to a homogeneous linear system over GF(2)?

Geometry of sets of vectors: convex hull

Earlier, we saw: The u-to-v line segment is

$$\{\alpha \ \mathbf{u} + \beta \ \mathbf{v} \ : \ \alpha \in \mathbb{R}, \beta \in \mathbb{R}, \alpha \geq 0, \beta \geq 0, \alpha + \beta = 1\}$$

Definition: For vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ over \mathbb{R} , a linear combination

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

is a *convex combination* if the coefficients are all nonnegative and they sum to 1.

- Convex hull of a single vector is a point.
- ▶ Convex hull of two vectors is a line segment.
- Convex hull of three vectors is a triangle

Convex hull of more vectors? Could be higher-dimensional... but not necessarily.

For example, a convex polygon is the convex hull of its vertices

