
The Basis

[5] The Basis

René Descartes

Born 1596.
After studying law in college,....

I entirely abandoned the study of letters. Resolving to seek no knowledge other than
that of which could be found in myself or else in the great book of the world, I spent
the rest of my youth traveling, visiting courts and armies, mixing with people of
diverse temperaments and ranks, gathering various experiences, testing myself in the
situations which fortune offered me, and at all times reflecting upon whatever came
my way so as to derive some profit from it.

He had a practice of lying in bed in the morning, thinking about mathematics....

Coordinate systems

In 1618, he had an idea...
while lying in bed and watching a fly on the ceiling.

He could describe the location of the fly in terms of two numbers: its distance from
the two walls.

He realized that this works even if the two walls were not perpendicular.

He realized that you could express geometry in algebra.

I The walls play role of what we now call axes.

I The two numbers are what we now call coordinates

Coordinate systems

In terms of vectors (and generalized beyond two dimensions),

I coordinate system for a vector space V is specified by generators a1, . . . ,an of V
I Every vector v in V can be written as a linear combination

v = α1 a1 + · · ·+ αn an

I We represent vector v by the vector [α1, . . . , αn] of coefficients.
called the coordinate representation of v in terms of a1, . . . ,an.

But assigning coordinates to points is not enough. In order to avoid confusion, we
must ensure that each point is assigned coordinates in exactly one way. How?

We will discuss unique representation later.

Coordinate representation
Definition: The coordinate representation of v in terms of a1, . . . ,an is the vector
[α1, . . . , αn] such that

v = α1 a1 + · · ·+ αn an

In this context, the coefficients are called the coordinates.

Example: The vector v = [1, 3, 5, 3] is equal to

1 [1, 1, 0, 0] + 2 [0, 1, 1, 0] + 3 [0, 0, 1, 1]

so the coordinate representation of v in terms of the vectors
[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1] is [1, 2, 3].

Example: What is the coordinate representation of the vector [6, 3, 2, 5] in terms of
the vectors [2, 2, 2, 3], [1, 0,−1, 0], [0, 1, 0, 1]?

Since
[6, 3, 2, 5] = 2 [2, 2, 2, 3] + 2 [1, 0,−1, 0]− 1 [0, 1, 0, 1],

the coordinate representation is [2, 2,−1].

Coordinate representation
Definition: The coordinate representation of v in terms of a1, . . . ,an is the vector
[α1, . . . , αn] such that

v = α1 a1 + · · ·+ αn an

In this context, the coefficients are called the coordinates.

Now we do an example with vectors over GF (2).

Example: What is the coordinate representation of the vector [0,0,0,1] in terms of
the vectors [1,1,0,1], [0,1,0,1], and [1,1,0,0]?

Since
[0, 0, 0, 1] = 1 [1, 1, 0, 1] + 0 [0, 1, 0, 1] + 1 [1, 1, 0, 0]

the coordinate representation of [0, 0, 0, 1] is [1, 0, 1].

Coordinate representation
Definition: The coordinate representation of v in terms of a1, . . . ,an is the vector
[α1, . . . , αn] such that

v = α1 a1 + · · ·+ αn an

In this context, the coefficients are called the coordinates.

Why put the coordinates in a vector?

Makes sense in view of linear-combinations definitions of matrix-vector multiplication.

Let A =

 a1 · · · an

.

I “u is the coordinate representation of v in terms of a1, . . . ,an” can be written as
matrix-vector equation Au = v

I To go from a coordinate representation u to the vector being represented, we
multiply A times u.

I To go from a vector v to its coordinate representation, we can solve the
matrix-vector equation Ax = v.
(Because the columns of A are generators for V and v belongs to V, the equation
must have at least one solution.)

Linear Combinations: Lossy compression

Say you need to store or transmit many 2-megapixel images:

How do we represent the image compactly?

I Obvious method: 2 million pixels =⇒ 2
million numbers

I Strategy 1: Use sparsity! Find the
“nearest” k-sparse vector. Later we’ll see
this consists of suppressing all but the
largest k entries.

I More sophisticated strategy?

Linear Combinations: Lossy compression

Strategy 2: Represent image vector by its coordinate representation:

I Before compressing any images, select vectors v1, . . . , vn.

I Replace each image vector with its coordinate representation in terms of
v1, . . . , vn.

For this strategy to work, we need to ensure that every image vector can be
represented as a linear combination of v1, . . . , vn.

Given some D-vectors v1, . . . , vn over F, how can we tell whether every vector in FD

can be written as a linear combination of v1, . . . , vn?

We also need the number of vectors v1, . . . , vn to be much smaller than the number of
pixels.

Given D, what is minimum number of vectors v1, . . . , vn such that every vector in FD

can be written as a linear combination?

Linear Combinations: Lossy compression

Strategy 3: A hybrid approach

Step 1: Select vectors v1, . . . , vn.

Step 2: For each image to compress, find its coordinate representation u in terms of
v1, . . . , vn

Step 3: Replace u with the closest k-sparse vector ũ, and store ũ.

Step 4: To recover an image from ũ, calculate the corresponding linear combination of
v1, . . . vn.

Greedy algorithms for finding a set of generators

Question: For a given vector space V, what is the minimum number of vectors
whose span equals V?

How can we obtain a minimum number of vectors?

Two natural approaches come to mind, the Grow algorithm and the Shrink algorithm.

Grow algorithm

def Grow(V)
S = ∅
repeat while possible:

find a vector v in V that is not in Span S , and put it in S .

The algorithm stops when there is no vector to add, at which time S spans all of V.
Thus, if the algorithm stops, it will have found a generating set.

But is it bigger than necessary?

Shrink Algorithm

def Shrink(V)
S = some finite set of vectors that spans V
repeat while possible:

find a vector v in S such that Span (S − {v}) = V, and remove v from S .

The algorithm stops when there is no vector whose removal would leave a spanning set.
At every point during the algorithm, S spans V, so it spans V at the end.
Thus, if the algorithm stops, the algorithm will have found a generating set.

The question is, again: is it bigger than necessary?

When greed fails

Is it obvious that Grow algorithm and Shrink algorithm find smallest sets of
generators? Look at example for a problem in graphs...

Points are called nodes, links are called edges.
Each edge has two endpoints, the nodes it connects. The endpoints of an edge are
neighbors.

Definition: A dominating set in a graph is a set S of nodes such that every node is in
S or a neighbor of a node in S .

When greed fails: dominating set

Definition: A dominating set in a graph is a set S of nodes such that every node is in
S or a neighbor of a node in S .

Grow Algorithm:
initialize S = ∅
while S is not a dominating set,

add a node to S that is not
currently adjacent to S

Shrink Algorithm:
initialize S = all nodes
while there is a node x such that S−{x} is a dominating set,

remove x from S

Neither algorithm is guaranteed to find the smallest solution.

Minimum spanning forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Definition: A sequence of edges [{x1, x2}, {x2, x3}, {x3, x4}, . . . , {xk−1, xk}] with no
repeats is called an x1-to-xk path.

Example “Main Quad”-to-”Gregorian Quad” paths in above graph:

I one goes through “Wriston Quad” ,

I one goes through “Keeney Quad”

Definition: A x-to-x path is called a cycle.

Minimum spanning forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Definition: A sequence of edges [{x1, x2}, {x2, x3}, {x3, x4}, . . . , {xk−1, xk}] with no
repeats is called an x1-to-xk path.

Example “Main Quad”-to-”Gregorian Quad” paths in above graph:

I one goes through “Wriston Quad” ,

I one goes through “Keeney Quad”

Definition: A x-to-x path is called a cycle.

Minimum spanning forest: spanning

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Definition: A set S of edges is spanning for a graph G if, for every edge {x , y} of G ,
there is an x-to-y path consisting of edges of S .

Soon we see connection between this use of “spanning” and its use with vectors.

Minimum spanning forest: forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Definition: A set of edges of G is a forest if the set includes no cycles.

Minimum spanning forest: forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Definition: A set of edges of G is a forest if the set includes no cycles.

Minimum spanning forest: forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Definition: A set of edges of G is a forest if the set includes no cycles.

Minimum spanning forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

2

7

9
5 3

6

8

4

Minimum spanning forest problem:

I input: a graph G , and an assignment of real-number weights to the edges of G .

I output: a minimum-weight set S of edges that is spanning and a forest.

Application: Design hot-water delivery network for the university campus:

I Network must achieve same connectivity as input graph.

I An edge represents a possible pipe.

I Weight of edge is cost of installing the pipe.

I Goal: minimize total cost.

Minimum spanning forest: Grow algorithm

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

2

7

9
5 3

6

8

4

def Grow(G)
S := ∅
consider the edges in increasing order
for each edge e:

if e’s endpoints are not yet connected
add e to S .

Increasing order: 2, 3, 4, 5, 6, 7, 8, 9.

Minimum spanning forest: Shrink algorithm

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

2

7

9
5 3

6

8

4

def Shrink(G)
S = {all edges}
consider the edges in order, from highest-weight to lowest-weight
for each edge e:

if every pair of nodes are connected via S − {e}:
remove e from S .

Decreasing order: 9, 8, 7, 6, 5, 4, 3, 2.

Formulating Minimum Spanning Forest in linear algebra

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Let D = set of nodes {Pembroke,Athletic,Main,Keeney,Wriston}

Represent a subset of D by a GF (2) vector:
subset {Pembroke, Main, Gregorian} is represented by

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1 1

Formulating Minimum Spanning Forest in linear algebra

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

edge vector
Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

{Pembroke, Athletic} 1 1
{Pembroke, Bio-Med} 1 1
{Athletic, Bio-Med} 1 1
{Main, Keeney} 1 1
{Main, Wriston} 1 1
{Keeney, Wriston} 1 1
{Keeney, Gregorian} 1 1
{Wriston, Gregorian} 1 1

Formulating Minimum Spanning Forest in linear algebra

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

The vector representing {Keeney, Gregorian},
Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1
is the sum, for example, of the vectors representing {Keeney, Main }, {Main,
Wriston}, and {Wriston, Gregorian} :

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1
1 1

1 1

A vector with 1’s in entries x and y is the sum of vectors corresponding to edges that
form an x-to-y path in the graph.

Formulating Minimum Spanning Forest in linear algebra

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

A vector with 1’s in entries x and y is the sum of vectors corresponding to edges that
form an x-to-y path in the graph.

Example: The span of the vectors representing

{Pembroke, Bio-Med}, {Main, Wriston}, {Keeney, Wriston}, {Wriston, Gregorian }
I contains the vectors corresponding to

{Main, Keeney}, {Keeney, Gregorian}, and {Main, Gregorian}

I but not the vectors corresponding to

{Athletic, Bio-Med } or {Bio-Med, Main}.

Grow algorithms

def Grow(G)
S := ∅
consider the edges in increasing order
for each edge e:

if e’s endpoints are not yet connected
add e to S .

def Grow(V)
S = ∅
repeat while possible:

find a vector v in V not in Span S ,
and put it in S .

I Considering edges e of G corresponds to considering vectors v in V
I Testing if e’s endpoints are not connected corresponds to testing if v is not in

Span S .

The Grow algorithm for MSF is a specialization of the Grow algorithm for vectors.

Same for the Shrink algorithms.

Linear Dependence: The Superfluous-Vector Lemma

Grow and Shrink algorithms both test whether a vector is superfluous in spanning a
vector space V. Need a criterion for superfluity.

Superfluous-Vector Lemma: For any set S and any vector v ∈ S , if v can be written
as a linear combination of the other vectors in S then Span (S − {v}) = Span S

Proof: Let S = {v1, . . . , vn}. Suppose vn = α1 v1 + α2 v2 + · · ·+ αn−1 vn−1

To show: every vector in Span S is also in Span (S − {vn}).

Every vector v in Span S can be written as v = β1 v1 + β2 v2 + · · ·βn vn

Substituting for vn, we obtain

v = β1 v1 + β2 v2 + · · ·+ βn (α1 v1 + α2 v2 + · · ·+ αn−1 vn−1)

= (β1 + βnα1)v1 + (β2 + βnα2)v2 + · · ·+ (βn−1 + βnαn−1)vn−1

which shows that an arbitrary vector in Span S can be written as a linear
combination of vectors in S − {vn} and is therefore in Span (S − {vn}).

QED

Defining linear dependence

Definition: Vectors v1, . . . , vn are linearly dependent if the zero vector can be written
as a nontrivial linear combination of the vectors:

0 = α1v1 + · · ·+ αnvn

In this case, we refer to the linear combination as a linear dependency in v1, . . . , vn.

On the other hand, if the only linear combination that equals the zero vector is the
trivial linear combination, we say v1, . . . , vn are linearly independent.

Example: The vectors [1, 0, 0], [0, 2, 0], and [2, 4, 0] are linearly dependent, as shown
by the following equation:

2 [1, 0, 0] + 2 [0, 2, 0]− 1 [2, 4, 0] = [0, 0, 0]

Therefore:

2 [1, 0, 0] + 2 [0, 2, 0]− 1 [2, 4, 0] is a linear dependency in [1, 0, 0], [0, 2, 0], [2, 4, 0].

Linear dependence

Example: The vectors [1, 0, 0], [0, 2, 0], and [0, 0, 4] are linearly independent.
How do we know?
Easy since each vector has a nonzero entry where the others have zeroes.
Consider any linear combination

α1 [1, 0, 0] + α2 [0, 2, 0] + α3 [0, 0, 4]

This equals [α1, 2α2, 4α3]

If this is the zero vector, it must be that α1 = α2 = α3 = 0
That is, the linear combination is trivial.

We have shown the only linear combination that equals the zero vector is the trivial
linear combination.

Linear dependence in relation to other questions

How can we tell if vectors v1, . . . , vn are linearly dependent?

Definition: Vectors v1, . . . , vn are linearly dependent if the zero vector can be written
as a nontrivial linear combination 0 = α1v1 + · · ·+ αnvn

By linear-combinations definition, v1, . . . , vn are linearly dependent iff there is a

nonzero vector

 α1
...
αn

 such that

 v1 · · · vn


 α1

...
αn

 = 0

Therefore, v1, . . . , vn are linearly dependent iff the null space of the matrix is nontrivial.

This shows that the question

How can we tell if vectors v1, . . . , vn are linearly dependent?

is the same as a question we asked earlier:

How can we tell if the null space of a matrix is trivial?

Linear dependence in relation to other questions

The question

How can we tell if vectors v1, . . . , vn are linearly dependent?

is the same as a question we asked earlier:

How can we tell if the null space of a matrix is trivial?

Recall: solution set of a homogeneous linear system

a1 · x = 0
...

am · x = 0

is the null space of matrix

 a1
...

am

.

So question is same as:

How can we tell if the solution set of a homogeneous linear system is trivial?

Linear dependence in relation to other questions
The question

How can we tell if vectors v1, . . . , vn are linearly dependent?

is the same as a question we asked earlier:

How can we tell if the null space of a matrix is trivial?
is the same as :

How can we tell if the solution set of a homogeneous linear system is trivial?

Recall:

If u1 is a solution to a linear system a1 · x = β1, . . . ,am · x = βm then

{solutions to linear system} = {u1 + v : v ∈ V}

where V = {solutions to corresponding homogeneous linear system
a1 · x = 0, . . . ,am · x = 0}

Thus the question is the same as:

How can we tell if a solution u1 to a linear system is the only solution?

Linear dependence and null space

The question

How can we tell if vectors v1, . . . , vn are linearly dependent?

is the same as:

How can we tell if the null space of a matrix is trivial?

is the same as:

How can we tell if the solution set of a homogeneous linear system is trivial?

is the same as:

How can we tell if a solution u1 to a linear system is the only solution?

Linear dependence

Answering these questions requires an algorithm.

Computational Problem: Testing linear dependence

I input: a list [v1, . . . , vn] of vectors

I output: DEPENDENDENT if the vectors are linearly dependent, and
INDEPENDENT otherwise.

We’ll see two algorithms later.

Linear dependence in Minimum Spanning Forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

We can get the zero vector by adding together vectors corresponding to edges that
form a cycle: in such a sum, for each entry x , there are exactly two vectors having 1’s
in position x .

Example: the vectors corresponding to

{Main, Wriston},{Main, Keeney} {Keeney, Wriston },
are as follows:

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1
1 1

1 1
The sum of these vectors is the zero vector.

Linear dependence in Minimum Spanning Forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Sum of vectors corresponding to edges forming a cycle can make a zero vector.
Therefore if a subset of S form a cycle then S is linearly dependent.

Example: The vectors corresponding to

{Main, Keeney}, {Main, Wriston}, {Keeney, Wriston }, {Wriston, Gregorian}
are linearly dependent because these edges include a cycle.

The zero vector is equal to the nontrivial linear combination

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 * 1 1
+ 1 * 1 1
+ 1 * 1 1
+ 0 * 1 1

Linear dependence in Minimum Spanning Forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

If a subset of S form a cycle then S is linearly dependent.

On the other hand, if a set of edges contains no cycle (i.e. is a forest) then the
corresponding set of vectors is linearly independent.

“Quiz”

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Which edges are spanned?
Which sets are linearly dependent?

Review

Superfluous-Vector Lemma: For any set S and any vector v ∈ S , if v can be written
as a linear combination of the other vectors in S then Span (S − {v}) = Span S

Definition: Vectors v1, . . . , vn are linearly dependent if the zero vector can be written
as a nontrivial linear combination of the vectors:

0 = α1v1 + · · ·+ αnvn

In this case, we refer to the linear combination as a linear dependency in v1, . . . , vn.

On the other hand, if the only linear combination that equals the zero vector is the
trivial linear combination, we say v1, . . . , vn are linearly independent.

Properties of linear independence: hereditary

Lemma: If a finite set S of vectors is linearly dependent and S is a subset of T
then T is linearly dependent.

In graphs, if a set S of edges includes a cycle then a superset of S also includes a cycle.

Properties of linear independence: hereditary

Lemma: If a finite set S of vectors is linearly dependent and S is a subset of T then
T is linearly dependent.
Proof: If the zero vector can be written as a nontrivial linear combination of some
vectors, it can be so written even if we allow some extra vectors to be in the linear
combination because we can use zero coefficients on the extra vectors.

More formal proof: Write S = {s1, . . . , sn} and T = {s1, . . . , sn, t1, . . . , tk}. Suppose
S is linearly dependent. Then there are coefficients α1, . . . , αn, not all zero, such that

0 = α1s1 + · · ·+ αnsn

Therefore
0 = α1s1 + · · ·+ αnsn + 0 t1 + · · · 0 tk

which shows that the zero vector can be written as a nontrivial linear combination of
the vectors of T ,i.e. that T is linearly dependent.
QED

Properties of linear (in)dependence

Linear-Dependence Lemma Let v1, . . . , vn be vectors.
A vector vi is in the span of the other vectors

if and only if
the zero vector can be written as a linear combination of v1, . . . , vn

in which the coefficient of vi is nonzero.

In graphs, the Linear-Dependence Lemma states that an edge e is in the span of other
edges if there is a cycle consisting of e and a subset of the other edges.

Properties of linear (in)dependence

Linear-Dependence Lemma Let v1, . . . , vn be vectors.
A vector vi is in the span of the other vectors

if and only if
the zero vector can be written as a linear combination of v1, . . . , vn

in which the coefficient of vi is nonzero.

Proof: First direction: Suppose vi is in the span of the other vectors. That is, there
exist coefficients α1, . . . , αn−1 such that

vi = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·αnvn

Moving vi to the other side, we can write

0 = α1v1 + · · ·+ (−1)vi + · · ·+ αnvn

which shows that the all-zero vector can be written as a linear combination of
v1, . . . , vn in which the coefficient of vi is nonzero.

Properties of linear (in)dependence

Linear-Dependence Lemma Let v1, . . . , vn be vectors.
A vector vi is in the span of the other vectors

if and only if
the zero vector can be written as a linear combination of v1, . . . , vn

in which the coefficient of vi is nonzero.

Proof: Now for the other direction. Suppose there are coefficients α1, . . . , αn such
that

0 = α1 v1 + α2 v2 + · · ·+ αivi + · · ·+ αn vn

and such that αi 6= 0.

Dividing both sides by αi yields

0 = (α1/αi) v1 + (α2/αi) v2 + · · ·+ vi + · · ·+ (αn/αi) vn

Moving every term from right to left except vi yields

−(α1/αi) v1 − (α2/αi) v2 − · · · − (αn/αi) vn = vi

QED

Properties of linear (in)dependence

Linear-Dependence Lemma Let v1, . . . , vn be vectors. A vector vi is in the
span of the other vectors if and only if the zero vector can be written as a linear
combination of v1, . . . , vn in which the coefficient of vi is nonzero.

Contrapositive:
vi is not in the space of the other vectors

if and only if
for any linear combination equaling the zero vector

0 = α1 v1 + · · ·+ αi vi + · · ·+ αn vn

it must be that the coefficient αi is zero.

Analyzing the Grow algorithm

def Grow(V)
S = ∅
repeat while possible:

find a vector v in V that is not in Span S , and put it in S .

Grow-Algorithm Corollary: The vectors obtained by the Grow algorithm are
linearly independent.

In graphs, this means that the solution obtained by the Grow algorithm has no cycles
(is a forest).

Analyzing the Grow algorithm
Grow-Algorithm Corollary: The vectors obtained by the Grow algorithm are linearly
independent.

Proof: For n = 1, 2, . . ., let vn be the vector added to S in the nth iteration of the
Grow algorithm. We show by induction that v1, v2, . . . , vn are linearly independent.

For n = 0, there are no vectors, so the claim is trivially true.
Assume the claim is true for n = k − 1. We prove it for n = k .
The vector vk added to S in the kth iteration is not in the span of v1, . . . , vk−1.
Therefore, by the Linear-Dependence Lemma, for any coefficients α1, . . . , αk such that

0 = α1v1 + · · ·+ αk−1vk−1 + αkvk

it must be that αk equals zero. We may therefore write

0 = α1v1 + · · ·+ αk−1vk−1

By claim for n = k − 1, v1, . . . , vk−1 are linearly independent, so α1 = · · · = αk−1 = 0

The linear combination of v1, . . . , vk is trivial. We have proved that v1, . . . , vk are
linearly independent. This proves the claim for n = k. QED

Analyzing the Shrink algorithm

def Shrink(V)
S = some finite set of vectors that spans V
repeat while possible:

find a vector v in S such that Span (S − {v}) = V, and remove v from S .

Shrink-Algorithm Corollary: The vectors obtained by the Shrink algorithm are
linearly independent.

In graphs, this means that the Shrink algorithm outputs a solution that is a forest.

Recall:

Superfluous-Vector Lemma For any set S and any vector v ∈ S , if v can be
written as a linear combination of the other vectors in S then
Span (S − {v}) = Span S

Analyzing the Shrink algorithm

Shrink-Algorithm Corollary: The vectors obtained by the Shrink algorithm are
linearly independent.

Proof: Let S = {v1, . . . , vn} be the set of vectors obtained by the Shrink algorithm.
Assume for a contradiction that the vectors are linearly dependent.

Then 0 can be written as a nontrivial linear combination

0 = α1v1 + · · ·+ αnvn

where at least one of the coefficients is nonzero.

Let αi be one of the nonzero coefficients.

By the Linear-Dependence Lemma, vi can be written as a linear combination of the
other vectors.

Hence by the Superfluous-Vector Lemma, Span (S − {vi}) = Span S ,

so the Shrink algorithm should have removed vi . QED

Basis

If they successfully finish, the Grow algorithm and the Shrink algorithm each find a set
of vectors spanning the vector space V. In each case, the set of vectors found is
linearly independent.

Definition: Let V be a vector space. A basis for V is a linearly independent set of
generators for V.

Thus a set S of vectors of V is a basis for V if S satisfies two properties:

Property B1 (Spanning) Span S = V, and

Property B2 (Independent) S is linearly independent.

Most important definition in linear algebra.

Basis: Examples
A set S of vectors of V is a basis for V if S satisfies two properties:

Property B1 (Spanning) Span S = V, and

Property B2 (Independent) S is linearly independent.

Example: Let V = Span {[1, 0, 2, 0], [0,−1, 0,−2], [2, 2, 4, 4]}.
Is {[1, 0, 2, 0], [0,−1, 0,−2], [2, 2, 4, 4]} a basis for V?

The set is spanning but is not independent

1 [1, 0, 2, 0]− 1 [0,−1, 0,−2]− 1

2
[2, 2, 4, 4] = 0

so not a basis

However, {[1, 0, 2, 0], [0,−1, 0,−2]} is a basis:
I Obvious that these vectors are independent because each has a nonzero entry

where the other has a zero.
I To show

Span {[1, 0, 2, 0], [0,−1, 0,−2]} = Span {[1, 0, 2, 0], [0,−1, 0,−2], [2, 2, 4, 4]},
can use Superfluous-Vector Lemma:

[2, 2, 4, 4] = 2 [1, 0, 2, 0]− 2 [0,−1, 0,−2]

Basis: Examples

Example: A simple basis for R3: the standard generators
e1 = [1, 0, 0],e2 = [0, 1, 0],e3 = [0, 0, 1].

I Spanning: For any vector [x , y , z] ∈ R3,

[x , y , z] = x [1, 0, 0] + y [0, 1, 0] + z [0, 0, 1]

I Independent: Suppose

0 = α1 [1, 0, 0] + α2 [0, 1, 0] + α3 [0, 0, 1] = [α1, α2, α3]

Then α1 = α2 = α3 = 0.

Instead of “standard generators”, we call them standard basis vectors.
We refer to {[1, 0, 0], [0, 1, 0], [0, 0, 1]} as standard basis for R3.

In general the standard generators are usually called standard basis vectors.

Basis: Examples
Example: Another basis for R3: [1, 1, 1], [1, 1, 0], [0, 1, 1]

I Spanning: Can write standard generators in terms of these vectors:

[1, 0, 0] = [1, 1, 1]− [0, 1, 1]

[0, 1, 0] = [1, 1, 0] + [0, 1, 1]− [1, 1, 1]

[0, 0, 1] = [1, 1, 1]− [1, 1, 0]

Since e1,e2,e3 can be written in terms of these new vectors,
every vector in Span {e1,e2,e3} is in span of new vectors.
Thus R3 equals span of new vectors.

I Linearly independent: Write zero vector as linear combination:

0 = x [1, 1, 1] + y [1, 1, 0] + z [0, 1, 1] = [x + y , x + y + z , x + z]

Looking at each entry, we get

0 = x + y

0 = x + y + z

0 = x + z

Plug x + y = 0 into second equation to get 0 = z .
Plug z = 0 into third equation to get x = 0.
Plug x = 0 into first equation to get y = 0.
Thus the linear combination is trivial.

Basis: Examples in graphs

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

One kind of basis in a graph G : a set S of edges forming a spanning forest.

I Spanning: for each edge xy in G , there is an x-to-y path consisting of edges of S .

I Independent: no cycle consisting of edges of S

Towards showing that every vector space has a basis

We would like to prove that every vector space V has a basis.

The Grow algorithm and the Shrink algorithm each provides a way to prove this, but
we are not there yet:

I The Grow-Algorithm Corollary implies that, if the Grow algorithm terminates, the
set of vectors it has selected is a basis for the vector space V.
However, we have not yet shown that it always terminates!

I The Shrink-Algorithm Corollary implies that, if we can run the Shrink algorithm
starting with a finite set of vectors that spans V, upon termination it will have
selected a basis for V.
However, we have not yet shown that every vector space V is spanned by some
finite set of vectors!.

Computational problems involving finding a basis
Two natural ways to specify a vector space V:

1. Specifying generators for V.

2. Specifying a homogeneous linear system whose solution set is V.

Two Fundamental Computational Problems:

Computational Problem: Finding a basis of the vector space spanned by given
vectors

I input: a list [v1, . . . , vn] of vectors

I output: a list of vectors that form a basis for Span {v1, . . . , vn}.

Computational Problem: Finding a basis of the solution set of a homogeneous
linear system

I input: a list [a1, . . . ,an] of vectors

I output: a list of vectors that form a basis for the set of solutions to the
system a1 · x = 0, . . . ,an · x = 0

Unique representation

Recall idea of coordinate system for a vector space V:

I Generators a1, . . . ,an of V
I Every vector v in V can be written as a linear combination

v = α1 a1 + · · ·+ αn an

I We represent vector v by its coordinate representation [α1, . . . , αn]

Question: How can we ensure that each point has only one coordinate representation?

Answer: The generators a1, . . . ,an should form a basis.

Unique-Representation Lemma Let a1, . . . ,an be a basis for V. For any vector
v ∈ V, there is exactly one representation of v in terms of the basis vectors.

Uniqueness of representation in terms of a basis

Unique-Representation Lemma: Let a1, . . . ,an be a basis for V. For any vector
v ∈ V, there is exactly one representation of v in terms of the basis vectors.
Proof: Let v be any vector in V.
The vectors a1, . . . ,an span V, so there is at least one representation of v in terms of
the basis vectors.

Suppose there are two such representations:

v = α1 a1 + · · ·+ αn an = β1 a1 + · · ·+ βn an

We get the zero vector by subtracting one from the other:

0 = α1 a1 + · · ·+ αn an − (β1 a1 + · · ·+ βn an)

= (α1 − β1) a1 + · · ·+ (αn − βn) an

Since the vectors a1, . . . ,an are linearly independent, the coefficients
α1 − β1, . . . , αn − βn must all be zero, so the two representations are really the same.

QED

Uniqueness of representation in terms of a basis: The case of graphs

Unique-Representation Lemma Let a1, . . . ,an be a basis for V. For any vector
v ∈ V, there is exactly one representation of v in terms of the basis vectors.

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

A basis for a graph is a spanning forest.
Unique Representation shows that, for each edge xy in the graph,

I there is an x-to-y path in the spanning forest, and

I there is only one such path.

Change of basis
Suppose we have a basis a1, . . . ,an for some vector space V.
How do we go

I from a vector b in V
I to the coordinate representation u of b in terms of

a1, . . . ,an?

By linear-combinations definition of matrix-vector multiplication, a1 · · · an

 u

 =

 b


By Unique-Representation Lemma,
u is the only solution to the equation a1 · · · an

 x

 =

 b


so we can obtain u by using a matrix-vector equation solver.

Function
f : Fn −→ V defined
by f (x) = a1 · · · an

 x


is

I onto (because
a1, . . . ,an are
generators for V)

I one-to-one (by
Unique-
Representation
Lemma)

so f is an invertible
function.

Change of basis
Now suppose a1, . . . ,an is one basis for V and c1, · · · , ck is another.

Define f (x) =

 a1 · · · an

 x

 and define g(y) =

 c1 · · · ck

 y

.

Then both f and g are invertible functions.
The function f −1 ◦ g maps

I from coordinate representation of a vector in terms of c1, . . . , ck

I to coordinate representation of a vector in terms of a1, . . . ,an

In particular, if V = Fm for some m then

f invertible implies that

 a1 · · · an


is an invertible matrix.

g invertible implies that

 c1 · · · ck


is an invertible matrix.

Thus the function f −1 ◦ g has the property

(f −1 ◦ g)(x) =

 a1 · · · an

−1  c1 · · · ck

 x



Change of basis

Proposition: If a1, . . . ,an and c1, . . . , ck are bases for Fm then multiplication by the
matrix

B =

 a1 · · · an

−1  c1 · · · ck


maps

I from the representation of a vector with respect to c1, . . . , ck

I to the representation of that vector with respect to a1, . . . ,an.

Conclusion: Given two bases of Fm, there is a matrix B such that multiplication by B
converts from one coordinate representation to the other.

Remark: Converting between vector itself and its coordinate representation is a special
case:

I Think of the vector itself as coordinate representation with respect to standard
basis.

Change of basis: simple example

Example: To map

from coordinate representation with respect
to [1, 2, 3], [2, 1, 0], [0, 1, 4]

to coordinate representation with respect
to [2, 0, 1], [0, 1,−1], [1, 2, 0]

multiply by the matrix  2 0 1
0 1 2
1 −1 0

−1  1 2 0
2 1 1
3 0 4


which is 

2
3 −1

3 −1
3

2
3 −1

3 −4
3

−1
3

2
3

2
3


 1 2 0

2 1 1

3 0 4


which is  −1 1 −5

3

−4 1 −17
3

3 9 10
3



Perspective rendering

As application of change of basis, we show how to synthesize a camera view from a set
of points in three dimensions, taking into account perspective.
The math will be useful in next lab, where we will go in the opposite direction,
removing perspective from a real image.

We start with the points making up a wire
cube:

(0,1,0)

(1,0,0)

(0,0,1) (1,0,1)

(0,0,0)

(1,1,1)

(1,1,0)

(0,1,0)

For reasons that will become apparent, we
translate the cube, adding (1, 1, 8) to each
point.

(1,2,8)

(2,1,8)

(1,1,9) (2,1,9)

(1,1,8)

(2,2,9)

(2,2,8)

(1,2,9)

How does a camera (or an eye) see these points?

Simplified camera model

Simplified model of a camera:

Camera Center

I There is a point called the camera center.

I There is an image sensor array in the back of the camera.

I Photons bounce off objects in the scene and travel through the camera center to
the image sensor array.

I A photon from the scene only reaches the image sensor array if it travels in a
straight line through the camera center.

I The image ends up being inverted.

Even more simplified camera model

Even simpler model to avoid the inversion:

I The image sensor array is between the camera
center and the scene.

I The image sensor array is located in a plane,
called the image plane.

I A photon from the scene is detected by the
sensor array only if it is traveling in a straight
line towards the camera center.

I The sensor element that detects the photon is
the one intersected by this line.

I Need a function that maps from point p in
world to corresponding point q in image plane

camera center

image plane

camera center

image plane
point p in world

point q in image plane

Camera coordinate system

Camera-oriented basis helps in mapping from world points to image-plane points:

I The origin is defined to be the camera center.
(That’s why we translated the wire-frame
cube.)

I The first vector a1 goes horizontally from the
top-left corner of a sensor element to the
top-right corner.

I The second vector a2 goes vertically from the
top-left corner of a sensor element to the
bottom-left corner.

I The third vector a3 goes from the origin (the
camera center) to the bottom-left corner of
sensor element (0,0). (camera center)

image plane

origin

a3

a2

a1

From world point to camera-plane point

Side view (we see only the edge of the image plane)

I Have a point p in the world

I Express it in terms of a1,a2,a3

I Consider corresponding point q in image plane.

I Similar triangles ⇒ coordinates of q

Summary: Given coordinate
representation (x1, x2, x3) in terms
of a1,a2,a3,

coordinate representation of
corresponding point in image
plane is (x1/x3, x2/x3, x3/x3).

I call this scaling down.

image plane

p has
coordinates
(x1, x2, x3)

a2

origin

p

a3

image plane

p has
coordinates
(x1, x2, x3)

x3 a3

x2 a2

origin

p image plane

p has
coordinates
(x1, x2, x3)

x3 a3

x2 a2

origin

q

p image plane

p has
coordinates
(x1, x2, x3)q has coordinates

(x1/x3, x2/x3, x3/x3)

x3 a3

x2 a2

origin

q

p

a3

(x2 /x3) a2

Converting to pixel coordinates

Converting from a point (x1, x2, x3) in the image plane to pixel coordinates

I Drop third entry x3 (it is always equal to 1)

q

q has coordinates (2.7, 4.5, 1)

q is located in pixel (2, 4)

From world coordinates to camera coordinates to pixel coordinates

Write basis vectors of camera coordinate system using world coordinates

For each point p in the wire-frame cube,

I find representation in a1,a2,a3

I scale down to get corresponding point in image plane

I convert to pixel coordinates by dropping third entry x3

Wiimote whiteboard

For location of infrared point, wiimote
provides coordinate representation in terms
of its camera basis).

Johnny Chung Lee, wiimote whiteboard

To use as a mouse, need to find corresponding location on screen (coordinate
representation in tems of screen basis)

How to transform from one coordinate representation to the other?

Can do this using a matrix H.

The challenge is to calculate the matrix H.

Can do this if you know the camera coordinate representation of four points whose
screen coordinate representations are known.

You’ll do exactly the same computation but for a slightly different problem....

Removing perspective

Given an image of a
whiteboard, taken
from an angle...

synthesize an image
from straight ahead
with no perspective

Camera coordinate system

We use same camera-oriented basis a1,a2,a3:

I The origin is the camera center.

I The first vector a1 goes horizontally from the
top-left corner of the whiteboard element to
the top-right corner.

I The second vector a2 goes vertically from the
top-left corner of whiteboard to the
bottom-left corner.

I The third vector a3 goes from the origin (the
camera center) to the top-left corner of sensor
element (0,0).

(camera center)

image plane

origin

a3

a2

a1

Converting from one basis to another
In addition, we define a
whiteboard basis c1, c2, c3

I The origin is the camera
center.

I The first vector c1 goes
horizontally from the top-left
corner of whiteboard to
top-right corner.

I The second vector c2 goes
vertically from the top-left
corner of whiteboard to the
bottom-left corner.

I The third vector c3 goes from
the origin (the camera center)
to the top-right corner of
whiteboard.

(0,1,1)

(0,0,1)

(1,1,1)

(1,0,1)

c2

c1

Converting between different basis representations

Start with a point p written in terms of in camera coordinates

p =

 a1 a2 a3

 x1
x2
x3


We write the same point p in the whiteboard coordinate system as

p =

 c1 c2 c3

 y1
y2
y3


Combining the two equations, we obtain a1 a2 a3

 x1
x2
x3

 =

 c1 c2 c3

 y1
y2
y3



Converting...  a1 a2 a3

 x1
x2
x3

 =

 c1 c2 c3

 y1
y2
y3


Let A and C be the two matrices. As before, C has an inverse C−1.
Multiplying equation on the left by C−1, we obtain C−1

 A

 x1
x2
x3

 =

 C−1

 C

 y1
y2
y3


Since C−1 and C cancel out, we obtain C−1

 A

 x1
x2
x3

 =

 y1
y2
y3


We have shown that there is a matrix H (namely H = C−1A) such that H

 x1
x2
x3

 =

 y1
y2
y3



From pixel coordinates to whiteboard coordinates

(x1, x2) pixel coordinates
↓

(x1, x2, 1) represent point in image plane
in terms of camera basis

↓
(y1, y2, y3) = H ∗ (x1, x2, 1) change to representation

in terms of whiteboard basis
↓

(y1/y3, y2/y3, y3/y3) move to corresponding point
in whiteboard plane

↓
(y1/y3, y2/y3) get coordinates within whiteboard

How to almost compute H

Write H =

 hy1,x1 hy1,x2 hy1,x3

hy2,x1 hy2,x2 hy2,x3

hy3,x1 hy3,x2 hy3,x3


The hij ’s are the unknowns.

To derive equations, let p be some point on the whiteboard, and let q be the
corresponding point on the image plane. Let (x1, x2, 1) be the camera coordinates of
q, and let (y1, y2, y3) be the whiteboard coordinates of q. We have y1

y2
y3

 =

 hy1,x1 hy1,x2 hy1,x3

hy2,x1 hy2,x2 hy2,x3

hy3,x1 hy3,x2 hy3,x3

 x1
x2
1


Multiplying out, we obtain

y1 = hy1,x1x1 + hy1,x2x2 + hy1,x3

y2 = hy2,x1x1 + hy2,x2x2 + hy2,x3

y3 = hy3,x1x1 + hy3,x2x2 + hy3,x3

Almost computing H

y1 = hy1,x1x1 + hy1,x2x2 + hy1,x3

y2 = hy2,x1x1 + hy2,x2x2 + hy2,x3

y3 = hy3,x1x1 + hy3,x2x2 + hy3,x3

Whiteboard coordinates of the original point p are (y1/y3, y2/y3, 1). Define

w1 = y1/y3

w2 = y2/y3

so the whiteboard coordinates of p are (w1,w2, 1).
Multiplying through by y3, we obtain

w1y3 = y1

w2y3 = y2

Substituting our expressions for y1, y2, y3, we obtain

w1(hy3,x1x1 + hy3,x2x2 + hy3,x3) = hy1,x1x1 + hy1,x2x2 + hy1,x3

w2(hy3,x1x1 + hy3,x2x2 + hy3,x3) = hy2,x1x1 + hy2,x2x2 + hy2,x3

w1(hy3,x1x1 + hy3,x2x2 + hy3,x3) = hy1,x1x1 + hy1,x2x2 + hy1,x3

w2(hy3,x1x1 + hy3,x2x2 + hy3,x3) = hy2,x1x1 + hy2,x2x2 + hy2,x3

Multiplying through and moving everything to the same side, we obtain

(w1x1)hy3,x1 + (w1x2)hy3,x2 + w1hy3,x3 − x1hy1,x1 − x2hy1,x2 − 1hy1,x3 = 0

(w2x1)hy3,x1 + (w2x2)hy3,x2 + w2hy3,x3 − x1hy2,x1 − x2hy2,x2 − 1hy2,x3 = 0

Thus we get two linear equations in the unknowns. The coeffients are expressed in
terms of x1, x2,w1,w2.

For four points, get eight equations. Need one more...

One more equation

We can’t pin down H precisely.

This corresponds to the fact that we cannot recover the scale of the picture (a tiny
building that is nearby looks just like a huge building that is far away).

Fortunately, we don’t need the true H.

As long as the H we compute is a scalar multiple of the true H, things will work out.

To arbitrarily select a scale, we add the equation hy1,x1 = 1.

Once you know H

1. For each point q in the representation of the image, we have the camera
coordinates (x1, x2, 1) of q. We multiply by H to obtain the whiteboard
coordinates (y1, y2, y3) of the same point q.

2. Recall the situation as viewed from above:

Image Plane

whiteboard

q

p

camera center

The whiteboard coordinates of the corresponding point p on the whiteboard are
(y1/y3, y2/y3, 1). Use this formula to compute these coordinates.

3. Display the updated points with the same color matrix

Simplified Exchange Lemma

We need a tool to iteratively transform one set of generators into another.

I You have a set S of vectors.

I You have a vector z you want to inject into S .

I You want to maintain same size so must eject a vector from S .

I You want the span to not change.

Exchange Lemma tells you how to choose vector to eject.

Simplified Exchange Lemma:

I Suppose S is a set of vectors.

I Suppose z is a nonzero vector in Span S .

I Then there is a vector w in S such that

Span (S ∪ {z} − {w}) = Span S

Simplified Exchange Lemma proof

Simplified Exchange Lemma: Suppose S is a set of vectors, and z is a nonzero vector
in Span S . Then there is a vector w in S such that Span (S ∪ {z} − {w}) = Span S .

Proof: Let S = {v1, . . . , vn}. Since z is in Span S , can write

z = α1 v1 + · · ·+ αn vn

By Superfluous-Vector Lemma, Span (S ∪ {z}) = Span S .
Since z is nonzero, at least one of the coefficients is nonzero, say αi .
Rewrite as

z− α1 v1 − · · · − αi−1 vi−1 − αi+1 vi+1 − · · · − αn vn = αi vi

Divide through by αi :

(1/αi)z− (α1/αi) v1 − · · · − (αi−1/αi) vi−1 − (αi+1/αi) vi+1 − · · · − (αn/αi) vn = vi

By Superfluous-Vector Lemma, Span (S ∪ {z}) = Span (S ∪ {z} − {w}). QED

Exchange Lemma

Simplified Exchange Lemma: Suppose S is a set of vectors, and z is a nonzero
vector in Span S . Then there is a vector w in S such that
Span (S ∪ {z} − {w}) = Span S .

Simplified Exchange Lemma helps in transforming one generating set into another...
� � � �A� � � �

inject
� � ��A� � �

inject

�A � � � �
inject

� � � �
Trying to put squares in—when you put in one square, you might end up taking out a
previously inserted square
Need a way to protect some elements from being taken out.

Exchange Lemma

Simplified Exchange Lemma: Suppose S is a set of vectors, and z is a nonzero
vector in Span S . Then there is a vector w in S such that
Span (S ∪ {z} − {w}) = Span S .

Need to enhance this lemma. Set of protected elements is A:

Exchange Lemma:

I Suppose S is a set of vectors and A is a subset of S .

I Suppose z is a vector in Span S such that A ∪ {z} is linearly independent.

I Then there is a vector w ∈ S − A such that Span S = Span (S ∪ {z} − {w})

Now, not enough that z be nonzero—need A to be linearly independent.

Exchange Lemma proof
Exchange Lemma: Suppose S is a set of vectors and A is a subset of S . Suppose z is
a vector in Span S such that A ∪ {z} is linearly independent.
Then there is a vector w ∈ S − A such that Span S = Span (S ∪ {z} − {w})

Proof: Let S = {v1, . . . , vk ,w1, . . . ,w`} and A = {v1, . . . , vk}.
Since z is in Span S , can write

z = α1 v1 + · · ·+ αk vk + β1 w1 + · · ·+ β` w`

By Superfluous-Vector Lemma, Span (S ∪ {z}) = Span S .
If coefficients β1, . . . , β` were all zero then we would have z = α1 v1 + · · ·+ αk vk ,
contradicting the linear independence of A ∪ {z}.
Thus one of the coefficients β1, . . . , β` must be nonzero... say β1. Rewrite as

z− α1 v1 − · · · − αk vk − β2 w2 − · · · − β` w` = β1 w1

Divide through by β1:

(1/β1)z− (α1/β1) v1 − · · · − (αk/β1) vk − (β2/β1) w2 − · · · − (β`/β1) w` = w1

By Superfluous-Vector Lemma, Span (S ∪ {z}) = Span (S ∪ {z} − {w1}). QED

Proof of correctness of the Grow algorithm for Minimum Spanning Forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad

Bio-Med

Gregorian Quad

2

7

9
5 3

6

8

4

def Grow(G)
F := ∅
consider the edges in increasing order
for each edge e:

if e’s endpoints are not yet connected
add e to F .

We will show that this greedy algorithm
chooses the minimum-weight spanning
forest.
(Assume all weights are distinct.)

Let F = forest found by algorithm.
Let F ∗ = truly minimum-weight spanning forest.
Goal: show that F = F ∗

Assume for a contradiction that they are different.

Proof of correctness of the Grow algorithm for Minimum Spanning Forest

Assume for a contradiction that F and F ∗ are different.
Let e1, e2, . . . , em be the edges of G in increasing order.
Let ek be the minimum-weight edge on which F and F ∗ disagree.
Let A be the set of edges before ek that are in both F and F ∗.
Since at least one of the forests includes all of A and also ek , we know A∪ {ek} has no
cycles (is linearly independent).
Consider the moment when the Grow algorithm considers ek . So far, the algorithm has
chosen the edges in A, and ek does not form a cycle with edges in A, so the algorithm
must also choose ek .
Since F and F ∗ differ on ek , we infer that ek is not in F ∗.
Now we use the Exchange Lemma.

I A is a subset of F ∗.

I A ∪ {ek} is linearly independent.

I Therefore there is an edge en in F ∗ − A such that
Span (F ∗ ∪ {ek} − {en}) = Span F ∗

That is, F ∗ ∪ {ek} − {en} is also spanning.
But ek is cheaper than en so F ∗ is not min-weight solution. Contradiction. QED.

