Dimension

[6] Dimension

Key fact for this week: all bases for a vector space have the same size. We use this as the "basis" for answering many pending questions.

Morphing Lemma

Morphing Lemma: Suppose S is a set of vectors, and B is a linearly independent set of vectors in Span S. Then $|S| \ge |B|$.

Before we prove it-what good is this lemma?

Theorem: Any basis for \mathcal{V} is a smallest generating set for \mathcal{V} .

Proof: Let S be a smallest generating set for \mathcal{V} . Let B be a basis for \mathcal{V} . Then B is a linearly independent set of vectors in Span S. By the Morphing Lemma, B is no bigger than S, so B is also a smallest generating set.

Theorem: All bases for a vector space \mathcal{V} have the same size.

Proof: They are all smallest generating sets.

Morphing Lemma: Suppose S is a set of vectors, and B is a linearly independent set of vectors in Span S. Then $|S| \ge |B|$.

Proof outline: modify S step by step, introducing vectors of B one by one, without increasing the size.

How? Using the Exchange Lemma....

Exchange Lemma: Suppose S is a set of vectors and A is a subset of S. Suppose z is a vector in Span S such that $A \cup \{z\}$ is linearly independent. Then there is a vector $\mathbf{w} \in S - A$ such that

Span
$$S =$$
Span $(S \cup \{z\} - \{w\})$

Proof of the Morphing Lemma

Let $B = {\mathbf{b}_1, \dots, \mathbf{b}_n}$. Define $S_0 = S$. Prove by induction on $k \le n$ that there is a generating set S_k of Span S that contains $\mathbf{b}_1, \dots, \mathbf{b}_k$ and has size |S|.

Base case: k = 0 is trivial.

To go from S_{k-1} to S_k : use the Exchange Lemma.

•
$$A_k = \{ {f b}_1, \dots, {f b}_{k-1} \}$$
 and ${f z} = {f b}_k$

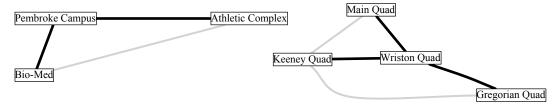
Exchange Lemma \Rightarrow there is a vector **w** in S_{k-1} such that

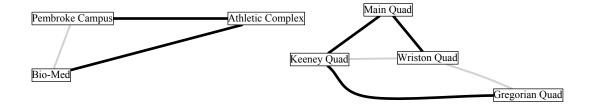
$$\mathsf{Span}\;(S_{k-1}\cup\{\mathbf{b}_k\}-\{\mathbf{w}\})=\mathsf{Span}\;S_{k-1}$$

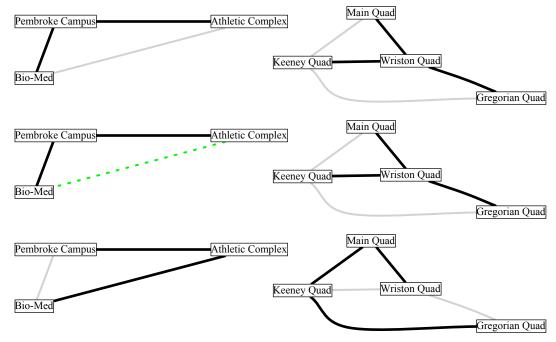
Set $S_k = S_{k-1} \cup {\mathbf{b}_k} - {\mathbf{w}}.$

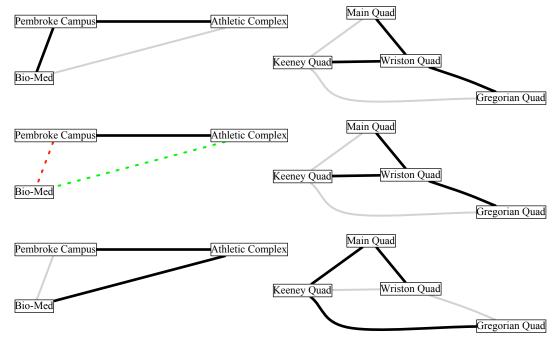
QED

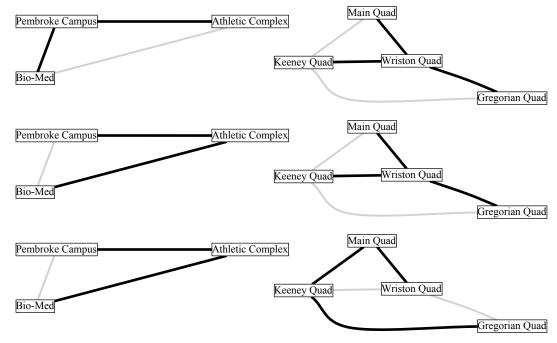
This induction proof is an algorithm.

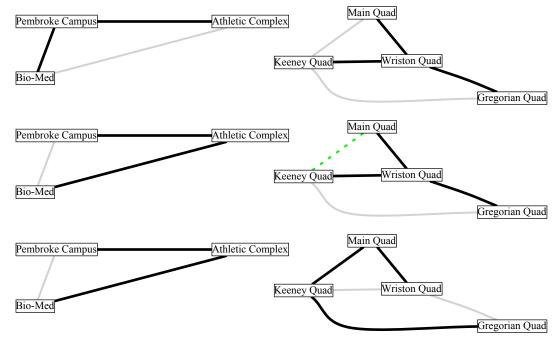


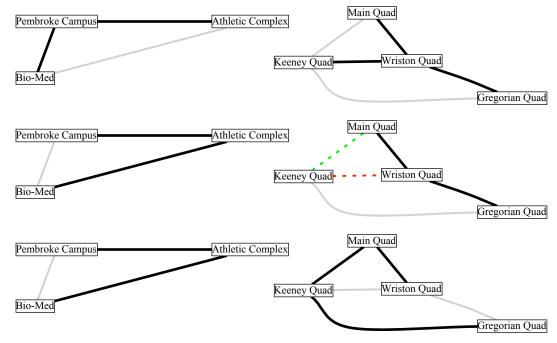


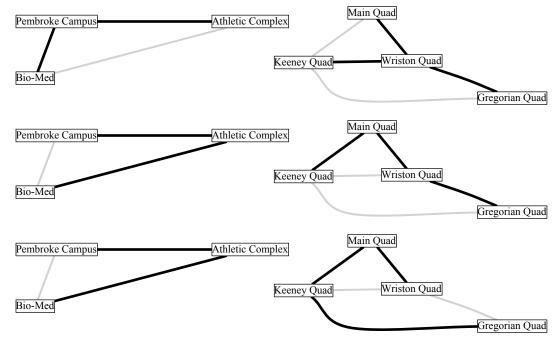


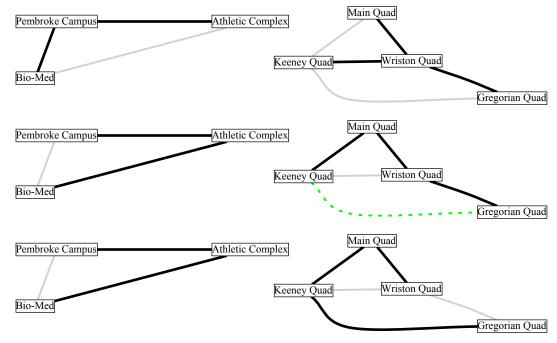


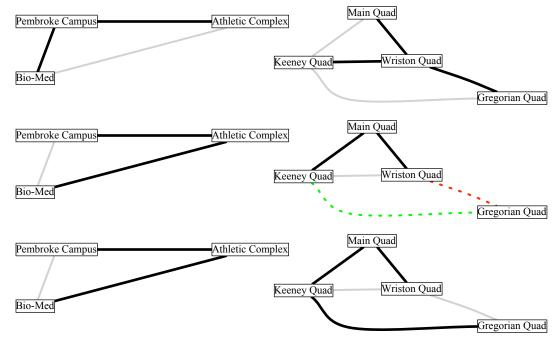


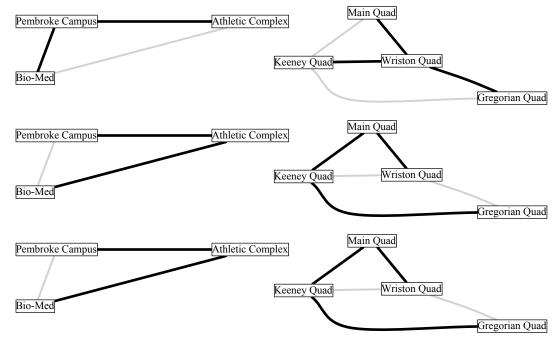












Dimension

Definition: We define the *dimension* of a vector space to be the size of a basis for that vector space. The dimension of a vector space \mathcal{V} is written dim \mathcal{V} .

Definition: We define the *rank* of a set S of vectors as the dimension of Span S. We write rank S.

Example: The vectors [1, 0, 0], [0, 2, 0], [2, 4, 0] are linearly dependent. Therefore their rank is less than three.

First two of these vectors form a basis for the span of all three, so the rank is two.

Example: The vector space Span $\{[0,0,0]\}$ is spanned by an empty set of vectors. Therefore the rank of $\{[0,0,0]\}$ is zero.

Row rank, column rank

Definition: For a matrix M, the row rank of M is the rank of its rows, and the column rank of M is the rank of its columns.

Equivalently, the row rank of M is the dimension of Row M, and the column rank of M is the dimension of Col M.

Example: Consider the matrix

$$M = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 4 & 0 \end{array} \right]$$

whose rows are the vectors we saw before: [1, 0, 0], [0, 2, 0], [2, 4, 0]

The set of these vectors has rank two, so the row rank of M is two.

The columns of M are [1, 0, 2], [0, 2, 4], and [0, 0, 0].

Since the third vector is the zero vector, it is not needed for spanning the column space. Since each of the first two vectors has a nonzero where the other has a zero, these two are linearly independent, so the column rank is two.

Row rank, column rank

Definition: For a matrix M, the row rank of M is the rank of its rows, and the column rank of M is the rank of its columns.

Equivalently, the row rank of M is the dimension of Row M, and the column rank of M is the dimension of Col M.

Example: Consider the matrix

$$M = \left[\begin{array}{rrrr} 1 & 0 & 0 & 5 \\ 0 & 2 & 0 & 7 \\ 0 & 0 & 3 & 9 \end{array} \right]$$

Each of the rows has a nonzero where the others have zeroes, so the three rows are linearly independent. Thus the row rank of M is three.

The columns of M are [1, 0, 0], [0, 2, 0], [0, 0, 3], and [5, 7, 9].

The first three columns are linearly independent, and the fourth can be written as a linear combination of the first three, so the column rank is three.

Row rank, column rank

Definition: For a matrix M, the row rank of M is the rank of its rows, and the column rank of M is the rank of its columns.

Equivalently, the row rank of M is the dimension of Row M, and the column rank of M is the dimension of Col M.

Does column rank always equal row rank? ©

Geometry

We have asked:

Fundamental Question: How can we predict the dimensionality of the span of some vectors?

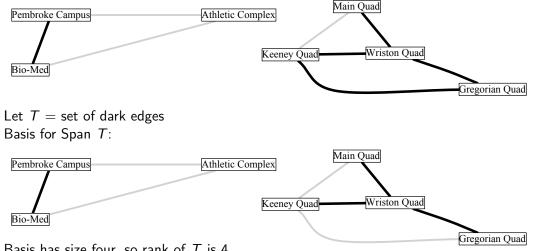
Now we can answer:

Compute the rank of the set of vectors.

Examples:

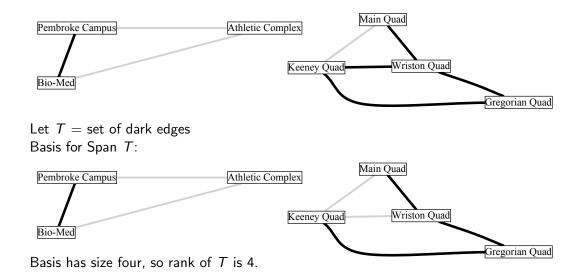
- Span $\{[1,2,-2]\}$ is a line but Span $\{[0,0,0]\}$ is a point. First vector space has dimension one, second has dimension zero.
- Span $\{[1,2],[3,4]\}$ consists of all of \mathbb{R}^2 but Span $\{[1,3],[2,6]\}$ is a line The first has dimension two and the second has dimension one.
- Span $\{[1,0,0], [0,1,0], [0,0,1]\}$ is \mathbb{R}^3 but Span $\{[1,0,0], [0,1,0], [1,1,0]\}$ is a plane. The first has dimension three and the second has dimension two.

Dimension and rank in graphs



Basis has size four, so rank of T is 4.

Dimension and rank in graphs



Cardinality of a vector space over GF(2)

Recall checksum problem

Checksum function $\textbf{x} \mapsto [\textbf{a}_1 \cdot \textbf{x}, \dots, \textbf{a}_{64} \cdot \textbf{x}]$

Original "file" $\boldsymbol{p},$ transmission error \boldsymbol{e} so corrupted file is $\boldsymbol{p}+\boldsymbol{e}.$

What is probability that corrupted file has the same checksum as original?

If error is chosen according to uniform distribution,

Probability $(\mathbf{p} + \mathbf{e} \text{ has same checksum as } \mathbf{p})$

Probability (e is a solution to homogeneous linear system)
 number of solutions to homogeneous linear system

number of *n*-vectors number of solutions to homogeneous linear system

2ⁿ

raising Question

How to find number of solutions to a homogeneous linear system over GF(2)?

Cardinality of a vector space over GF(2)

How to find number of solutions to a homogeneous linear system over GF(2)?

Solution set of a homogeneous linear system is a vector space. Question becomes

How to find out cardinality of a vector space \mathcal{V} over GF(2)?

- Suppose basis for \mathcal{V} is $\mathbf{b}_1, \ldots, \mathbf{b}_n$.
- Then \mathcal{V} is set of linear combinations

$$\beta_1 \mathbf{b}_1 + \cdots + \beta_n \mathbf{b}_n$$

- ▶ Number of linear combinations is 2ⁿ.
- By Unique-Representation Lemma, every linear combination gives a different vector of V.
- Thus cardinality is $2^{\dim \mathcal{V}}$.

Cardinality of a vector space over GF(2)

Cardinality of a vector space \mathcal{V} over GF(2) is $2^{\dim \mathcal{V}}$.

How to find dimension of solution set of a homogeneous linear system?

Write linear system as $A\mathbf{x} = \mathbf{0}$.

How to find dimension of the null space of A?

Answers will come later.

Subset-Basis Lemma

Lemma: Every finite set T of vectors contains a subset S that is a basis for Span T. **Proof:** The Grow algorithm finds a basis for \mathcal{V} if it terminates.

Initialize $S = \emptyset$.

Repeat while possible: select a vector \mathbf{v} in \mathcal{V} that is not in Span S, and put it in S.

Revised version:

Initialize $S = \emptyset$ Repeat while possible: select a vector **v** in *T* that is not in Span *S*, and put it in *S*.

Differs from original:

• This algorithm stops when Span S contains every vector in T.

► The original Grow algorithm stops only once Span S contains every vector in \mathcal{V} . However, that's okay: when Span S contains all the vectors in T, Span S also contains all linear combinations of vectors in T, so at this point Span $S = \mathcal{V}$. Shows that original Grow algorithm can be guided to make same choices as this algorithm, so result is a basis. QED

Termination of Grow algorithm

 $\begin{array}{l} {\rm def \ GROW}(\mathcal{V}) \\ B=\emptyset \\ {\rm repeat \ while \ possible:} \\ {\rm find \ a \ vector \ V \ in \ } \mathcal{V} \ that \ is \ not \ in \ Span \ B, \ and \ put \ it \ in \ S. \end{array}$

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{GROW}(\mathcal{V})$ terminates. **Proof:** By Grow-Algorithm Corollary, B is linearly independent throughout. Apply the Morphing Lemma with $S = \{$ standard generators for $\mathbb{F}^D \} \Rightarrow |B| \leq |S| = |D|$.

QED

Since *B* grows in each iteration, there are at most |D| iterations.

Every subspace of \mathbb{F}^D contains a basis

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{GROW}(\mathcal{V})$ terminates. **Theorem:** For finite D, every subspace of \mathbb{F}^D contains a basis. **Proof:** Let \mathcal{V} be a subspace of \mathbb{F}^D .

```
def GROW(\mathcal{V})

B = \emptyset

repeat while possible:

find a vector v in \mathcal{V} that is not in Span B, and put it in B.
```

Grow-Algorithm-Termination Lemma ensures algorithm terminates. Upon termination, every vector in \mathcal{V} is in Span B, so B is a set of generators for \mathcal{V} . By Grow-Algorithm Corollary, B is linearly independent. Therefore B is a basis for \mathcal{V} . QED

Superset-Basis Lemma

Grow-Algorithm-Termination Lemma: If \mathcal{V} is a subspace of \mathbb{F}^D where D is finite then $\operatorname{GROW}(\mathcal{V})$ terminates.

Superset-Basis Lemma: Let \mathcal{V} be a vector space consisting of *D*-vectors where *D* is finite. Let *C* be a linearly independent set of vectors belonging to \mathcal{V} . Then \mathcal{V} has a basis *B* containing all vectors in *C*.

Proof: Use version of Grow algorithm:

Initialize *B* to the empty set. Repeat while possible: select a vector \mathbf{v} in \mathcal{V} (preferably in *C*) that is not in Span *B*, and put it in *B*.

At first, *B* will consist of vectors in *C* until *B* contains all of *C*. Then more vectors will be added to *B* until Span $B = \mathcal{V}$ By Grow-Algorithm Corollary, *B* is linearly independent throughout. Therefore, once algorithm terminates, *B* contains *C* and is a basis for \mathcal{U} .

Termination is implied by Grow Algorithm Termination Lemma.

Estimating dimension

 $\mathcal{T} = \{ [-0.6, -2.1, -3.5, -2.2], [-1.3, 1.5, -0.9, -0.5], [4.9, -3.7, 0.5, -0.3], [2.6, -3.5, -1.2, -2.0], [-1.5, -2.5, -3.5, 0.94] \}.$ What is the rank of \mathcal{T} ?

By Subset-Basis Lemma, T contains a basis.

```
Therefore dim Span T \leq |T|.
```

Therefore rank $T \leq |T|$.

Proposition: A set T of vectors has rank $\leq |T|$.

Dimension Lemma

Dimension Lemma: If \mathcal{U} is a subspace of \mathcal{W} then

- ▶ **D1:** dim $\mathcal{U} \leq \dim \mathcal{W}$, and
- ▶ **D2:** if dim U = dim W then U = W

Proof: Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be a basis for \mathcal{U} .

By Superset-Basis Lemma, there is a basis B for \mathcal{W} that contains $\mathbf{u}_1, \ldots, \mathbf{u}_k$.

- $\triangleright B = {\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{b}_1, \dots, \mathbf{b}_r}$
- Thus $k \leq |B|$, and

• If
$$k = |B|$$
 then $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} = B$

Example: Suppose $\mathcal{V} = \text{Span} \{[1, 2], [2, 1]\}$. Clearly \mathcal{V} is a subspace of \mathbb{R}^2 . However, the set $\{[1, 2], [2, 1]\}$ is linearly independent, so dim $\mathcal{V} = 2$. Since dim $\mathbb{R}^2 = 2$, D2 shows that $\mathcal{V} = \mathbb{R}^2$. **Example:** $S = \{[-0.6, -2.1, -3.5, -2.2], [-1.3, 1.5, -0.9, -0.5], [4.9, -3.7, 0.5, -0.3], [2.6, -3.5, -1.2, -2.0], [-1.5, -2.5, -3.5, 0.94]\}$ Since every vector in S is a 4-vector, Span S is a subspace of \mathbb{R}^4 . Since dim $\mathbb{R}^4 = 4$, D1 shows dim Span $S \leq 4$.

QED

Proposition: Any set of *D*-vectors has rank at most |D|.

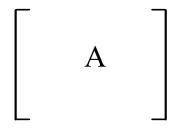
Rank Theorem: For every matrix M, row rank equals column rank.

Lemma: For any matrix A, row rank of $A \leq$ column rank of A To show theorem:

- ▶ Apply lemma to $M \Rightarrow$ row rank of $M \le$ column rank of M
- Apply lemma to M^T ⇒ row rank of M^T ≤ column rank of M^T ⇒ column rank of M ≤ row rank of M

Combine \Rightarrow row rank of M = column rank of M

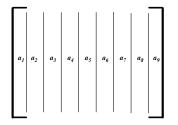
Proof of lemma: For any matrix A, row rank of $A \leq$ column rank of A



Think of A as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = r). Write each column of A in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$ Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix equation A = BU.

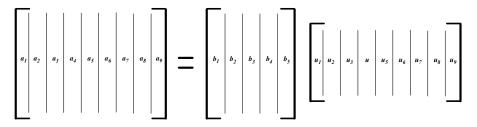
B has r columns and U has r rows.

Write A and B in terms of rows: row i of A equals row i of B times U. Write U in terms of rows: row i of A is a linear combination of rows of U. Each row of A is in span of the r rows of U. **Thus row rank of** A **is at most** r. Proof of lemma: For any matrix A, row rank of $A \leq$ column rank of A



Think of A as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = r). Write each column of A in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$ Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix equation A = BU. B has r columns and U has r rows.

Write A and B in terms of rows: row i of A equals row i of B times U. Write U in terms of rows: row i of A is a linear combination of rows of U. Each row of A is in span of the r rows of U. **Thus row rank of** A **is at most** r. Proof of lemma: For any matrix A, row rank of $A \leq$ column rank of A

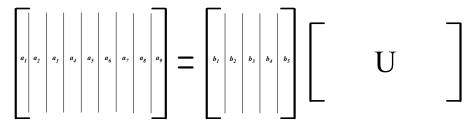


Think of *A* as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = *r*). Write each column of *A* in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix equation A = BU.

B has r columns and U has r rows.

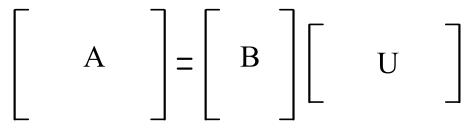
Write A and B in terms of rows: row i of A equals row i of B times U. Write U in terms of rows: row i of A is a linear combination of rows of U. Each row of A is in span of the r rows of U. **Thus row rank of** A **is at most** r.



Think of *A* as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = *r*). Write each column of *A* in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix equation A = BU.

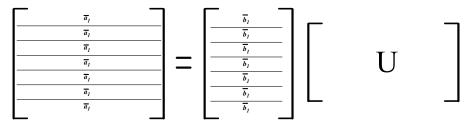
B has r columns and U has r rows.



Think of *A* as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = *r*). Write each column of *A* in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix equation A = BU.

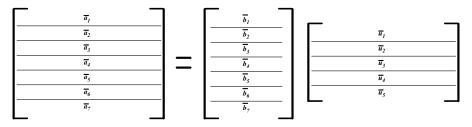
B has r columns and U has r rows.



Think of *A* as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = *r*). Write each column of *A* in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix equation A = BU.

B has r columns and U has r rows.



Think of *A* as columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_r$ be basis for column space (so column rank = *r*). Write each column of *A* in terms of basis: $\begin{bmatrix} \mathbf{a}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_r \end{bmatrix} \begin{bmatrix} \mathbf{u}_j \end{bmatrix}$

Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix equation A = BU.

B has r columns and U has r rows.

Simple authentication revisited

- Password is an *n*-vector $\hat{\mathbf{x}}$ over GF(2)
- **Challenge:** Computer sends random *n*-vector **a**
- Response: Human sends back $\mathbf{a} \cdot \hat{\mathbf{x}}$. Repeated until Computer is convinced that Human knows password $\hat{\mathbf{x}}$.

Eve eavesdrops on communication, learns m pairs

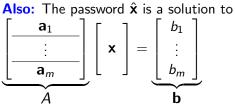
$$\mathbf{a_1}, b_1$$

 \vdots
 $\mathbf{a_m}, b_m$
such that b_i is right response to challenge
 \mathbf{a}_i

Then Eve can calculate right response to any challenge in Span $\{a_1, \ldots, a_m\}$:

Suppose $\mathbf{a} = \alpha_1 \mathbf{a}_1 + \dots + \alpha_m \mathbf{a}_m$ Then right response is $\alpha_1 b_1 + \dots + \alpha_m b_m$ **Fact:** Probably rank $[\mathbf{a}_1, \ldots, \mathbf{a}_m]$ is not much less than min $\{m, n\}$.

Once m > n, probably Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ is all of $GF(2)^n$ so Eve can respond to any challenge.



Solution set of $A\mathbf{x} = \mathbf{b}$ is $\hat{\mathbf{x}} + \text{Null } A$

Once rank A reaches n, columns of A are linearly independent so Null A is trivial, so only solution is the password $\hat{\mathbf{x}}$, so Eve can compute the password using solver.

Direct Sum

Let \mathcal{U} and \mathcal{V} be two vector spaces consisting of D-vectors over a field \mathbb{F} .

Definition: If \mathcal{U} and \mathcal{V} share only the zero vector then we define the *direct sum* of \mathcal{U} and \mathcal{V} to be the set

 $\{\mathbf{u} + \mathbf{v} : \mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}\}$

written $\mathcal{U}\oplus\mathcal{V}$

That is, $\mathcal{U} \oplus \mathcal{V}$ is the set of all sums of a vector in \mathcal{U} and a vector in \mathcal{V} .

In Python, [u+v for u in U for v in V]

(But generally \mathcal{U} and \mathcal{V} are infinite so the Python is just suggestive.)

Direct Sum: Example

Vectors over GF(2):

Example: Let $\mathcal{U} = \text{Span} \{1000, 0100\}$ and let $\mathcal{V} = \text{Span} \{0010\}$.

- Every nonzero vector in U has a one in the first or second position (or both) and nowhere else.
- \blacktriangleright Every nonzero vector in ${\cal V}$ has a one in the third position and nowhere else.

Therefore the only vector in both \mathcal{U} and \mathcal{V} is the zero vector.

Therefore $\mathcal{U} \oplus \mathcal{V}$ is defined.

 $\mathcal{U} \oplus \mathcal{V} = \{0000 + 0000, 1000 + 0000, 0100 + 0000, 1100 + 0000, 0000 + 0010, 1000 + 0010, 1000 + 0010, 1100 + 0010\}$

which is equal to $\{0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110\}$.

Direct Sum: Example

Vectors over \mathbb{R} :

Example: Let $\mathcal{U} = \text{Span} \{ [1, 2, 1, 2], [3, 0, 0, 4] \}$ and let \mathcal{V} be the null space of $\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}$.

- ▶ The vector [2, -2, -1, 2] is in \mathcal{U} because it is [3, 0, 0, 4] [1, 2, 1, 2]
- It is also in \mathcal{V} because

$$\left[\begin{array}{rrrr} 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{array}\right] \left[\begin{array}{r} 2 \\ -2 \\ -1 \\ 2 \end{array}\right] = \left[\begin{array}{r} 0 \\ 0 \end{array}\right]$$

Therefore we cannot form $\mathcal{U} \oplus \mathcal{V}$.

Direct Sum: Example

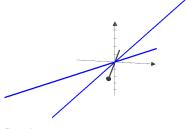
Vectors over $\mathbb{R}:$

Example:

- ▶ Let $U = \text{Span} \{ [4, -1, 1] \}.$
- Let $\mathcal{V} = \text{Span } \{[0, 1, 1]\}.$

The only intersection is at the origin, so $\mathcal{U}\oplus\mathcal{V}$ is defined.

- $\mathcal{U} \oplus \mathcal{V}$ is the set of vectors $\mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in \mathcal{U}$ and $\mathbf{v} \in \mathcal{V}$.
- This is just Span $\{[4, -1, 1], [0, 1, 1]\}$
- Plane containing the two lines





Properties of direct sum

Lemma: $\mathcal{U} \oplus \mathcal{V}$ is a vector space.

(Prove using Properties V1, V2, V3.)

Lemma: The union of

- \blacktriangleright a set of generators of $\mathcal U,$ and
- \blacktriangleright a set of generators of ${\cal V}$
- is a set of generators for $\mathcal{U}\oplus\mathcal{V}.$

Proof: Suppose $\mathcal{U} = \text{Span} \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\mathcal{V} = \text{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Then

- every vector in \mathcal{U} can be written as $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m$, and
- every vector in \mathcal{V} can be written as $\beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n$

so every vector in $\mathcal{U}\oplus\mathcal{V}$ can be written as

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_m \mathbf{u}_m + \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$$

Properties of direct sum

Direct Sum Basis Lemma:

Union of a basis of \mathcal{U} and a basis of \mathcal{V} is a basis of $\mathcal{U} \oplus \mathcal{V}$.

Proof: Clearly

- \blacktriangleright a basis of ${\cal U}$ is a set of generators for ${\cal U},$ and
- a basis of \mathcal{V} is a set of generators for \mathcal{V} .

Therefore the previous lemma shows that

• the union of a basis for \mathcal{U} and a basis for \mathcal{V} is a generating set for $\mathcal{U} \oplus \mathcal{V}$.

We just need to show that the union is linearly independent.

Properties of direct sum

Direct Sum Basis Lemma:

Union of a basis of \mathcal{U} and a basis of \mathcal{V} is a basis of $\mathcal{U} \oplus \mathcal{V}$.

Proof, cont'd: Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ be a basis for \mathcal{U} . Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a basis for \mathcal{V} . We need to show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_m, \mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is independent. Suppose

$$\mathbf{0} = \alpha_1 \, \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m + \beta_1 \, \mathbf{v}_1 + \cdots + \beta_n \, \mathbf{v}_n.$$

Then

$$\underbrace{\alpha_1 \ \mathbf{u}_1 + \dots + \alpha_m \ \mathbf{u}_m}_{\text{in } \mathcal{U}} = \underbrace{(-\beta_1) \ \mathbf{v}_1 + \dots + (-\beta_n) \ \mathbf{v}_n}_{\text{in } \mathcal{V}}$$

Left-hand side is a vector in \mathcal{U} , and right-hand side is a vector in \mathcal{V} .

By definition of $\mathcal{U} \oplus \mathcal{V}$, the only vector in both \mathcal{U} and \mathcal{V} is the zero vector. This shows:

$$\mathbf{0} = \alpha_1 \, \mathbf{u}_1 + \dots + \alpha_m \, \mathbf{u}_m$$

and

$$\mathbf{0} = (-\beta_1) \mathbf{v}_1 + \cdots + (-\beta_n) \mathbf{v}_n$$

By linear independence, the linear combinations must be trivial.

Direct Sum

Direct Sum Basis Lemma:

Union of a basis of \mathcal{U} and a basis of \mathcal{V} is a basis of $\mathcal{U} \oplus \mathcal{V}$.

Direct Sum Dimension Corollary: dim \mathcal{U} + dim \mathcal{V} = dim $\mathcal{U} \oplus \mathcal{V}$

Proof: A basis for \mathcal{U} together with a basis for \mathcal{V} forms a basis for $\mathcal{U} \oplus \mathcal{V}$. QED

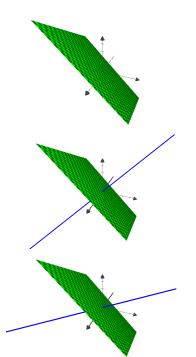
Complementary subspace

If $\mathcal{U} \oplus \mathcal{V} = \mathcal{W}$, we say \mathcal{U} and \mathcal{V} are *complementary* subspaces of \mathcal{W} .

Example: Suppose \mathcal{U} is a plane in \mathbb{R}^3 .

Then any line through the origin that does not lie in ${\cal U}$ is complementary subspace with respect to \mathbb{R}^3

Example illustrates that, for a given subspace \mathcal{U} of \mathcal{W} , there can be many different subspaces \mathcal{V} such that \mathcal{U} and \mathcal{V} are complementary.



Complementary subspace

Proposition: For any finite-dimensional vector space \mathcal{W} and any subspace \mathcal{U} , there is a subspace \mathcal{V} such that \mathcal{U} and \mathcal{V} are complementary.

Proof: Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be a basis for \mathcal{U} . By Superset-Basis Lemma, there is a basis for \mathcal{W} that includes $\mathbf{u}_1, \ldots, \mathbf{u}_k$:

$$\mathsf{B} = \{\mathsf{u}_1, \ldots, \mathsf{u}_k, \mathsf{v}_1, \ldots, \mathsf{v}_r\}$$

Let $\mathcal{V} = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}.$

Any vector in \mathcal{W} can be written in terms of its basis:

$$\mathbf{w} = \underbrace{\alpha_1 \, \mathbf{u}_1 + \dots + \alpha_k \, \mathbf{u}_k}_{\text{in } \mathcal{U}} + \underbrace{\beta_1 \, \mathbf{v}_1 + \dots + \beta_r \, \mathbf{v}_r}_{\text{in } \mathcal{V}}$$

If some vector \mathbf{v} is in Span $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ and in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ then $\mathbf{v} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k$ and $\mathbf{v} = \beta_1 \mathbf{v}_1 + \dots + \beta_r \mathbf{v}_r$ so

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_k \mathbf{u}_k = \beta_1 \mathbf{v}_1 + \dots + \beta_r \mathbf{v}_r$$

$$\mathbf{0} = \alpha_1 \, \mathbf{u}_1 + \dots + \alpha_k \, \mathbf{u}_k - \beta_1 \, \mathbf{v}_1 - \dots - \beta_r \, \mathbf{v}_r$$

so $\alpha_1 = \dots = \alpha_k = \beta_1 = \dots = \beta_r = 0$ so $\mathbf{v} = \mathbf{0}$. QED

Linear function invertibility

How to tell if a linear function $f : \mathcal{V} \longrightarrow \mathcal{W}$ is invertible?

- One-to-one? f is one-to-one if its kernel is trivial. Equivalent: if its kernel has dimension zero.
- Onto? f is onto if its image equals its co-domain

Recall that the image of a function f with domain \mathcal{V} is $\{f(\mathbf{v}) : \mathbf{v} \in \mathcal{V}\}$.

```
Lemma: The image of f is a subspace of \mathcal{W}.
```

How can we tell if the image of f equals W?

```
Dimension Lemma: If \mathcal{U} is a subspace of \mathcal{W} then
```

```
Property D1: dim \mathcal{U} \leq \dim \mathcal{W}, and
```

Property D2: if dim $\mathcal{U} = \dim \mathcal{W}$ then $\mathcal{U} = \mathcal{W}$

```
Use Property D2 with U = \text{Im } f.
Shows that the function f is onto iff dim Im f = \dim W
```

We conclude:

f is invertible dim Ker f = 0 and dim Im $f = \dim \mathcal{W}$

Linear function invertibility

f is one-to-one if dim Ker f = 0 and dim Im $f = \dim \mathcal{W}$

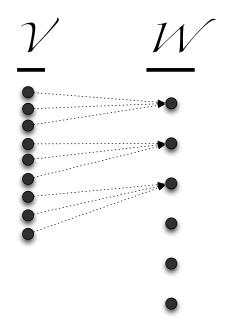
How does this relate to dimension of the domain?

Conjecture: For *f* to be invertible, need dim $\mathcal{V} = \dim \mathcal{W}$.

Starting with a linear function f we will extract a largest possible subfunction that is invertible.

Make it onto by setting co-domain to be image of f.

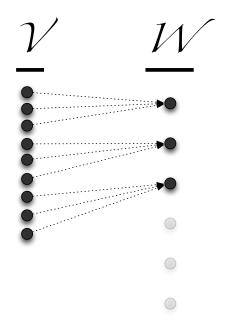
Make it one-to-one by getting rid of extra domain elements sharing same image.



Starting with a linear function f we will extract a largest possible subfunction that is invertible.

Make it onto by setting co-domain to be image of f.

Make it one-to-one by getting rid of extra domain elements sharing same image.

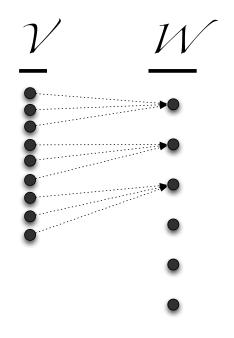


Start with linear function $f : \mathcal{V} \longrightarrow \mathcal{W}$ Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function
$$f^* : \mathcal{V}^* \longrightarrow \mathcal{W}^*$$
 by $f^*(\mathbf{x}) = f(\mathbf{x})$

In fact, we will end up selecting a *basis* of \mathcal{W}^* and a basis of \mathcal{V}^* .

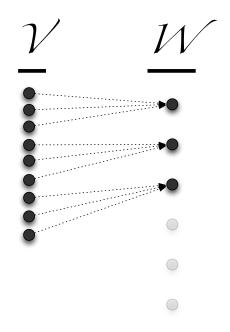


Start with linear function $f : \mathcal{V} \longrightarrow \mathcal{W}$ Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function $f^* : \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

In fact, we will end up selecting a *basis* of \mathcal{W}^* and a basis of \mathcal{V}^* .

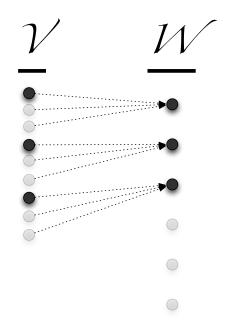


Start with linear function $f : \mathcal{V} \longrightarrow \mathcal{W}$ Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function
$$f^* : \mathcal{V}^* \longrightarrow \mathcal{W}^*$$
 by $f^*(\mathbf{x}) = f(\mathbf{x})$

In fact, we will end up selecting a *basis* of \mathcal{W}^* and a basis of \mathcal{V}^* .



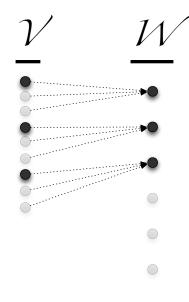
Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

- ► Choose smaller domain V* Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V* = Span {v₁,..., v_r}
- ▶ Define function f* : V* → W* by f*(x) = f(x)

We will show:

- ► *f*^{*} is onto
- ▶ *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*



Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

 Choose smaller domain V^{*} Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V^{*} = Span {v₁,..., v_r}

We will show:

- ► *f*^{*} is onto
- ▶ *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

Onto:

Let **w** be any vector in co-domain \mathcal{W}^* . There are scalars $\alpha_1, \ldots, \alpha_r$ such that

 $\mathbf{w} = \alpha_1 \, \mathbf{w}_1 + \dots + \alpha_r \, \mathbf{w}_r$ Because f is linear, $f(\alpha_1 \, \mathbf{v}_1 + \dots + \alpha_r \, \mathbf{v}_r)$ $= \alpha_1 \, f(\mathbf{v}_1) + \dots + \alpha_r \, f(\mathbf{v}_r)$ $= \alpha_1 \, \mathbf{w}_1 + \dots + \alpha_r \, \mathbf{w}_r$ so w is image of $\alpha_1 \, \mathbf{v}_1 + \dots + \alpha_r \, \mathbf{v}_r \in \mathcal{V}^*$ QED

Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

► Choose smaller domain V* Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V* = Span {v₁,..., v_r}

We will show:

► *f*^{*} is onto

- ► *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

One-to-one:

By One-to-One Lemma, need only show kernel is trivial.

Suppose \mathbf{v}^* is in \mathcal{V}^* and $f(\mathbf{v}^*) = \mathbf{0}$

Because $\mathcal{V}^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$, there are scalars $\alpha_1, \dots, \alpha_r$ such that

$$\mathbf{v}^* = \alpha_1 \, \mathbf{v}_1 + \dots + \alpha_r \, \mathbf{v}_r$$

Applying f to both sides,

$$\mathbf{0} = f(\alpha_1 \, \mathbf{v}_1 + \dots + \alpha_r \, \mathbf{v}_r)$$
$$= \alpha_1 \, \mathbf{w}_1 + \dots + \alpha_r \, \mathbf{w}_r$$

QED

Because $\mathbf{w}_1, \dots, \mathbf{w}_r$ are linearly independent, $\alpha_1 = \dots = \alpha_r = 0$ so $\mathbf{v}^* = \mathbf{0}$

Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

► Choose smaller domain V* Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V* = Span {v₁,..., v_r}

We will show:

- ► *f*^{*} is onto
- ▶ *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^* Need only show linear independence Suppose $\mathbf{0} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_r \mathbf{v}_r$

Applying f to both sides,

$$\mathbf{0} = f(\alpha_1 \, \mathbf{v}_1 + \dots + \alpha_r \, \mathbf{v}_r)$$
$$= \alpha_1 \, \mathbf{w}_1 + \dots + \alpha_r \, \mathbf{w}_r$$

Because $\mathbf{w}_1, \ldots, \mathbf{w}_r$ are linearly independent, $\alpha_1 = \cdots = \alpha_r = 0$. QED

Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

- Choose smaller domain V^{*} Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V^{*} = Span {v₁,..., v_r}
- ▶ Define function f* : V* → W* by f*(x) = f(x)

We will show:

- ► *f*^{*} is onto
- ▶ *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

Example:

Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$, and define $\mathbf{f} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by $f(\mathbf{x}) = A\mathbf{x}$.

Define $W^* = \text{Im } f = \text{Col } A =$ Span {[1,2,1],[2,1,2],[1,1,1]}.

One basis for \mathcal{W}^* is $\label{eq:w1} \boldsymbol{w}_1 = [0,1,0]\text{, } \boldsymbol{w}_2 = [1,0,1]$

Pre-images for \mathbf{w}_1 and \mathbf{w}_2 : $\mathbf{v}_1 = [\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}]$ and $\mathbf{v}_2 = [-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]$, for then $A\mathbf{v}_1 = \mathbf{w}_1$ and $A\mathbf{v}_2 = \mathbf{w}_2$.

Let
$$\mathcal{V}^*=\mathsf{Span}\ \{\textbf{v}_1,\textbf{v}_2\}$$

Then $f^* : \mathcal{V}^* \longrightarrow \text{Im } f$ is onto and one-to-one.

► Choose smaller co-domain W* Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

- Choose smaller domain V^{*} Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V^{*} = Span {v₁,..., v_r}
- ▶ Define function f* : V* → W* by f*(x) = f(x)

We will show:

- ► *f*^{*} is onto
- ▶ *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

To show about original function f: original domain $\mathcal{V} = \text{Ker } f \oplus \mathcal{V}^*$ Must prove two things:

- 1. Ker f and \mathcal{V}^* share only zero vector
- 2. every vector in \mathcal{V} is the sum of a vector in Ker f and a vector in \mathcal{V}^*

We already showed kernel of f^* is trivial. This shows only vector of Ker f in \mathcal{V}^* is zero vector. —thing 1 is proved.

Let \mathbf{v} be any vector in \mathcal{V} , and let $\mathbf{w} = f(\mathbf{v})$. Since f^* is onto, its domain \mathcal{V}^* contains a vector \mathbf{v}^* such that $f(\mathbf{v}^*) = \mathbf{w}$ Therefore $f(\mathbf{v}) = f(\mathbf{v}^*)$ so $f(\mathbf{v}) - f(\mathbf{v}^*) = \mathbf{0}$ so $f(\mathbf{v} - \mathbf{v}^*) = \mathbf{0}$ Thus $\mathbf{u} = \mathbf{v} - \mathbf{v}^*$ is in Ker fand $\mathbf{v} = \mathbf{u} + \mathbf{v}^*$ —thing 2 is proved.

Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

 Choose smaller domain V^{*} Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V^{*} = Span {v₁,..., v_r}

We will show:

- ▶ f* is onto
- ► *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

original domain $\mathcal{V} = \text{Ker } f \oplus \mathcal{V}^*$ **Example:** Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$, and define $\mathbf{f} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by $f(\mathbf{x}) = A\mathbf{x}$. $\mathbf{v}_1 = [\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}]$ and $\mathbf{v}_2 = [-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]$ $\mathcal{V}^* = \text{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$ Ker $f = \text{Span} \{ [1, 1, -3] \}$ Therefore $\mathcal{V} = (\text{Span} \{[1, 1, -3]\}) \oplus (\text{Span} \{\mathbf{v}_1, \mathbf{v}_2\})$

Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \ldots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

► Choose smaller domain V* Let v₁,..., v_r be pre-images of w₁,..., w_r That is, f(v₁) = w₁,..., f(v_r) = w_r Let V* = Span {v₁,..., v_r}

We will show:

- ► *f*^{*} is onto
- ▶ *f*^{*} is one-to-one (kernel is trivial)
- Bonus: $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

original domain $\mathcal{V} = \text{Ker } f \oplus \mathcal{V}^*$ By Direct-Sum Dimension Corollary, $\dim \mathcal{V} = \dim \text{Ker } f + \dim \mathcal{V}^*$

Since $\mathbf{v}_1, \ldots, \mathbf{v}_r$ form a basis for \mathcal{V}^* , dim $\mathcal{V}^* = r = \dim \operatorname{Im} f$

We have proved...

Kernel-Image Theorem: For any linear function $f : \mathcal{V} \to W$, dim Ker $f + \dim \operatorname{Im} f = \dim \mathcal{V}$

Linear function invertibility, revisited

Kernel-Image Theorem: For any linear function $f : \mathcal{V} \to W$,

 $\dim \operatorname{Ker} \, f + \dim \operatorname{Im} \, f = \dim \mathcal{V}$

Linear-Function Invertibility Theorem: Let $f : \mathcal{V} \longrightarrow \mathcal{W}$ be a linear function. Then f is invertible iff dim Ker f = 0 and dim $\mathcal{V} = \dim \mathcal{W}$.

Proof: We saw before that *f*

- is one-to-one iff dim Ker f = 0
- is onto if dim Im $f = \dim W$

Therefore f is invertible if dim Ker f = 0 and dim Im $f = \dim W$.

Kernel-Image Theorem states dim Ker $f + \dim \operatorname{Im} f = \dim \mathcal{V}$

Therefore

dim Ker f = 0 and dim Im $f = \dim \mathcal{W}$ iff dim Ker f = 0 and dim $\mathcal{V} = \dim \mathcal{W}$

Rank-Nullity Theorem

Kernel-Image Theorem:

For any linear function $f: \mathcal{V} \to W$,

 $\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim \mathcal{V}$

Apply Kernel-Image Theorem to the function $f(\mathbf{x}) = A\mathbf{x}$:

- Ker f = Null A
- dim Im $f = \dim \text{Col } A = \text{rank } A$

Definition: The *nullity* of matrix A is dim Null A

Rank-Nullity Theorem: For any *n*-column matrix *A*,

nullity $A + \operatorname{rank} A = n$

Checksum problem revisited

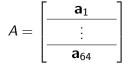
Checksum function maps *n*-vectors over *GF*(2) to 64-vectors over *GF*(2): $\mathbf{x} \mapsto [\mathbf{a}_1 \cdot \mathbf{x}, \dots, \mathbf{a}_{64} \cdot \mathbf{x}]$

Original "file" \mathbf{p} , transmission error \mathbf{e} so corrupted file is $\mathbf{p} + \mathbf{e}$.

If error is chosen according to uniform distribution, Probability $(\mathbf{p} + \mathbf{e} \text{ has same checksum as } \mathbf{p})$

$$=\frac{2^{\dim \mathcal{V}}}{2^n}$$

where \mathcal{V} is the null space of the matrix



Fact: Can easily choose $\mathbf{a}_1, \ldots, \mathbf{a}_{64}$ so that rank A = 64

(Randomly chosen vectors will probably work.)

Rank-Nullity Theorem \Rightarrow rank A + nullity A = n64 + dim \mathcal{V} = ndim \mathcal{V} = n-64Therefore Probability = $\frac{2^{n-64}}{2^n} = \frac{1}{2^{64}}$

very tiny chance that the change is undetected

Rank-Nullity Theorem: For any n-column matrix A,

nullity $A + \operatorname{rank} A = n$

Corollary: Let A be an $R \times C$ matrix. Then A is invertible if and only if |R| = |C| and the columns of A are linearly independent.

Proof: Let \mathbb{F} be the field. Define $f : \mathbb{F}^C \longrightarrow \mathbb{F}^R$ by $f(\mathbf{x}) = A\mathbf{x}$. Then A is an invertible matrix if and only if f is an invertible function.

The function f is invertible iff dim Ker f = 0 and dim $\mathbb{F}^C = \dim \mathbb{F}^R$ iff nullity A = 0 and |C| = |R|.

nullity A = 0 iff dim Null A = 0

- iff Null $A = \{0\}$
- iff the only vector \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$
- iff the columns of A are linearly independent. QED

Matrix invertibility examples

```
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} is not square so cannot be invertible.
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} is square and its columns are linearly independent so it is invertible.
\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{bmatrix} is square but columns not linearly independent so it is not invertible.
```

Transpose of invertible matrix is invertible

Theorem: The transpose of an invertible matrix is invertible.

$$A = \left[\begin{array}{c|c} \mathbf{v}_1 \\ \cdots \\ \mathbf{v}_n \end{array} \right] = \left[\begin{array}{c|c} \mathbf{a}_1 \\ \vdots \\ \hline \mathbf{a}_n \end{array} \right] \qquad \qquad A^T = \left[\begin{array}{c|c} \mathbf{a}_1 \\ \cdots \\ \mathbf{a}_n \end{array} \right]$$

Proof: Suppose A is invertible. Then A is square and its columns are linearly independent. Let n be the number of columns. Then rank A = n.

Because A is square, it has n rows. By Rank Theorem, rows are linearly independent. Columns of transpose A^T are rows of A, so columns of A^T are linearly independent. Since A^T is square and columns are linearly independent, A^T is invertible. QED

More matrix invertibility

Earlier we proved: If A has an inverse A^{-1} then AA^{-1} is identity matrix **Converse:** If BA is identity matrix then A and B are inverses? **Not always true.**

Theorem: Suppose A and B are square matrices such that BA is an identity matrix 1. Then A and B are inverses of each other.

Proof: To show that A is invertible, need to show its columns are linearly independent.

Let **u** be any vector such that $A\mathbf{u} = \mathbf{0}$. Then $B(A\mathbf{u}) = B\mathbf{0} = \mathbf{0}$. On the other hand, $(BA)\mathbf{u} = \mathbb{1}\mathbf{u} = \mathbf{u}$, so $\mathbf{u} = \mathbf{0}$.

This shows A has an inverse A^{-1} . Now must show $B = A^{-1}$. We know AA^{-1} is an identity matrix.

$$BA = 1$$

$$(BA)A^{-1} = 1A^{-1}$$
by multiplying on the right by B^{-1}

$$(BA)A^{-1} = A^{-1}$$

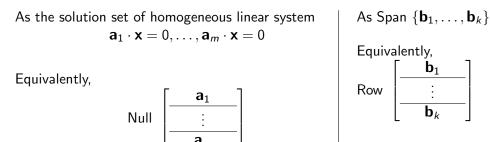
$$B(AA^{-1}) = A^{-1}$$
by associativity of matrix-matrix mult
$$B 1 = A^{-1}$$

$$B = A^{-1}$$

$$QED$$

Representations of vector spaces

Two important ways to represent a vector space:



How to transform between these two representations?

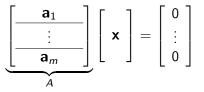
From left to right: Given homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

From right to left:

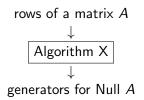
Given generators $\mathbf{b}_1, \ldots, \mathbf{b}_k$, find homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \ldots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$

From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

Solution set is the set of vectors \mathbf{u} such that $\mathbf{a}_1 \cdot \mathbf{u} = 0, \dots, \mathbf{a}_m \cdot \mathbf{u} = 0$



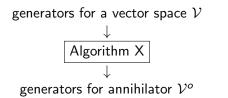
Equivalent: Given rows of a matrix *A*, find generators for Null *A*



If **u** is such a vector then $\mathbf{u} \cdot (\alpha_1 \mathbf{a}_1 + \dots + \alpha_m \mathbf{a}_m) = 0$ for any coefficients $\alpha_1, \dots, \alpha_m$.

Definition: The set of vectors \mathbf{u} such that $\mathbf{u} \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in \mathcal{V} is called the *annihilator* of \mathcal{V} . Written as \mathcal{V}^o .

Example: The annihilator of Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$ is the solution set for $\mathbf{a}_1 \cdot \mathbf{x} = 0, \ldots, \mathbf{a}_m \cdot \mathbf{x} = 0$



Definition: For a subspace \mathcal{V} of \mathbb{F}^n , the *annihilator* of \mathcal{V} , written \mathcal{V}^o , is

$$\mathcal{V}^{o} = \{ \mathbf{u} \in \mathbb{F}^{n} : \mathbf{u} \cdot \mathbf{v} = 0 \text{ for every vector } \mathbf{v} \in \mathcal{V} \}$$

Example over \mathbb{R} : Let $\mathcal{V} = \text{Span} \{[1,0,1], [0,1,0]\}$. Then $\mathcal{V}^o = \text{Span} \{[1,0,-1]\}$:

- ▶ Note that $[1, 0, -1] \cdot [1, 0, 1] = 0$ and $[1, 0, -1] \cdot [0, 1, 0] = 0$. Therefore $[1, 0, -1] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1, 0, 1], [0, 1, 0]\}$.
- For any scalar β ,

$$\beta \left[1,0,-1
ight] \cdot \mathbf{v}=eta \left(\left[1,0,-1
ight] \cdot \mathbf{v}
ight) =0$$

for every vector **v** in Span $\{[1, 0, 1], [0, 1, 0]\}$.

Which vectors u satisfy u · v = 0 for every vector v in Span {[1,0,1],[0,1,0]}? Only scalar multiples of [1,0,−1].

Example over *GF*(2): Let $\mathcal{V} = \text{Span} \{[1,0,1], [0,1,0]\}$. Then $\mathcal{V}^o = \text{Span} \{[1,0,1]\}$:

- Note that [1,0,1] · [1,0,1] = 0 (remember GF(2) addition) and [1,0,1] · [0,1,0] = 0.
- Therefore $[1,0,1] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1,0,1], [0,1,0]\}$.
- Of course $[0,0,0] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1,0,1], [0,1,0]\}$.
- [1,0,1] and [0,0,0] are the only such vectors.

Example over \mathbb{R} : Let $\mathcal{V} = \text{Span} \{[1,0,1], [0,1,0]\}$. Then $\mathcal{V}^o = \text{Span} \{[1,0,-1]\}$ dim $\mathcal{V} + \text{dim} \mathcal{V}^o = 3$

Example over *GF*(2): Let $\mathcal{V} = \text{Span} \{[1, 0, 1], [0, 1, 0]\}$. Then $\mathcal{V}^o = \text{Span} \{[1, 0, 1]\}$. dim $\mathcal{V} + \dim \mathcal{V}^o = 3$

Example over \mathbb{R} : Let $\mathcal{V} = \text{Span} \{[1, 0, 1, 0], [0, 1, 0, 1]\}.$ Then $\mathcal{V}^o = \text{Span} \{[1, 0, -1, 0], [0, 1, 0, -1]\}.$ dim $\mathcal{V} + \text{dim} \mathcal{V}^o = 4$

Annihilator Dimension Theorem: dim \mathcal{V} + dim \mathcal{V}^o = n

Proof: Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be generators for \mathcal{V} .

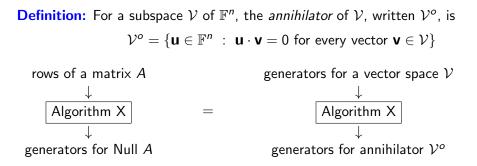
Let
$$A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$

Then $\mathcal{V}^{o} = \text{Null } A$.

Rank-Nullity Theorem states that

 $\begin{array}{rrr} {\rm rank} \ A & + & {\rm nullity} \ A & = & n \\ {\rm dim} \ \mathcal{V} & + & {\rm dim} \ \mathcal{V}^o & = & n \end{array}$

QED

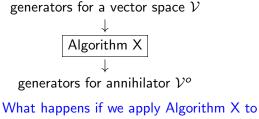


From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

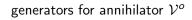
Algorithm X solves left-to-right problem....

what about right-to-left problem?

From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set



generators for annihilator \mathcal{V}^o ?



↓ Algorithm X

generators for annihilator of annihilator $(\mathcal{V}^o)^o$

From right to left: Given generators $\mathbf{b}_1, \ldots, \mathbf{b}_k$, find system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \ldots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$

generators for annihilator \mathcal{V}^o \downarrow Algorithm Y \downarrow generators for original space \mathcal{V}

Theorem: $(\mathcal{V}^o)^o = \mathcal{V}$ (The annihilator of the annihilator is the original space.)

Theorem shows:

Algorithm X = Algorithm Y

We still must prove the Theorem ...

Annihilator

Theorem: $(\mathcal{V}^o)^o = \mathcal{V}$ (The annihilator of the annihilator is the original space.)

Proof:

Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be a basis for \mathcal{V} . Let $\mathbf{b}_1, \ldots, \mathbf{b}_k$ be a basis for \mathcal{V}^o . Since $\mathbf{b}_1 \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in \mathcal{V} ,

$$\mathbf{b}_1 \cdot \mathbf{a}_1 = 0, \mathbf{b}_1 \cdot \mathbf{a}_2 = 0, \dots, \mathbf{b}_1 \cdot \mathbf{a}_m = 0$$

Similarly $\mathbf{b}_i \cdot \mathbf{a}_1 = 0, \mathbf{b}_i \cdot \mathbf{a}_2 = 0, \dots, \mathbf{b}_i \cdot \mathbf{a}_m = 0$ for $i = 1, 2, \dots, k$. Reorganizing,

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = 0, \mathbf{a}_1 \cdot \mathbf{b}_2 = 0, \dots, \mathbf{a}_1 \cdot \mathbf{b}_k = 0$$

which implies that $\mathbf{a}_1 \cdot \mathbf{u} = 0$ for every vector \mathbf{u} in $\underbrace{\text{Span } \{\mathbf{b}_1, \dots, \mathbf{b}_k\}}_{\mathcal{V}^o}$

This shows \mathbf{a}_1 is in $(\mathcal{V}^o)^o$. Similarly \mathbf{a}_2 is in $(\mathcal{V}^o)^o$, \mathbf{a}_3 is in $(\mathcal{V}^o)^o$, ..., \mathbf{a}_m is in $(\mathcal{V}^o)^o$. Therefore every vector in Span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is in $(\mathcal{V}^o)^o$. Thus $\underbrace{\text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}}_{\mathcal{V}}$ is a subspace of $(\mathcal{V}^o)^o$.

To show that these are equal, we must show that dim $\mathcal{V} = \dim(\mathcal{V}^o)^o$.

 \mathbf{D}_{1} , \mathbf{A}_{1} is the interval of \mathbf{D}_{1} is a second of \mathbf{D}_{1} is the interval of \mathbf{D}_{1} is the interval of \mathbf{D}_{2} is the interval

Annihilator

Theorem: $(\mathcal{V}^o)^o = \mathcal{V}$ (The annihilator of the annihilator is the original space.) **Proof:** Reorganizing,

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = 0, \mathbf{a}_1 \cdot \mathbf{b}_2 = 0, \dots, \mathbf{a}_1 \cdot \mathbf{b}_k = 0$$

which implies that $\mathbf{a}_1 \cdot \mathbf{u} = 0$ for every vector \mathbf{u} in $\underbrace{\text{Span } \{\mathbf{b}_1, \dots, \mathbf{b}_k\}}_{\mathcal{V}^o}$

This shows \mathbf{a}_1 is in $(\mathcal{V}^o)^o$. Similarly \mathbf{a}_2 is in $(\mathcal{V}^o)^o$, \mathbf{a}_3 is in $(\mathcal{V}^o)^o$, ..., \mathbf{a}_m is in $(\mathcal{V}^o)^o$. Therefore every vector in Span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is in $(\mathcal{V}^o)^o$. Thus Span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is a subspace of $(\mathcal{V}^o)^o$.

 \mathcal{V} To show that these are equal, we must show that dim $\mathcal{V} = \dim(\mathcal{V}^o)^o$. By Annihilator Dimension Theorem, dim $\mathcal{V} + \dim \mathcal{V}^o = n$.

By Annihilator Dimension Theorem applied to \mathcal{V}^o , dim $\mathcal{V}^o + \dim(\mathcal{V}^o)^o = n$. Together these equations show dim $\mathcal{V} = \dim(\mathcal{V}^o)^o$.

QED