
The Matrix

[3] The Matrix



What is a matrix? Traditional answer

Neo: What is the Matrix?
Trinity: The answer is out there, Neo, and it’s looking for you, and it will find you if
you want it to. The Matrix, 1999

Traditional notion of a matrix: two-dimensional array.[
1 2 3

10 20 30

]

I Two rows: [1, 2, 3] and [10, 20, 30].

I Three columns: [1, 10], [2, 20], and [3, 30].

I A 2× 3 matrix.

For a matrix A, the i , j element of A

I is the element in row i , column j

I is traditionally written Ai ,j

I but we will use A[i , j ]



List of row-lists, list of column-lists (Quiz)

I One obvious Python representation for a matrix: a list of row-lists:[
1 2 3

10 20 30

]
represented by [[1,2,3],[10,20,30]].

I Another: a list of column-lists:[
1 2 3

10 20 30

]
represented by [[1,10],[2,20],[3,30]].



List of row-lists, list of column-lists

Quiz: Write a nested comprehension whose value is list-of-row-list representation of a
3× 4 matrix all of whose elements are zero: 0 0 0 0

0 0 0 0
0 0 0 0


Hint: first write a comprehension for a typical row, then use that expression in a
comprehension for the list of lists.

Answer:

>>> [[0 for j in range(4)] for i in range(3)]

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]



List of row-lists, list of column-lists (Quiz)

Quiz: Write a nested comprehension whose value is list-of-column-lists representation
of a 3× 4 matrix whose i , j element is i − j : 0 −1 −2 −3

1 0 −1 −2
2 1 0 −1


Hint: First write a comprension for column j , assuming j is bound to an integer. Then
use that expression in a comprehension in which j is the control variable.

Answer:

>>> [[i-j for i in range(3)] for j in range(4)]

[[0, 1, 2], [-1, 0, 1], [-2, -1, 0], [-3, -2, -1]]



The matrix revealed

The Matrix Revisited (excerpt) http://xkcd.com/566/

Definition: For finite sets R and C , an R × C matrix over F is a function from R × C
to F.

@ # ?

a 1 2 3
b 10 20 30

I R = {a, b} and C = {@, #, ?}.
I R is set of row labels

I C is set of column labels

In Python, the function is represented by a dictionary:

{(’a’,’@’):1, (’a’,’#’):2, (’a’, ’?’):3,

(’b’, ’@’):10, (’b’, ’#’):20, (’b’,’?’):30}



Rows, columns, and entries

@ # ?

a 1 2 3
b 10 20 30

Rows and columns are vectors, e.g.

I Row ’a’ is the vector Vec({’@’, ’#’, ’?’}, {’@’:1, ’#’:2, ’?’:3})

I Column ’#’ is the vector Vec({’a’,’b’}, {’a’:2, ’b’:20})



Dict-of-rows/dict-of-columns representations

@ # ?

a 1 2 3
b 10 20 30

One representation: dictionary of rows:

{’a’: Vec({’#’, ’@’, ’?’}, {’@’:1, ’#’:2, ’?’:3}),

’b’: Vec({’#’, ’@’, ’?’}, {’@’:10, ’#’:20, ’?’:30})}

Another representation: dictionary of columns:

{’@’: Vec({’a’,’b’}, {’a’:1, ’b’:10}),

’#’: Vec({’a’,’b’}, {’a’:2, ’b’:20}),

’?’: Vec({’a’,’b’}, {’a’:3, ’b’:30})}



Our Python implementation
@ # ?

a 1 2 3
b 10 20 30

>>> M=Mat(({’a’,’b’}, {’@’, ’#’, ’?’}),

{(’a’,’@’):1, (’a’,’#’):2,(’a’,’?’):3,

(’b’,’@’):10, (’b’,’#’):20, (’b’,’?’):30})

A class with two fields:

I D, a pair (R,C ) of sets.

I f, a dictionary representing a function
that maps pairs (r , c) ∈ R × C to field elements.

class Mat:

def __init__(self, labels, function):

self.D = labels

self.f = function

We will later add lots of
matrix operations to this
class.



Identity matrix

a b c

-------

a | 1 0 0

b | 0 1 0

c | 0 0 1

Definition: D × D identity matrix is the matrix 1D such that
1D [k , k] = 1 for all k ∈ D and zero elsewhere.

Usually we omit the subscript when D is clear from the context.
Often letter I (for “identity”) is used instead of 1

Mat(({’a’,’b’,’c’},{’a’,’b’,’c’}),{(’a’,’a’):1,(’b’,’b’):1,(’c’,’c’):1})

Quiz: Write procedure identity(D) that returns the D × D identity matrix over R
represented as an instance of Mat.

Answer:

>>> def identity(D): return Mat((D,D), {(k,k):1 for k in D})



Converting between representations
Converting an instance of Mat to a column-dictionary representation:

@ # ?

a 1 2 3
b 10 20 30

Mat(({’a’,’b’}, {’@’, ’#’, ’?’}), {(’a’,’@’):1, (’a’,’#’):2,

(’a’,’?’):3, (’b’,’@’):10, (’b’,’#’):20, (’b’,’?’):30})

{’@’: Vec({’a’,’b’}, {’a’:1, ’b’:10}),

’#’: Vec({’a’,’b’}, {’a’:2, ’b’:20}),

’?’: Vec({’a’,’b’}, {’a’:3, ’b’:30})}

Quiz: Write the procedure mat2coldict(A) that, given an instance of Mat, returns
the column-dictionary representation of the same matrix.

Answer:

def mat2coldict(A):

return {c:Vec(A.D[0],{r:A[r,c] for r in A.D[0]}) for c in A.D[1]}



Module matutil

We provide a module, matutil, that defines several conversion routines:

I mat2coldict(A): from a Mat to a dictionary of columns
represented as Vecs)

I mat2rowdict(A): from a Mat to a dictionary of rows
represented as Vecs

I coldict2mat(coldict) from a dictionary of columns (or a list of columns) to a
Mat

I rowdict2mat(rowdict): from a dictionary of rows (or a list of rows) to a Mat

I listlist2mat(L): from a list of list of field elements to a Mat

the inner lists turn into rows

and also:

I identity(D): produce a Mat representing the D × D identity matrix



The Mat class

We gave the definition of a
rudimentary matrix class:

class Mat:

def __init__(self,

labels, function):

self.D = labels

self.f = function

The more elaborate class
definition allows for more concise
vector code, e.g.

>>> M[’a’, ’B’] = 1.0

>>> b = M*v

>>> B = M*A

>>> print(B)

More elaborate version of this class definition allows
operator overloading for element access,
matrix-vector multiplication, etc.

operation syntax

Matrix addition and subtraction A+B and A-B

Matrix negative -A

Scalar-matrix multiplication alpha*A

Matrix equality test A == B

Matrix transpose A.transpose()

Getting a matrix entry A[r,c]

Setting a matrix entry A[r,c] = alpha

Matrix-vector multiplication A*v

Vector-matrix multiplication v*A

Matrix-matrix multiplication A*B

You will code this class starting from a template we provide.



Using Mat
You will write the bodies of named procedures such as setitem(M, k, val) and
matrix vector mul(M, v) and transpose(M).

However, in actually using Mats in other code, you must use operators and methods
instead of named procedures, e.g.

>>> M[’a’, ’b’] = 1.0

>>> v = M*u

>>> b_parallel =

Q*Q.transpose()*b

instead of

>>> setitem(M, (’a’,’B’), 1.0)

>>> v = matrix_vector_mul(M, u)

>>> b_parallel =

matrix_vector_mul(matrix_matrix_mul(Q,

transpose(Q)), b)

In fact, in code outside the mat module that uses Mat, you will import just Mat from
the mat module:

from mat import Mat

so the named procedures will not be imported into the namespace. Those named
procedures in the mat module are intended to be used only inside the mat module itself.

In short: Use the operators [ ], +, *, - and the method .transpose() when
working with Mats



Assertions in Mat

For each procedure you write, we will provide the stub of the procedure, e.g. for
matrix vector mul(M, v), we provide the stub

def matrix_vector_mul(M, v):

"Returns the product of matrix M and vector v"

assert M.D[1] == v.D

pass

You are supposed to replace the pass statement with code for the procedure.

The first line in the body is a documentation string.

The second line is an assertion. It asserts that the second element of the pair M.D, the
set of column-labels of M, must be equal to the domain of the vector v. If the
procedure is called with arguments that violate this, Python reports an error.

The assertion is there to remind us of a rule about matrix-vector multiplication.

Please keep the assertions in your mat code while using it for this course.



Testing Mat with doctests

Because you will use Mat a lot, making sure your implementation is correct will save
you from lots of pain later.

Akin to Vec, we have provided doctests

def getitem(M, k):

"""

Returns value of entry k in M

>>> M = Mat(({1,3,5}, {’a’}),

{(1,’a’):4, (5,’a’): 2})

>>> M[1,’a’]

4

"""

pass

You can test each of these examples while
running Python in interactive mode by
importing Mat from the module mat and
then copying the example from the
docstring and pasting:

>>> from vec import Mat

>>> M = Mat(({1,3,5}, {’a’}), ...

>>> M[1,’a’]

4

You can also run all the tests at once from
the console (outside the Python
interpreter) using the following command:

python3 -m doctest mat.py

This will run the doctests in mat.py, and
will print messages about any discrepancies
that arise. If your code passes the tests,
nothing will be printed.



Column space and row space

One simple role for a matrix: packing together a bunch of columns or rows

Two vector spaces associated with a matrix M:
Definition:

I column space of M = Span {columns of M}
Written Col M

I row space of M = Span {rows of M}
Written Row M

Examples:

I Column space of

[
1 2 3

10 20 30

]
is Span {[1, 10], [2, 20], [3, 30]}.

In this case, the span is equal to Span {[1, 10]} since [2, 20] and [3, 30] are scalar
multiples of [1, 10].

I The row space of the same matrix is Span {[1, 2, 3], [10, 20, 30]}.
In this case, the span is equal to Span {[1, 2, 3]} since [10, 20, 30] is a scalar
multiple of [1, 2, 3].



Transpose

Transpose swaps rows and columns.

@ # ?

---------

a | 2 1 3

b | 20 10 30

a b

------

@ | 2 20

# | 1 10

? | 3 30



Transpose (and Quiz)

Quiz: Write transpose(M)

Answer:

def transpose(M):

return Mat((M.D[1], M.D[0]), {(q,p):v for (p,q),v in M.f.items()})



Matrices as vectors

Soon we study true matrix operations. But first....

A matrix can be interpreted as a vector:

I an R × S matrix is a function from R × S to F,

I so it can be interpreted as an R × S-vector:
I scalar-vector multiplication
I vector addition

I Our full implementation of Mat class will include these operations.



Matrix-vector and vector-matrix multiplication

Two ways to multiply a matrix by a vector:

I matrix-vector multiplication

I vector-matrix multiplication

For each of these, two equivalent definitions:

I in terms of linear combinations

I in terms of dot-products



Matrix-vector multiplication in terms of linear combinations
Linear-Combinations Definition of matrix-vector multiplication: Let M be an
R × C matrix.

I If v is a C -vector then

M ∗ v =
∑
c∈C

v[c] (column c of M)

[
1 2 3

10 20 30

]
∗ [7, 0, 4] = 7 [1, 10] + 0 [2, 20] + 4 [3, 30]

I If v is not a C -vector then

M ∗ v = ERROR!

[
1 2 3

10 20 30

]
∗ [7, 0] = ERROR!



Matrix-vector multiplication in terms of linear combinations

@ # ?

a 2 1 3
b 20 10 30

∗ @ # ?

0.5 5 -1
=

a 3
b 30

@ # ?

a 2 1 3
b 20 10 30

∗ % # ?

0.5 5 -1
= ERROR!



Matrix-vector multiplication in terms of linear combinations: Lights Out

A solution to a Lights Out configuration is a linear combination of “button vectors.”

For example, the linear combination

•
• = 1

• •
• + 0

• •
• + 0

•
• • + 1

•
• •

can be written as

•
• =

 • •
•

• •
•

•
• •

•
• •

 ∗ [1, 0, 0, 1]



Solving a matrix-vector equation: Lights Out

Solving an instance of Lights Out ⇒ Solving a matrix-vector equation

•
• =

 • •
•

• •
•

•
• •

•
• •

 ∗ [α1, α2, α3, α4]



Solving a matrix-vector equation

Fundamental Computational Problem:Solving a matrix-vector equation

I input: an R × C matrix A and an R-vector b
I output: the C -vector x such that A ∗ x = b



Solving a matrix-vector equation: 2× 2 special case

Simple formula to solve [
a c
b d

]
∗ [x , y ] = [p, q]

if ad 6= bc:

x = dp−cq
ad−bc and y = aq−bp

ad−bc

For example, to solve [
1 2
3 4

]
∗ [x , y ] = [−1, 1]

we set

x =
4 · −1− 2 · 1
1 · 4− 2 · 3

=
−6

−2
= 3

and

y =
1 · 1− 3 · −1

1 · 4− 2 · 3
=

4

−2
= −2

Later we study algorithms for more general cases.



The solver module

We provide a module solver that defines a procedure solve(A, b) that tries to find
a solution to the matrix-vector equation Ax = b
Currently solve(A, b) is a black box

but we will learn how to code it in the coming weeks.

Let’s use it to solve this Lights Out instance...



Vector-matrix multiplication in terms of linear combinations

Vector-matrix multiplication is different from matrix-vector multiplication:

Let M be an R × C matrix.
Linear-Combinations Definition of matrix-vector multiplication: If v is a C -vector
then

M ∗ v =
∑
c∈C

v[c] (column c of M)

Linear-Combinations Definition of vector-matrix multiplication: If w is an
R-vector then

w ∗M =
∑
r∈R

w[r ] (row r of M)

[3, 4] ∗
[

1 2 3
10 20 30

]
= 3 [1, 2, 3] + 4 [10, 20, 30]



Vector-matrix multiplication in terms of linear combinations: JunkCo

Let M =

metal concrete plastic water electricity

garden gnome 0 1.3 .2 .8 .4
hula hoop 0 0 1.5 .4 .3

slinky .25 0 0 .2 .7
silly putty 0 0 .3 .7 .5

salad shooter .15 0 .5 .4 .8

total resources used = [αgnome, αhoop, αslinky, αputty, αshooter] ∗ M
Suppose we know total resources used and we know M.

To find the values of αgnome, αhoop, αslinky, αputty, αshooter,

solve a vector-matrix equation b = x ∗M
where b is vector of total resources used.



Solving a matrix-vector equation

Fundamental Computational Problem:Solving a matrix-vector equation

I input: an R × C matrix A and an R-vector b
I output: the C -vector x such that A ∗ x = b

If we had an algorithm for solving a matrix-vector equation,
could also use it to solve a vector-matrix equation,
using transpose.



The solver module, and floating-point arithmetic
For arithmetic over R, Python uses floats, so round-off errors occur:

>>> 10.0**16 + 1 == 10.0**16

True

Consequently algorithms such as that used in solve(A, b) do not find exactly correct
solutions.

To see if solution u obtained is a reasonable solution to A ∗ x = b, see if the vector
b− A ∗ u has entries that are close to zero:

>>> A = listlist2mat([[1,3],[5,7]])

>>> u = solve(A, b)

>>> b - A*u

Vec({0, 1},{0: -4.440892098500626e-16, 1: -8.881784197001252e-16})

The vector b− A ∗ u is called the residual. Easy way to test if entries of the residual
are close to zero: compute the dot-product of the residual with itself:

>>> res = b - A*u

>>> res * res

9.860761315262648e-31



Checking the output from solve(A, b)
For some matrix-vector equations A ∗ x = b, there is no solution.
In this case, the vector returned by solve(A, b) gives rise to a largeish residual:

>>> A = listlist2mat([[1,2],[4,5],[-6,1]])

>>> b = list2vec([1,1,1])

>>> u = solve(A, b)

>>> res = b - A*u

>>> res * res

0.24287856071964012

Later in the course we will see that the residual is, in a sense, as small as possible.

Some matrix-vector equations are ill-conditioned, which can prevent an algorithm using
floats from getting even approximate solutions, even when solutions exists:

>>> A = listlist2mat([[1e20,1],[1,0]])

>>> b = list2vec([1,1])

>>> u = solve(A, b)

>>> b - A*u

Vec({0, 1},{0: 0.0, 1: 1.0})

We will not study conditioning in this course.



Matrix-vector multiplication in terms of dot-products

Let M be an R × C matrix.
Dot-Product Definition of matrix-vector multiplication: M ∗ u is the R-vector v
such that v[r ] is the dot-product of row r of M with u.

 1 2
3 4

10 0

 ∗ [3,−1] = [ [1, 2] · [3,−1], [3, 4] · [3,−1], [10, 0] · [3,−1] ]

= [1, 5, 30]



Applications of dot-product definition of matrix-vector multiplication:
Downsampling

I Each pixel of the low-res image
corresponds to a little grid of pixels
of the high-res image.

I The intensity value of a low-res pixel
is the average of the intensity values
of the corresponding high-res pixels.



Applications of dot-product definition of matrix-vector multiplication:
Downsampling

I Each pixel of the low-res image
corresponds to a little grid of pixels
of the high-res image.

I The intensity value of a low-res pixel
is the average of the intensity values
of the corresponding high-res pixels.

I Averaging can be expressed as dot-product.

I We want to compute a dot-product for each low-res pixel.

I Can be expressed as matrix-vector multiplication.



Applications of dot-product definition of matrix-vector multiplication:
blurring

I To blur a face, replace each pixel in face with
average of pixel intensities in its neighborhood.

I Average can be expressed as dot-product.

I By dot-product definition of matrix-vector
multiplication, can express this image
transformation as a matrix-vector product.

I Gaussian blur: a kind of weighted average



Applications of dot-product definition of matrix-vector multiplication:
Audio search



Applications of dot-product definition of matrix-vector multiplication:
Audio search

Lots of dot-products!
5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9



Applications of dot-product definition of matrix-vector multiplication:
Audio search

Lots of dot-products!

I Represent as a matrix-vector product.

I One row per dot-product.

To search for [0, 1,−1] in [0, 0,−1, 2, 3,−1, 0, 1,−1,−1]:



0 0 −1
0 −1 2
−1 2 3
2 3 −1
3 −1 0
−1 0 1
0 1 −1
1 −1 −1


∗ [0, 1,−1]



Formulating a system of linear equations as a matrix-vector equation
Recall the sensor node problem:

I In each of several test periods, measure total power consumed:

β1, β2, β3, β4, β5

I For each test period, have a vector specifying how long each hardware component
was operating during that period:

duration1,duration2,duration3,duration4,duration5

I Use measurements to calculate energy consumed per second by each hardware
component.

Formulate as system of linear equations

duration1 · x = β1

duration2 · x = β2

duration3 · x = β3

duration4 · x = β4

duration5 · x = β5



Formulating a system of linear equations as a matrix-vector equation

Linear equations

a1 · x = β1

a2 · x = β2
...

am · x = βm

Each equation specifies the value of a dot-product.

Rewrite as 
a1

a2
...

am

 ∗ x = [β1, β2, . . . , βm]



Matrix-vector equation for sensor node

Define D = {’radio’, ’sensor’, ’memory’, ’CPU’}.
Goal: Compute a D-vector u that, for each hardware component, gives the current
drawn by that component.
Four test periods:

I total milliampere-seconds in these test periods b = [140, 170, 60, 170]
I for each test period, vector specifying how long each hardware device was

operating:
I duration1 = Vec(D, ’radio’:.1, ’CPU’:.3)
I duration2 = Vec(D, ’sensor’:.2, ’CPU’:.4)
I duration3 = Vec(D, ’memory’:.3, ’CPU’:.1)
I duration4 = Vec(D, ’memory’:.5, ’CPU’:.4)

To get u, solve A ∗ x = b where A =


duration1

duration2

duration3

duration4





Triangular matrix

Recall: We considered triangular linear
systems, e.g.

[ 1, 0.5, −2, 4 ] · x = −8
[ 0, 3, 3, 2 ] · x = 3
[ 0, 0, 1, 5 ] · x = −4
[ 0, 0, 0, 2 ] · x = 6
[ 0, 0, 0, 2 ] · x = 6

We can rewrite this linear system as a
matrix-vector equation:


1 0.5 −2 4
0 3 3 2
0 0 1 5
0 0 0 2

 ∗ x = [−8, 3,−4, 6]

The matrix is a triangular matrix.

Definition: An n × n upper triangular matrix A is a matrix with the property that
Aij = 0 for j > i . Note that the entries forming the triangle can be be zero or nonzero.

We can use backward substitution to solve such a matrix-vector equation.

Triangular matrices will play an important role later.



Computing sparse matrix-vector product

To compute matrix-vector or vector-matrix product,

I could use dot-product or linear-combinations definition.
(You’ll do that in homework.)

I However, using those definitions, it’s not easy to exploit sparsity in the matrix.

“Ordinary” Definition of Matrix-Vector Multiplication: If M is an R × C matrix
and u is a C -vector then M ∗ u is the R-vector v such that, for each r ∈ R,

v [r ] =
∑
c∈C

M[r , c]u[c]



Computing sparse matrix-vector product
“Ordinary” Definition of Matrix-Vector Multiplication: If M is an R × C matrix
and u is a C -vector then M ∗ u is the R-vector v such that, for each r ∈ R,

v [r ] =
∑
c∈C

M[r , c]u[c]

Obvious method:

1 for i in R:
2 v [i ] :=

∑
j∈C M[i , j ]u[j ]

But this doesn’t exploit sparsity!

Idea:

I Initialize output vector v to zero vector.

I Iterate over nonzero entries of M, adding terms according to ordinary definition.

1 initialize v to zero vector
2 for each pair (i , j) in sparse representation,
3 v [i ] = v [i ] + M[i , j ]u[j ]



Matrix-matrix multiplication

If

I A is a R × S matrix, and

I B is a S × T matrix

then it is legal to multiply A times B.

I In Mathese, written AB

I In our Mat class, written A*B

AB is different from BA.

In fact, one product might be legal while the other is illegal.



Matrix-matrix multiplication

We’ll see two equivalent definitions:

I one in terms of vector-matrix multiplication,

I one in terms of matrix-vector multiplication.



Matrix-matrix multiplication: vector-matrix definition

Vector-matrix definition of matrix-matrix multiplication:
For each row-label r of A,

row r of AB = (row r of A)︸ ︷︷ ︸
vector

∗B

 1 0 0

2 1 0

0 0 1


 B

 =

 [1, 0, 0] ∗ B

[2, 1, 0] ∗ B

[0, 0, 1] ∗ B


How to interpret [1, 0, 0] ∗ B?

I Linear combinations definition of vector-matrix multiplication?

I Dot-product definition of vector-matrix multiplication?

Each is correct.



Matrix-matrix multiplication: vector-matrix interpretation

 1 0 0

2 1 0

0 0 1


 B

 =

 [1, 0, 0] ∗ B

[2, 1, 0] ∗ B

[0, 0, 1] ∗ B


How to interpret [1, 0, 0] ∗ B? Linear combinations definition:

[1, 0, 0] ∗

 b1

b2

b3

 = b1 [0, 0, 1] ∗

 b1

b2

b3

 = b3

[2, 1, 0] ∗

 b1

b2

b3

 = 2 b1 + b2

Conclusion:  1 0 0

2 1 0

0 0 1

 b1

b2

b3

 =

 b1

2 b1 + b2

b3





Matrix-matrix multiplication: vector-matrix interpretation

Conclusion:  1 0 0

2 1 0

0 0 1

 b1

b2

b3

 =

 b1

2 b1 + b2

b3



We call

 1 0 0

2 1 0

0 0 1

 an elementary row-addition matrix.



Matrix-matrix multiplication: matrix-vector definition

Matrix-vector definition of matrix-matrix multiplication:
For each column-label s of B,

column s of AB = A ∗ (column s of B)

Let A =

[
1 2
−1 1

]
and B = matrix with columns [4, 3], [2, 1], and [0,−1]

B =

[
4 2 0
3 1 −1

]
AB is the matrix with column i = A ∗ ( column i of B)

A ∗ [4, 3] = [10,−1] A ∗ [2, 1] = [4,−1] A ∗ [0,−1] = [−2,−1]

AB =

[
10 4 −2
−1 −1 −1

]



Matrix-matrix multiplication: Dot-product definition

Combine

I matrix-vector definition of matrix-matrix multiplication, and

I dot-product definition of matrix-vector multiplication

to get...

Dot-product definition of matrix-matrix multiplication:
Entry rc of AB is the dot-product of row r of A with column c of B.

Example:

 1 0 2

3 1 0

2 0 1

 2 1
5 0
1 3

 =

 [1, 0, 2] · [2, 5, 1] [1, 0, 2] · [1, 0, 3]
[3, 1, 0] · [2, 5, 1] [3, 1, 0] · [1, 0, 3]
[2, 0, 1] · [2, 5, 1] [2, 0, 1] · [1, 0, 3]

 =

 4 7
11 3
5 5





Matrix-matrix multiplication: transpose

(AB)T = BTAT

Example: [
1 2
3 4

] [
5 0
1 2

]
=

[
7 4

19 8

]
[

5 0
1 2

]T [
1 2
3 4

]T
=

[
5 1
0 2

] [
1 3
2 4

]
=

[
7 19
4 8

]
You might think “(AB)T = ATBT” but this is false.
In fact, doesn’t even make sense!

I For AB to be legal, A’s column labels = B’s row labels.

I For ATBT to be legal, A’s row labels = B’s column labels.

Example:

 1 2
3 4
5 6

[ 6 7
8 9

]
is legal but

[
1 3 5
2 4 6

] [
6 8
7 9

]
is not.



Matrix-matrix multiplication: Column vectors
Multiplying a matrix A by a one-column matrix B A

 b


By matrix-vector definition of matrix-matrix multiplication, result is matrix with one
column: A ∗ b

This shows that matrix-vector multiplication is subsumed by matrix-matrix
multiplication.

Convention: Interpret a vector b as a one-column matrix (“column vector”)

I Write vector [1, 2, 3] as

 1
2
3


I Write A ∗ [1, 2, 3] as

 A

 1
2
3

 or A b



Matrix-matrix multiplication: Row vectors

If we interpret vectors as one-column matrices.... what about vector-matrix
multiplication?

Use transpose to turn a column vector into a row vector: Suppose b = [1, 2, 3].

[1, 2, 3] ∗ A =
[

1 2 3
]  A

 = bT A



Algebraic properties of matrix-vector multiplication

Proposition: Let A be an R × C matrix.

I For any C -vector v and any scalar α,

A ∗ (α v) = α (A ∗ v)

I For any C -vectors u and v,

A ∗ (u + v) = A ∗ u + A ∗ v



Algebraic properties of matrix-vector multiplication

To prove
A ∗ (α v) = α (A ∗ v)

we need to show corresponding entries are equal:

Need to show
entry i of A ∗ (α v) = entry i of α (A ∗ v)

Proof: Write A =

 a1
...

am

.

By dot-product def. of matrix-vector mult,

entry i of A ∗ (α v) = ai · α v

= α (ai · v)

by homogeneity of dot-product

By definition of scalar-vector multiply,

entry i of α (A ∗ v) = α (entry i of A ∗ v)

= α (ai · v)

by dot-product definition of
matrix-vector multiply

QED



Algebraic properties of matrix-vector multiplication
To prove

A ∗ (u + v) = A ∗ u + A ∗ v

we need to show corresponding entries are equal:

Need to show

entry i of A ∗ (u + v) = entry i of A ∗ u + A ∗ v

Proof: Write A =

 a1
...

am

.

By dot-product def. of matrix-vector
mult,

entry i of A ∗ (u + v) = ai · (u + v)

= ai · u + ai · v

by distributive property of dot-product

By dot-product def. of matrix-vector mult,

entry i of A ∗ u = ai · u
entry i of A ∗ v = ai · v

so

entry i of A ∗ u + A ∗ v = ai · u + ai · v
QED



Null space of a matrix

Definition: Null space of a matrix A is {u : A ∗ u = 0}. Written Null A

Example: [
1 2 4
2 3 9

]
∗ [0, 0, 0] = [0, 0]

so the null space includes [0, 0, 0][
1 2 4
2 3 9

]
∗ [6,−1,−1] = [0, 0]

so the null space includes [6,−1,−1]
By dot-product definition, a1

...

am

 ∗ u = [a1 · u, . . . , am · u]

Thus u is in null space of

 a1
...

am

 if and only if u is a solution to the

homogeneous linear system

a1 · x = 0
...

am · x = 0



Null space of a matrix
We just saw:

Null space of a matrix

 a1
...

am



equals the solution set of the homogeneous linear system

a1 · x = 0
...

am · x = 0

This shows: Null space of a matrix is a vector space.

Can also show it directly, using algebraic properties of matrix-vector multiplication:

Property V1: Since A ∗ 0 = 0,the null space of A contains 0

Property V2: if u ∈ Null A then A ∗ (αu) = α (A ∗ u) = α0 = 0 so αu ∈ Null A

Property V3: If u ∈ Null A and v ∈ Null A
then A ∗ (u + v) = A ∗ u + A ∗ v = 0 + 0 = 0
so u + v ∈ Null A



Null space of a matrix

Definition: Null space of a matrix A is {u : A ∗ u = 0}. Written Null A

Proposition: Null space of a matrix is a vector space.

Example:

Null

[
1 2 4
2 3 9

]
= Span {[6,−1,−1]}



Solution space of a matrix-vector equation

Earlier, we saw:

If u1 is a solution to the linear system

a1 · x = β1
...

am · x = βm

then the solution set is u1 + V,

where V = solution set of

a1 · x = 0
...

am · x = 0

Restated: If u1 is a solution to A ∗ x = b then solution set is u1 + V
where V = Null A



Solution space of a matrix-vector equation

Proposition: If u1 is a solution to A ∗ x = b then solution set is u1 + V
where V = Null A

Example:

I Null space of

[
1 2 4
2 3 9

]
is Span {[6,−1,−1]}.

I One solution to

[
1 2 4
2 3 9

]
∗ x = [1, 1] is x = [−1, 1, 0].

I Therefore solution set is [−1, 1, 0] + Span {[6,−1,−1]}

I For example, solutions include
I [−1, 1, 0] + [0, 0, 0]
I [−1, 1, 0] + [6,−1,−1]
I [−1, 1, 0] + 2 [6,−1,−1]

...



Solution space of a matrix-vector equation

Proposition: If u1 is a solution to A ∗ x = b then solution set is u1 + V
where V = Null A

I If V is a trivial vector space then u1 is the only solution.

I If V is not trivial then u1 is not the only solution.

Corollary: A ∗ x = b has at most one solution iff Null A is a trivial vector space.

Question: How can we tell if the null space of a matrix is trivial?

Answer comes later...



Error-correcting codes

I Originally inspired by errors in reading programs on
punched cards

I Now used in WiFi, cell phones, communication with
satellites and spacecraft, digital television, RAM, disk
drives, flash memory, CDs, and DVDs

Richard
Hamming

Hamming code is a linear binary block code:

I linear because it is based on linear algebra,

I binary because the input and output are assumed to be in binary, and

I block because the code involves a fixed-length sequence of bits.



Error-correcting codes: Block codes

encode0101 1101101 1111101

transmission over 
noisy channel

decode 0101

c c~

To protect an 4-bit block:

I Sender encodes 4-bit block as a 7-bit block c
I Sender transmits c
I c passes through noisy channel—errors might be introduced.

I Receiver receives 7-bit block c̃
I Receiver tries to figure out original 4-bit block

The 7-bit encodings are called codewords.

C = set of permitted codewords



Error-correcting codes: Linear binary block codes

encode0101 1101101 1111101

transmission over 
noisy channel

decode 0101

c c~

Hamming’s first code is a linear code:

I Represent 4-bit and 7-bit blocks as 4-vectors and 7-vectors over GF (2).

I 7-bit block received is c̃ = c + e

I e has 1’s in positions where noisy channel flipped a bit
(e is the error vector)

I Key idea: set C of codewords is the null space of a matrix H.

This makes Receiver’s job easier:

I Receiver has c̃, needs to figure out e.

I Receiver multiplies c̃ by H.

H ∗ c̃ = H ∗ (c + e) = H ∗ c + H ∗ e = 0 + H ∗ e = H ∗ e

I Receiver must calculate e from the value of H ∗ e. How?



Hamming Code

In the Hamming code, the codewords are 7-vectors, and

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Notice anything special about the columns and their order?

I Suppose that the noisy channel introduces at most one bit error.

I Then e has only one 1.

I Can you determine the position of the bit error from the matrix-vector product
H ∗ e?

Example: Suppose e has a 1 in its third position, e = [0, 0, 1, 0, 0, 0, 0].

Then H ∗ e is the third column of H, which is [0, 1, 1].

As long as e has at most one bit error, the position of the bit can be determined from
H ∗e. This shows that the Hamming code allows the recipient to correct one-bit errors.



Hamming code

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Quiz: Show that the Hamming code does not allow the recipient to correct two-bit
errors: give two different error vectors, e1 and e2, each with at most two 1’s, such that
H ∗ e1 = H ∗ e2.
Answer: There are many acceptable answers. For example, e1 = [1, 1, 0, 0, 0, 0, 0] and
e2 = [0, 0, 1, 0, 0, 0, 0] or e1 = [0, 0, 1, 0, 0, 1, 0] and e2 = [0, 1, 0, 0, 0, 0, 1].



Matrices and their functions

Now we study the relationship between a matrix M and the function x 7→ M ∗ x

I Easy: Going from a matrix M to the function x 7→ M ∗ x
I A little harder: Going from the function x 7→ M ∗ x to the matrix M.

In studying this relationship, we come up with the fundamental notion of a linear
function.



From matrix to function

Starting with a M, define the function f (x) = M ∗ x .

Domain and co-domain?
If M is an R × C matrix over F then

I domain of f is FC

I co-domain of f is FR

Example: Let M be the matrix

# @ ?

a 1 2 3
b 10 20 30

and define f (x) = M ∗ x

I Domain of f is R{#,@,?}.
I Co-domain of f is R{a,b}.

f maps
# @ ?

2 2 -2
to

a b

0 0

Example: Define f (x) =

[
1 2 3

10 20 30

]
∗ x.

I Domain of f is R3

I Co-domain of f is R2
f maps [2, 2,−2] to [0, 0]



From function to matrix

We have a function f : FA −→ FB

We want to compute matrix M such that f (x) = M ∗ x.

I Since the domain is FA, we know that the input x is an A-vector.

I For the product M ∗ x to be legal, we need the column-label set of M to be A.

I Since the co-domain is FB , we know that the output f (x) = M ∗ x is B-vector.

I To achieve that, we need row-label set of M to be B.

Now we know that M must be a B × A matrix....

... but what about its entries?



From function to matrix

I We have a function f : Fn −→ Fm

I We think there is an m × n matrix M such that f (x) = M ∗ x

How to go from the function f to the entries of M?

I Write mystery matrix in terms of its columns: M =

 v1 · · · vn


I Use standard generators e1 = [1, 0, . . . , 0, 0], . . . ,en = [0, . . . , 0, 1]

with linear-combinations definition of matrix-vector multiplication:

f (e1) =

 v1 · · · vn

 ∗ [1, 0, . . . , 0, 0] = v1

...

f (en) =

 v1 · · · vn

 ∗ [0, 0, . . . , 0, 1] = vn



From function to matrix: horizontal scaling

Define s([x , y ]) = stretching by two in horizontal direction
Assume s([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know s([1, 0]) = [2, 0] because we are stretching by two in horizontal direction

I We know s([0, 1]) = [0, 1] because no change in vertical direction.

Therefore M =

[
2 0
0 1

]



From function to matrix: horizontal scaling

(1,0) (2,0)

Define s([x , y ]) = stretching by two in horizontal direction
Assume s([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know s([1, 0]) = [2, 0] because we are stretching by two in horizontal direction

I We know s([0, 1]) = [0, 1] because no change in vertical direction.

Therefore M =

[
2 0
0 1

]



From function to matrix: horizontal scaling

(0,1) (0,1)

Define s([x , y ]) = stretching by two in horizontal direction
Assume s([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know s([1, 0]) = [2, 0] because we are stretching by two in horizontal direction

I We know s([0, 1]) = [0, 1] because no change in vertical direction.

Therefore M =

[
2 0
0 1

]



From function to matrix: rotation by 90 degrees

Define r([x , y ]) = rotation by 90 degrees
Assume r([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know rotating [1, 0] should give [0, 1] so r([1, 0]) = [0, 1]

I We know rotating [0, 1] should give [−1, 0] so r([0, 1]) = [−1, 0]

Therefore M =

[
0 −1
1 0

]



From function to matrix: rotation by 90 degrees

Define r([x , y ]) = rotation by 90 degrees
Assume r([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know rotating [1, 0] should give [0, 1] so r([1, 0]) = [0, 1]

I We know rotating [0, 1] should give [−1, 0] so r([0, 1]) = [−1, 0]

Therefore M =

[
0 −1
1 0

]

rϴ([1,0]) = [0,1] 

(1,0)

(0,1)

rϴ([0,1]) = [-1,0] 

(-1,0)

(0,1)

rϴ([1,0]) = [0,1] 

(1,0)



From function to matrix: rotation by θ degrees
Define r([x , y ]) = rotation by θ.
Assume r([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know r([1, 0]) = [cos θ, sin θ] so column 1 is [cos θ, sin θ]

I We know r([0, 1]) = [− sin θ, cos θ] so column 2 is [− sin θ, cos θ]

Therefore M =

[
cos θ − sin θ
sin θ cos θ

]

ϴ

cos ϴ

sin ϴ

rϴ([1,0]) = [cos ϴ,sin ϴ] 

(cos ϴ,sin ϴ)

(1,0)



From function to matrix: rotation by θ degrees
Define r([x , y ]) = rotation by θ.
Assume r([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know r([1, 0]) = [cos θ, sin θ] so column 1 is [cos θ, sin θ]

I We know r([0, 1]) = [− sin θ, cos θ] so column 2 is [− sin θ, cos θ]

Therefore M =

[
cos θ − sin θ
sin θ cos θ

]

ϴ

co
s 
ϴ

rϴ([0,1]) = [-sin ϴ, cos ϴ] 

sin ϴ

(1,0)

(-sin ϴ,cos ϴ)



From function to matrix: rotation by θ degrees
Define r([x , y ]) = rotation by θ.
Assume r([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know r([1, 0]) = [cos θ, sin θ] so column 1 is [cos θ, sin θ]

I We know r([0, 1]) = [− sin θ, cos θ] so column 2 is [− sin θ, cos θ]

Therefore M =

[
cos θ − sin θ
sin θ cos θ

]

For clockwise rotation by 90 degrees, plug in θ = -90 degrees...

Matrix Transform (http://xkcd.com/824)



From function to matrix: translation

t([x , y ]) = translation by [1, 2]. Assume t([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know t([1, 0]) = [2, 2] so column 1 is [2, 2].

I We know t([0, 1]) = [1, 3] so column 2 is [1, 3].

Therefore M =

[
2 1
2 3

]



From function to matrix: translation

t([x , y ]) = translation by [1, 2]. Assume t([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know t([1, 0]) = [2, 2] so column 1 is [2, 2].

I We know t([0, 1]) = [1, 3] so column 2 is [1, 3].

Therefore M =

[
2 1
2 3

]

(1,0)

(2,2)



From function to matrix: translation

t([x , y ]) = translation by [1, 2]. Assume t([x , y ]) = M ∗ [x , y ] for some matrix M.

I We know t([1, 0]) = [2, 2] so column 1 is [2, 2].

I We know t([0, 1]) = [1, 3] so column 2 is [1, 3].

Therefore M =

[
2 1
2 3

]

(0,1)

(1,3)



From function to matrix: identity function

Consider the function f : R4 −→ R4 defined by f (x) = x
This is the identity function on R4.

Assume f (x) = M ∗ x for some matrix M.

Plug in the standard generators
e1 = [1, 0, 0, 0],e2 = [0, 1, 0, 0],e3 = [0, 0, 1, 0],e4 = [0, 0, 0, 1]

I f (e1) = e1 so first column is e1

I f (e2) = e2 so second column is e2

I f (e3) = e3 so third column is e3

I f (e4) = e4 so fourth column is e4

So M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Identity function f (x) corresponds to identity matrix 1



Diagonal matrices
Let d1, . . . , dn be real numbers. Let f : Rn −→ Rn be the function such that
f ([x1, . . . , xn]) = [d1x1, . . . , dnxn]. The matrix corresponding to this function is d1

. . .

dn


Such a matrix is called a diagonal matrix because the only entries allowed to be
nonzero form a diagonal.

Definition: For a domain D, a D × D matrix M is a diagonal matrix if
M[r , c] = 0 for every pair r , c ∈ D such that r 6= c .

Special case: d1 = · · · = dn = 1. In this case, f (x) = x (identity function)

The matrix

 1
. . .

1

 is an identity matrix.



Linear functions: Which functions can be expressed as a matrix-vector
product?

In each example, we assumed the function could be expressed as a matrix-vector
product.

How can we verify that assumption?

We’ll state two algebraic properties.

I If a function can be expressed as a matrix-vector product x 7→ M ∗ x, it has these
properties.

I If the function from FC to FR has these properties, it can be expressed as a
matrix-vector product.



Linear functions: Which functions can be expressed as a matrix-vector
product?

Let V and W be vector spaces over a field F.

Suppose a function f : V −→ W satisfies two properties:

Property L1: For every vector v in V and every scalar α in F,

f (α v) = α f (v)

Property L2: For every two vectors u and v in V,

f (u + v) = f (u) + f (v)

We then call f a linear function.

Proposition: Let M be an R × C matrix, and suppose f : FC 7→ FR is defined by
f (x) = M ∗ x. Then f is a linear function.

Proof: Certainly FC and FR are vector spaces.

We showed that M ∗ (α v) = αM ∗ v. This proves that f satisfies Property L1.

We showed that M ∗ (u + v) = M ∗u + M ∗ v. This proves that f satisfies Property L2.

QED



Which functions are linear?
Define s([x , y ]) = stretching by two in horizontal direction

Property L1: s(v1 + v2) = s(v1) + s(v2)

Property L2: s(α v) = α s(v)

Since the function s(·) satisfies Properties L1 and
L2, it is a linear function.

Similarly can show rotation by θ degrees is a linear
function.

What about translation?
t([x , y ]) = [x , y ] + [1, 2]

This function violates Property L1. For example:
t([4, 5] + [2,−1]) = t([6, 4]) = [7, 6]

but
t([4, 5]) + t([2,−1]) = [5, 7] + [3, 1] = [8, 8]

(1,1) (2,1)

v1 and s(v1)

(1,2) (2,2)

v2 and s(v2)

+

(2,3) (4,3)v1+v2 and s(v1+v2)

× 1.5

(1.5,1.5) (3,1.5)
1.5 v1 and s(1.5 v1)

Since t(·) violates Property L1 for
at least one input, it is not a linear
function.

Can similarly show that t(·) does
not satisfy Property L2.



A linear function maps zero vector to zero vector

Lemma: If f : U −→ V is a linear function then f maps the zero vector of U to the
zero vector of V.

Proof: Let 0 denote the zero vector of U , and let 0V denote the zero vector of V.

f (0) = f (0 + 0) = f (0) + f (0)

Subtracting f (0) from both sides, we obtain

0V = f (0)

QED



Linear functions: Pushing linear combinations through the function

Defining properties of linear functions:

Property L1: f (α v) = α f (v)

Property L2: f (u + v) = f (u) + f (v)

Proposition: For a linear function f ,
for any vectors v1, . . . , vn in the domain of f and any scalars α1, . . . , αn,

f (α1 v1 + · · ·+ αn vn) = α1 f (v1) + · · ·+ αn f (vn)

Proof: Consider the case of n = 2.

f (α1 v1 + α2 v2) = f (α1 v1) + f (α2 v2) by Property L2

= α1 f (v1) + α2 f (v2) by Property L1

Proof for general n is similar. QED



Linear functions: Pushing linear combinations through the function

Proposition: For a linear function f ,
f (α1 v1 + · · ·+ αn vn) = α1 f (v1) + · · ·+ αn f (vn)

Example: f (x) =

[
1 2
3 4

]
∗ x

Verify that f (10 [1,−1] + 20 [1, 0]) = 10 f ([1,−1]) + 20 f ([1, 0])

[
1 2
3 4

](
10 [1,−1] + 20 [1, 0]

)

=

[
1 2
3 4

](
[10,−10] + [20, 0]

)

=

[
1 2
3 4

]
[30,−10]

= 30 [1, 3]− 10[2, 4]

= [30, 90]− [20, 40]

= [10, 50]

10

([
1 2
3 4

]
∗ [1,−1]

)
+ 20

([
1 2
3 4

]
∗ [1, 0]

)
= 10 ([1, 3]− [2, 4]) + 20 (1[1, 3])

= 10 [−1,−1] + 20 [1, 3]

= [−10,−10] + [20, 60]

= [10, 50]



From function to matrix, revisited
We saw a method to derive a matrix from a function:
Given a function f : Rn −→ Rm, we want a matrix M such that f (x) = M ∗ x....

I Plug in the standard generators e1 = [1, 0, . . . , 0, 0], . . . ,en = [0, . . . , 0, 1]
I Column i of M is f (ei ).

This works correctly whenever such a matrix M really exists:

Proof: If there is such a matrix then f is linear:
I (Property L1) f (α v) = α f (v) and
I (Property L2) f (u + v) = f (u) + f (v)

Let v = [α1, . . . , αn] be any vector in Rn.
We can write v in terms of the standard generators.

v = α1 e1 + · · ·+ αn en

so

f (v) = f (α1 e1 + · · ·+ αn en)

= α1 f (e1) + · · ·+ αn f (en)

= α1 (column 1 of M) + · · ·+ αn (columnn of M)

= M ∗ v QED



Linear functions and zero vectors: Kernel

Definition: Kernel of a linear function f is {v : f (v) = 0}

Written Ker f

For a function f (x) = M ∗ x,
Ker f = Null M



Kernel and one-to-one

One-to-One Lemma: A linear function is one-to-one if and only if its kernel is a
trivial vector space.

Proof: Let f : U −→ V be a linear function. We prove two directions.

I Suppose Ker f contains some nonzero vector u, so f (u) = 0V .
Because a linear function maps zero to zero, f (0) = 0V as well,
so f is not one-to-one.

I Suppose Ker f = {0}.
Let v1, v2 be any vectors such that f (v1) = f (v2).
Then f (v1)− f (v2) = 0V
so, by linearity, f (v1 − v2) = 0V ,
so v1 − v2 ∈ Ker f .
Since Ker f consists solely of 0,
it follows that v1 − v2 = 0, so v1 = v2.

QED



Kernel and one-to-one

One-to-One Lemma A linear function is one-to-one if and only if its kernel is a
trivial vector space.

Define the function f (x) = A ∗ x.

If Ker f is trivial (i.e. if Null A is trivial)

then a vector b is the image under f of at most one vector.

That is, at most one vector u such that A ∗ u = b
That is, the solution set of A ∗ x = b has at most one vector.



Linear functions that are onto?
Question: How can we tell if a linear function is onto?

Recall: for a function f : V −→ W, the image of f is the set of all images of elements
of the domain:

{f (v) : v ∈ V}

(You might know it as the “range” but we avoid that word here.)

The image of function f is written Im f

“Is function f is onto?” same as “is Im f = co-domain of f ?”

Example: Lights Out

Define f ([α1, α2, α3, α4]) =

 • •
•

• •
•

•
• •

•
• •

 ∗ [α1, α2, α3, α4]

Im f is set of configurations for which 2× 2 Lights Out can be solved,
so “f is onto” means “2× 2 Lights Out can be solved for every configuration”

Can 2× 2 Lights Out be solved for every configuration? What about 5× 5?
Each of these questions amounts to asking whether a certain function is onto.



Linear functions that are onto?

“Is function f is onto?” same as “is Im f = co-domain of f ?”

First step in understanding how to tell if a linear function f is onto:

I study the image of f

Proposition: The image of a linear function f : V −→ W is a vector space



The image of a linear function is a vector space
Proposition: The image of a linear function f : V −→ W is a vector space

Recall: a set U of vectors is a vector space if

V1: U contains a zero vector,

V2: for every vector w in U and every scalar α, the vector αw is in U
V3: for every pair of vectors w1 and w2 in U , the vector w1 + w2 is in U
Proof:

V1: Since the domain V contains a zero vector 0V and f (0V) = 0W , the image of f
includes 0W . This proves Property V1.

V2: Suppose some vector w is in the image of f .
That means there is some vector v in the domain V that maps to w: f (v) = w.
By Property L1, for any scalar α, f (α v) = α f (v) = αw
so αw is in the image. This proves Property V2.

V3: Suppose vectors w1 and w2 are in the image of f .
That is, there are vectors v1 and v2 in the domain such that f (v1) = w1 and
f (v2) = w2.
By Property L2, f (v1 + v2) = f (v1) + f (v2) = w1 + w2

so w1 + w2 is in the image. This proves Property V3. QED



Linear functions that are onto?

We’ve shown
Proposition: The image of a linear function f : V −→ W is a vector space

This proposition shows that, for a linear function f , Im f is always a subspace of the
co-domain W.

The function is onto if Im f includes all of W.

In a couple of weeks we will have a way to tell.



Inner product

Let u and v be two D-vectors interpreted as matrices (column vectors).
Matrix-matrix product uTv.

Example:
[

1 2 3
]  3

2
1

 =
[

10
]

I First “matrix” has one row.

I Second “matrix” has one column.

I Therefore product “matrix” has one entry.

By dot-product definition of matrix-matrix multiplication,
that one entry is the dot-product of u and v.

Sometimes called inner product of matrices.
However, that term has taken on another meaning, which we study later.



Outer product

Another way to multiply vectors as matrices.
For any u and v, consider uvT .

Example:

 u1

u2

u3

 [ v1 v2 v3 v4
]

=

 u1v1 u1v2 u1v3 u1v4
u2v1 u2v2 u2v3 u2v4
u3v1 u3v2 u3v3 u3v4


For each element s of the domain of u and each element t of the domain of v,
the s, t element of uvT is u[s] v[t].

Called outer product of u and v.



Matrix-matrix multiplication and function composition

Corresponding to an R × C matrix A over a field F, there is a function

f : FC −→ FR

namely the function defined by f (y) = A ∗ y



Matrix-matrix multiplication and function composition

Matrices A and B ⇒ functions f (y) = A ∗ y and g(x) = B ∗ x and h(x) = (AB) ∗ x

Matrix-Multiplication Lemma f ◦ g = h

Example:

A =

[
1 1
0 1

]
⇒ f

([
x1
x2

])
=

[
1 1
0 1

] [
x1
x2

]
=

[
x1 + x2

x2

]
B =

[
1 0
1 1

]
⇒ g

([
x1
x2

])
=

[
1 0
1 1

] [
x1
x2

]
=

[
x1

x1 + x2

]

product AB =

[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
corresponds to function h

([
x1
x2

])
=

[
2 1
1 1

] [
x1
x2

]
=
[

2x1 + x2, x1 + x2
]

f ◦ g

([
x1
x2

])
= f

([
x1

x1 + x2

])
=

[
2x1 + x2
x1 + x2

]
so f ◦ g = h



Matrix-matrix multiplication and function composition
Matrices A and B ⇒ functions f (y) = A ∗ y and g(x) = B ∗ x and h(x) = (AB) ∗ x

Matrix-Multiplication Lemma: f ◦ g = h

Proof: Let columns of B be b1, . . . ,bn. By the matrix-vector definition of
matrix-matrix multiplication, column j of AB is A ∗ (column j of B).
For any n-vector x = [x1, . . . , xn],

g(x) = B ∗ x by definition of g

= x1b1 + · · ·+ xnbn by linear combinations definition

Therefore

f (g(x)) = f (x1b1 + · · · xnbn)

= x1(f (b1)) + · · ·+ xn(f (bn)) by linearity of f

= x1(A ∗ b1) + · · ·+ xn(A ∗ bn) by definition of f

= x1(column 1 of AB) + · · ·+ xn(column n of AB) by matrix-vector def.

= (AB) ∗ x by linear-combinations def.

= h(x) by definition of h

QED



Associativity of matrix-matrix multiplication

Matrices A and B ⇒ functions f (y) = A ∗ y and g(x) = B ∗ x and h(x) = (AB) ∗ x

Matrix-Multiplication Lemma: f ◦ g = h

Matrix-matrix multiplication corresponds to function composition.

Corollary: Matrix-matrix multiplication is associative:

(AB)C = A(BC )

Proof: Function composition is associative. QED

Example:[
1 0
1 1

]([
1 1
0 1

] [
−1 3
1 2

])
=

[
1 0
1 1

] [
0 5
1 2

]
=

[
0 5
1 7

]

([
1 0
1 1

] [
1 1
0 1

])[
−1 3
1 2

]
=

[
1 1
1 2

] [
−1 3
1 2

]
=

[
0 5
1 7

]



From function inverse to matrix inverse

Matrices A and B ⇒ functions f (y) = A ∗ y and g(x) = B ∗ x and h(x) = (AB) ∗ x
Definition If f and g are functional inverses of each other, we say A and B are matrix
inverses of each other.

Example: An elementary row-addition matrix

A =

 1 0 0
2 1 0
0 0 1

 ⇒ function f ([x1, x2, x3]) = [x1, x2 + 2x1, x3])

Function adds twice the first entry to the second entry.

Functional inverse: subtracts the twice the first entry from the second entry:

f −1([x1, x2, x3]) = [x1, x2 − 2x1, x3]

Thus the inverse of A is

A−1 =

 1 0 0
−2 1 0
0 0 1


This matrix is also an elementary row-addition matrix.



Matrix inverse

If A and B are matrix inverses of each other, we say A and B are invertible matrices.

Can show that a matrix has at most one inverse.

We denote the inverse of matrix A by A−1.

(A matrix that is not invertible is sometimes called a singular matrix, and an invertible
matrix is called a nonsingular matrix.)



Invertible matrices: why care?
Reason 1: Existence and uniqueness of solution to matrix-vector equations.
Let A be an m × n matrix, and define f : Fn −→ Fm by f (x) = Ax
Suppose A is an invertible matrix. Then f is an invertible function. Then f is
one-to-one and onto:

I Since f is onto, for any m-vector b there is some vector u such that f (u) = b.
That is, there is at least one solution to the matrix-vector equation Ax = b.

I Since f is one-to-one, for any m-vector b there is at most one vector u such that
f (u) = b. That is, there is at most one solution to Ax = b.

If A is invertible then, for every right-hand side vector b, the equation Ax = b has
exactly one solution.
Example 1: Industrial espionage. Given the vector b specifying the amount of each
resource consumed, figure out quantity of each product JunkCo has made.
Solve vector-matrix equation xTM = b where

M =

metal concrete plastic water electricity

garden gnome 0 1.3 .2 .8 .4
hula hoop 0 0 1.5 .4 .3

slinky .25 0 0 .2 .7
silly putty 0 0 .3 .7 .5

salad shooter .15 0 .5 .4 .8
Will this work for every vector b?

I Is there a unique solution? If multiple solutions then we cannot be certain we
have calculated true quantities.

Since MT is an invertible matrix, the function f (x) = x ∗M is an invertible function,
so there is a unique solution for every vector b.
Example 2: Sensor node with hardware components {radio,sensor,CPU,memory}.
Use three test periods

I total power consumed in these test periods b = [140, 170, 60]
I for each test period, vector says how long each hardware component worked:

I duration1 = Vec(D, ’radio’:0.1, ’CPU’:0.3)
I duration2 = Vec(D, ’sensor’:0.2, ’CPU’:0.4)
I duration3 = Vec(D, ’memory’:0.3, ’CPU’:0.1)

To get u, solve Ax = b
where

A =

 duration1

duration2

duration3


Does this yield current draw for each hardware component?

I The matrix A is not invertible.

I In particular, the function x 7→ Ax is not one-to-one.

I Therefore no guarantee that solution to Ax = b is unique
⇒ we can’t derive power per hardware component.

I Need to add more test periods....
Use four test periods

I total power consumed in these test periods b = [140, 170, 60, 170, 250]
I for each test period, vector says how long each hardware component worked:

I duration1 = Vec(D, ’radio’:0.1, ’CPU’:0.3)
I duration2 = Vec(D, ’sensor’:0.2, ’CPU’:0.4)
I duration3 = Vec(D, ’memory’:0.3, ’CPU’:0.1)
I duration4 = Vec(D, ’memory’:0.5, ’CPU’:0.4)

To get u, solve Ax = b
where

A =


duration1

duration2

duration3

duration4


Does this yield current draw for each hardware component?

I This time the matrix A is invertible...

I so equation has exactly one solution.

I We can in principle find power consumption per component.



Invertible matrices: why care?

Reason 2: Algorithms for solving matrix-vector equation Ax = b are simpler if we can
assume A is invertible.

Later we learn two such algorithms.

We also learn how to cope if A is not invertible.

Reason 3:
Invertible matrices play a key role in change of basis.

Change of basis is important part of linear algebra

I used e.g. in image compression;

I we will see it used in adding/removing perspective from an image.



Product of invertible matrices is an invertible matrix
Proposition: Suppose the matrix product AB is defined. Then AB is an invertible
matrix if and only both A and B are invertible matrices.
Example:

A =

[
1 1
0 1

]
and B =

[
1 0
1 1

]
correspond to functions

f : R2 −→ R2 and g : R2 −→ R2

f

([
x1
x2

])
=

[
1 1
0 1

] [
x1
x2

]
=

[
x1 + x2

x2

]
f is an invertible function.

g

([
x1
x2

])
=

[
1 0
1 1

] [
x1
x2

]
=

[
x1

x1 + x2

]
g is an invertible function.

The functions f and g are invertible so the function f ◦ g is invertible.

By the Matrix-Multiplication Lemma, the function f ◦ g corresponds to the matrix

product AB =

[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
so that matrix is invertible.

Proof: Define the functions f and g by f (x) = Ax and g(x) = Bx.

I Suppose A and B are invertible matrices.
Then the corresponding functions f and g are invertible.
Therefore f ◦ g is invertible
so the matrix corresponding to f ◦ g (which is AB) is an invertible matrix.

I Conversely, suppose AB is an invertible matrix.
Then the corresponding function f ◦ g is an invertible function.
It follows that f and g must be invertible functions,
so the corresponding matrices A and B must be invertible matrices.

QED



Product of invertible matrices is an invertible matrix
Proposition: Suppose the matrix product AB is defined. Then AB is an invertible
matrix if and only both A and B are invertible matrices.
Example:

A =

 1 0 0
4 1 0
0 0 1

 B =

 1 0 0
0 1 0
5 0 1


Multiplication by matrix A adds 4 times
first element to second element:

f ([x1, x2, x3]) = [x1, x2 + 4x1, x3])

This function is invertible.

Multiplication by matrix B adds 5 times
first element to third element:

g([x1, x2, x3]) = [x1, x2, x3 + 5x1]

This function is invertible

By Matrix Multiplication Lemma, multiplication by matrix AB corresponds to
composition of functions f ◦ g : (f ◦ g)([x1, x2, x3]) = [x1, x2 + 4x1, x3 + 5x1]

The function f ◦ g is also an invertible function.... so AB is an invertible matrix.
Proof: Define the functions f and g by f (x) = Ax and g(x) = Bx.

I Suppose A and B are invertible matrices.
Then the corresponding functions f and g are invertible.
Therefore f ◦ g is invertible
so the matrix corresponding to f ◦ g (which is AB) is an invertible matrix.

I Conversely, suppose AB is an invertible matrix.
Then the corresponding function f ◦ g is an invertible function.
It follows that f and g must be invertible functions,
so the corresponding matrices A and B must be invertible matrices.

QED



Product of invertible matrices is an invertible matrix
Proposition: Suppose the matrix product AB is defined. Then AB is an invertible
matrix if and only both A and B are invertible matrices.
Example:

A =

 1 2 3
4 5 6
7 8 9

 B =

 1 0 1
0 1 0
1 1 0


The product is AB =

 4 5 1
10 11 4
16 17 7


which is not invertible
so at least one of A and B is not invertible

and in fact

 1 2 3
4 5 6
7 8 9

 is not invertible.

Proof: Define the functions f and g by f (x) = Ax and g(x) = Bx.

I Suppose A and B are invertible matrices.
Then the corresponding functions f and g are invertible.
Therefore f ◦ g is invertible
so the matrix corresponding to f ◦ g (which is AB) is an invertible matrix.

I Conversely, suppose AB is an invertible matrix.
Then the corresponding function f ◦ g is an invertible function.
It follows that f and g must be invertible functions,
so the corresponding matrices A and B must be invertible matrices.

QED



Product of invertible matrices is an invertible matrix
Proposition: Suppose the matrix product AB is defined. Then AB is an invertible
matrix if and only both A and B are invertible matrices.
Proof: Define the functions f and g by f (x) = Ax and g(x) = Bx.

I Suppose A and B are invertible matrices.
Then the corresponding functions f and g are invertible.
Therefore f ◦ g is invertible
so the matrix corresponding to f ◦ g (which is AB) is an invertible matrix.

I Conversely, suppose AB is an invertible matrix.
Then the corresponding function f ◦ g is an invertible function.
It follows that f and g must be invertible functions,
so the corresponding matrices A and B must be invertible matrices.

QED



Matrix inverse

Lemma: If the R × C matrix A has an inverse A−1 then AA−1 is the R × R identity
matrix.

Proof: Let B = A−1. Define f (x) = Ax and g(y) = By.

I By the Matrix-Multiplication Lemma, f ◦ g satisfies (f ◦ g)(x) = ABx.

I On the other hand, f ◦ g is the identity function,

I so AB is the R × R identity matrix.

QED



Matrix inverse

Lemma: If the R × C matrix A has an inverse A−1 then AA−1 is identity matrix.

What about the converse?

Conjecture: If AB is an indentity matrix then A and B are inverses...?

Counterexample:

A =

[
1 0 0
0 1 0

]
,B =

 1 0
0 1
0 0


AB =

[
1 0 0
0 1 0

] 1 0
0 1
0 0

 =

[
1 0
0 1

]
A ∗ [0, 0, 1] and A ∗ [0, 0, 0] both equal [0, 0], so null space of A is not trivial,
so the function f (x) = Ax is not one-to-one,
so f is not an invertible function.

Shows: AB = I is not sufficient to ensure that A and B are inverses.



Matrix inverse

Lemma: If the R × C matrix A has an inverse A−1 then AA−1 is identity matrix.

What about the converse?

FALSE Conjecture: If AB is an indentity matrix then A and B are inverses...?

Corollary: Matrices A and B are inverses of each other if and only if both AB and BA
are identity matrices.



Matrix inverse

Lemma: If the R × C matrix A has an inverse A−1 then AA−1 is identity matrix.

Corollary: A and B are inverses of each other iff both AB and BA are identity
matrices.

Proof:

I Suppose A and B are inverses of each other. By lemma, AB and BA are identity
matrices.

I Suppose AB and BA are both identity matrices.
Define f (y) = A ∗ y and g(x) = B ∗ x

I Because AB is identity matrix, by Matrix-Multiplication Lemma, f ◦ g is the identity
function.

I Because BA is identity matrix, by Matrix-Multiplication Lemma, g ◦ f is the identity
function.

I This proves that f and g are functional inverses of each other, so A and B are
matrix inverses of each other.

QED



Matrix inverse

Question: How can we tell if a matrix M is invertible?

Partial Answer: By definition, M is an invertible matrix if the function f (x) = Mx is
an invertible function, i.e. if the function is one-to-one and onto.

I One-to-one: Since the function is linear, we know by the One-to-One Lemma that
the function is one-to-one if its kernel is trivial, i.e. if the null space of M is trivial.

I Onto: We haven’t yet answered the question how we can tell if a linear function is
onto?

If we knew how to tell if a linear function is onto, therefore, we would know how to tell
if a matrix is invertible.


