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The size of a basis

Key fact for this week: all bases for a vector space have the same size.

We use this as the “basis” for answering many pending questions.



Morphing Lemma

Morphing Lemma: Suppose S is a set of vectors, and B is a linearly independent set
of vectors in Span S . Then |S | ≥ |B|.

Before we prove it—what good is this lemma?

Theorem: Any basis for V is a smallest generating set for V.

Proof: Let S be a smallest generating set for V. Let B be a basis for V. Then B is a
linearly independent set of vectors in Span S . By the Morphing Lemma, B is no bigger
than S , so B is also a smallest generating set.

Theorem: All bases for a vector space V have the same size.

Proof: They are all smallest generating sets.



Proof of the Morphing Lemma

Morphing Lemma: Suppose S is a set of vectors, and B is a linearly independent set
of vectors in Span S . Then |S | ≥ |B|.

Proof outline: modify S step by step, introducing vectors of B one by one, without
increasing the size.

How? Using the Exchange Lemma....



Review of Exchange Lemma

Exchange Lemma: Suppose S is a set of vectors and A is a subset of S . Suppose z is
a vector in Span S such that A ∪ {z} is linearly independent.
Then there is a vector w ∈ S − A such that

Span S = Span (S ∪ {z} − {w})



Proof of the Morphing Lemma

Let B = {b1, . . . ,bn}. Define S0 = S .
Prove by induction on k ≤ n that there is a generating set Sk of Span S that contains
b1, . . . ,bk and has size |S |.

Base case: k = 0 is trivial.

To go from Sk−1 to Sk : use the Exchange Lemma.

I Ak = {b1, . . . ,bk−1} and z = bk

Exchange Lemma ⇒ there is a vector w in Sk−1 such that

Span (Sk−1 ∪ {bk} − {w}) = Span Sk−1

Set Sk = Sk−1 ∪ {bk} − {w}.

QED

This induction proof is an algorithm.



Morphing from one spanning forest to another
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Dimension

Definition: We define the dimension of a vector space to be the size of a basis for
that vector space. The dimension of a vector space V is written dimV.

Definition: We define the rank of a set S of vectors as the dimension of Span S . We
write rank S .

Example: The vectors [1, 0, 0], [0, 2, 0], [2, 4, 0] are linearly dependent.
Therefore their rank is less than three.
First two of these vectors form a basis for the span of all three, so the rank is two.

Example: The vector space Span {[0, 0, 0]} is spanned by an empty set of vectors.
Therefore the rank of {[0, 0, 0]} is zero.



Row rank, column rank

Definition: For a matrix M, the row rank of M is the rank of its rows, and the column
rank of M is the rank of its columns.
Equivalently, the row rank of M is the dimension of Row M, and the column rank of
M is the dimension of Col M.

Example: Consider the matrix

M =

 1 0 0
0 2 0
2 4 0


whose rows are the vectors we saw before: [1, 0, 0], [0, 2, 0], [2, 4, 0]
The set of these vectors has rank two, so the row rank of M is two.
The columns of M are [1, 0, 2], [0, 2, 4], and [0, 0, 0].
Since the third vector is the zero vector, it is not needed for spanning the column space.
Since each of the first two vectors has a nonzero where the other has a zero, these two
are linearly independent, so the column rank is two.



Row rank, column rank

Definition: For a matrix M, the row rank of M is the rank of its rows, and the column
rank of M is the rank of its columns.
Equivalently, the row rank of M is the dimension of Row M, and the column rank of
M is the dimension of Col M.

Example: Consider the matrix

M =

 1 0 0 5
0 2 0 7
0 0 3 9


Each of the rows has a nonzero where the others have zeroes, so the three rows are
linearly independent. Thus the row rank of M is three.
The columns of M are [1, 0, 0], [0, 2, 0], [0, 0, 3], and [5, 7, 9].
The first three columns are linearly independent, and the fourth can be written as a
linear combination of the first three, so the column rank is three.



Row rank, column rank

Definition: For a matrix M, the row rank of M is the rank of its rows, and the column
rank of M is the rank of its columns.
Equivalently, the row rank of M is the dimension of Row M, and the column rank of
M is the dimension of Col M.

Does column rank always equal row rank? ,



Geometry

We have asked:

Fundamental Question: How can we predict
the dimensionality of the span of some vectors?

Now we can answer:
Compute the rank of the set of vectors.

Examples:
• Span {[1, 2,−2]} is a line but Span {[0, 0, 0]} is a point.
First vector space has dimension one, second has dimension zero.

• Span {[1, 2], [3, 4]} consists of all of R2 but Span {[1, 3], [2, 6]} is a line
The first has dimension two and the second has dimension one.

• Span {[1, 0, 0], [0, 1, 0], [0, 0, 1]} is R3 but Span {[1, 0, 0], [0, 1, 0], [1, 1, 0]} is a plane.
The first has dimension three and the second has dimension two.



Dimension and rank in graphs
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Cardinality of a vector space over GF (2)

Recall checksum problem
Checksum function x 7→ [a1 · x, . . . ,a64 · x]

Original “file” p, transmission error e so corrupted file is p + e.

What is probability that corrupted file has the same checksum as original?

If error is chosen according to uniform distribution,

Probability (p + e has same checksum as p)

= Probability (e is a solution to homogeneous linear system)

=
number of solutions to homogeneous linear system

number of n-vectors

=
number of solutions to homogeneous linear system

2n

raising Question

How to find number of solutions to a homogeneous linear system over GF (2)?



Cardinality of a vector space over GF (2)

How to find number of solutions to a homogeneous linear system over GF (2)?

Solution set of a homogeneous linear system is a vector space.
Question becomes

How to find out cardinality of a vector space V over GF (2)?

I Suppose basis for V is b1, . . . ,bn.

I Then V is set of linear combinations
β1 b1 + · · ·+ βn bn

I Number of linear combinations is 2n.

I By Unique-Representation Lemma, every linear combination gives a different
vector of V.

I Thus cardinality is 2dimV .



Cardinality of a vector space over GF (2)

Cardinality of a vector space V over GF (2) is 2dimV .

How to find dimension of solution set of a homogeneous linear system?

Write linear system as Ax = 0.

How to find dimension of the null space of A?

Answers will come later.



Subset-Basis Lemma
Lemma: Every finite set T of vectors contains a subset S that is a basis for Span T .

Proof: The Grow algorithm finds a basis for V if it terminates.

Initialize S = ∅.
Repeat while possible: select a vector v in V that is not in Span S , and put it in S .

Revised version:

Initialize S = ∅
Repeat while possible: select a vector v in T that is not in Span S , and put it in S .

Differs from original:
I This algorithm stops when Span S contains every vector in T .
I The original Grow algorithm stops only once Span S contains every vector in V.

However, that’s okay: when Span S contains all the vectors in T , Span S also contains
all linear combinations of vectors in T , so at this point Span S = V.
Shows that original Grow algorithm can be guided to make same choices as this
algorithm, so result is a basis. QED



Termination of Grow algorithm

def Grow(V)
B = ∅
repeat while possible:

find a vector v in V that is not in Span B, and put it in S .

Grow-Algorithm-Termination Lemma: If V is a subspace of FD where D is finite
then Grow(V) terminates.
Proof: By Grow-Algorithm Corollary, B is linearly independent throughout.

Apply the Morphing Lemma with S = {standard generators for FD} ⇒
|B| ≤ |S | = |D|.

Since B grows in each iteration, there are at most |D| iterations. QED



Every subspace of FD contains a basis

Grow-Algorithm-Termination Lemma: If V is a subspace of FD where D is finite
then Grow(V) terminates.
Theorem: For finite D, every subspace of FD contains a basis.
Proof: Let V be a subspace of FD .

def Grow(V)
B = ∅
repeat while possible:

find a vector v in V that is not in Span B, and put it in B.

Grow-Algorithm-Termination Lemma ensures algorithm terminates.
Upon termination, every vector in V is in Span B, so B is a set of generators for V. By
Grow-Algorithm Corollary, B is linearly independent. Therefore B is a basis for V.
QED



Superset-Basis Lemma

Grow-Algorithm-Termination Lemma: If V is a subspace of FD where D is finite
then Grow(V) terminates.
Superset-Basis Lemma: Let V be a vector space consisting of D-vectors where D is
finite. Let C be a linearly independent set of vectors belonging to V. Then V has a
basis B containing all vectors in C .

Proof: Use version of Grow algorithm:

Initialize B to the empty set.
Repeat while possible: select a vector v in V (preferably in C ) that is not in
Span B, and put it in B.

At first, B will consist of vectors in C until B contains all of C . Then more vectors will
be added to B until Span B = V By Grow-Algorithm Corollary, B is linearly
independent throughout. Therefore, once algorithm terminates, B contains C and is a
basis for U .

Termination is implied by Grow Algorithm Termination Lemma. QED



Estimating dimension

T = {[−0.6,−2.1,−3.5,−2.2], [−1.3, 1.5,−0.9,−0.5], [4.9,−3.7, 0.5,−0.3],
[2.6,−3.5,−1.2,−2.0], [−1.5,−2.5,−3.5, 0.94]}.
What is the rank of T?

By Subset-Basis Lemma, T contains a basis.

Therefore dim Span T ≤ |T |.

Therefore rank T ≤ |T |.

Proposition: A set T of vectors has rank ≤ |T |.



Dimension Lemma
Dimension Lemma: If U is a subspace of W then

I D1: dimU ≤ dimW, and

I D2: if dimU = dimW then U =W

Proof: Let u1, . . . ,uk be a basis for U .
By Superset-Basis Lemma, there is a basis B for W that contains u1, . . . ,uk .

I B = {u1, . . . ,uk ,b1, . . . ,br}
I Thus k ≤ |B|, and

I If k = |B| then {u1, . . . ,uk} = B QED

Example: Suppose V = Span {[1, 2], [2, 1]}.
Clearly V is a subspace of R2.
However, the set {[1, 2], [2, 1]} is linearly independent, so dimV = 2.
Since dimR2 = 2, D2 shows that V = R2.
Example: S = {[−0.6,−2.1,−3.5,−2.2], [−1.3, 1.5,−0.9,−0.5], [4.9,−3.7, 0.5,−0.3],
[2.6,−3.5,−1.2,−2.0], [−1.5,−2.5,−3.5, 0.94]}
Since every vector in S is a 4-vector, Span S is a subspace of R4.
Since dimR4 = 4, D1 shows dim Span S ≤ 4.

Proposition: Any set of D-vectors has rank at most |D|.



Rank Theorem

Rank Theorem: For every matrix M, row rank equals column rank.

Lemma: For any matrix A, row rank of A ≤ column rank of A
To show theorem:

I Apply lemma to M ⇒ row rank of M ≤ column rank of M

I Apply lemma to MT ⇒ row rank of MT ≤ column rank of MT ⇒ column rank
of M ≤ row rank of M

Combine ⇒ row rank of M = column rank of M



Proof of lemma: For any matrix A, row rank of A ≤ column rank of A

A

Think of A as columns a1, . . . ,an.
Let b1, . . . ,br be basis for column space (so column rank = r).

Write each column of A in terms of basis:

 aj

 =

 b1 · · · br

 uj


Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix
equation A = BU.
B has r columns and U has r rows.
Write A and B in terms of rows: row i of A equals row i of B times U.
Write U in terms of rows: row i of A is a linear combination of rows of U.
Each row of A is in span of the r rows of U. Thus row rank of A is at most r .



Proof of lemma: For any matrix A, row rank of A ≤ column rank of A

a1 a8a7a6a5a4a3a2 a9

Think of A as columns a1, . . . ,an.
Let b1, . . . ,br be basis for column space (so column rank = r).

Write each column of A in terms of basis:
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 b1 · · · br

 uj


Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix
equation A = BU.
B has r columns and U has r rows.
Write A and B in terms of rows: row i of A equals row i of B times U.
Write U in terms of rows: row i of A is a linear combination of rows of U.
Each row of A is in span of the r rows of U. Thus row rank of A is at most r .
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Think of A as columns a1, . . . ,an.
Let b1, . . . ,br be basis for column space (so column rank = r).

Write each column of A in terms of basis:
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Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix
equation A = BU.
B has r columns and U has r rows.
Write A and B in terms of rows: row i of A equals row i of B times U.
Write U in terms of rows: row i of A is a linear combination of rows of U.
Each row of A is in span of the r rows of U. Thus row rank of A is at most r .



Proof of lemma: For any matrix A, row rank of A ≤ column rank of A

a1 a8a7a6a5a4a3a2 a9 b1 b5b4b3b2 U

Think of A as columns a1, . . . ,an.
Let b1, . . . ,br be basis for column space (so column rank = r).

Write each column of A in terms of basis:

 aj
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Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix
equation A = BU.
B has r columns and U has r rows.
Write A and B in terms of rows: row i of A equals row i of B times U.
Write U in terms of rows: row i of A is a linear combination of rows of U.
Each row of A is in span of the r rows of U. Thus row rank of A is at most r .



Proof of lemma: For any matrix A, row rank of A ≤ column rank of A

A B U

Think of A as columns a1, . . . ,an.
Let b1, . . . ,br be basis for column space (so column rank = r).

Write each column of A in terms of basis:

 aj

 =

 b1 · · · br

 uj


Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix
equation A = BU.
B has r columns and U has r rows.
Write A and B in terms of rows: row i of A equals row i of B times U.
Write U in terms of rows: row i of A is a linear combination of rows of U.
Each row of A is in span of the r rows of U. Thus row rank of A is at most r .
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Write each column of A in terms of basis:

 aj

 =

 b1 · · · br

 uj


Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix
equation A = BU.
B has r columns and U has r rows.
Write A and B in terms of rows: row i of A equals row i of B times U.
Write U in terms of rows: row i of A is a linear combination of rows of U.
Each row of A is in span of the r rows of U. Thus row rank of A is at most r .



Proof of lemma: For any matrix A, row rank of A ≤ column rank of A
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Think of A as columns a1, . . . ,an.
Let b1, . . . ,br be basis for column space (so column rank = r).

Write each column of A in terms of basis:

 aj
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Use matrix-vector definition of matrix-matrix multiplication to rewrite as matrix-matrix
equation A = BU.
B has r columns and U has r rows.
Write A and B in terms of rows: row i of A equals row i of B times U.
Write U in terms of rows: row i of A is a linear combination of rows of U.
Each row of A is in span of the r rows of U. Thus row rank of A is at most r .



Simple authentication revisited
• Password is an n-vector x̂ over GF (2)
• Challenge: Computer sends random
n-vector a
• Response: Human sends back a · x̂.
Repeated until Computer is convinced that
Human knows password x̂.

Eve eavesdrops on communication,
learns m pairs

a1, b1
...

am, bm
such that bi is right response to challenge
ai

Then Eve can calculate right response to
any challenge in Span {a1, . . . ,am}:

Suppose a = α1 a1 + · · ·+ αm am

Then right response is α1b1 + · · ·+ αmbm

Fact: Probably rank [a1, . . . ,am] is not
much less than min{m, n}.

Once m > n, probably Span {a1, . . . ,am}
is all of GF (2)n

so Eve can respond to any challenge.

Also: The password x̂ is a solution to a1
...

am


︸ ︷︷ ︸

A

 x

 =

 b1
...
bm


︸ ︷︷ ︸

b

Solution set of Ax = b is x̂ + Null A

Once rank A reaches n, columns of A are
linearly independent so Null A is trivial, so
only solution is the password x̂, so Eve can
compute the password using solver.



Direct Sum

Let U and V be two vector spaces consisting of D-vectors over a field F.

Definition: If U and V share only the zero vector then we define the direct sum of U
and V to be the set

{u + v : u ∈ U , v ∈ V}

written U ⊕ V

That is, U ⊕ V is the set of all sums of a vector in U and a vector in V.

In Python, [u+v for u in U for v in V]

(But generally U and V are infinite so the Python is just suggestive.)



Direct Sum: Example

Vectors over GF (2):

Example: Let U = Span {1000, 0100} and let V = Span {0010}.
I Every nonzero vector in U has a one in the first or second position (or both) and

nowhere else.

I Every nonzero vector in V has a one in the third position and nowhere else.

Therefore the only vector in both U and V is the zero vector.

Therefore U ⊕ V is defined.

U ⊕ V = {0000 + 0000, 1000 + 0000, 0100 + 0000, 1100 + 0000, 0000 + 0010, 1000 +
0010, 0100 + 0010, 1100 + 0010}

which is equal to {0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110}.



Direct Sum: Example

Vectors over R:

Example: Let U = Span {[1, 2, 1, 2], [3, 0, 0, 4]} and let V be the null space of[
0 1 −1 0
1 0 0 −1

]
.

I The vector [2,−2,−1, 2] is in U because it is [3, 0, 0, 4]− [1, 2, 1, 2]

I It is also in V because

[
0 1 −1 0
1 0 0 −1

]
2
−2
−1
2

 =

[
0
0

]

Therefore we cannot form U ⊕ V.



Direct Sum: Example

Vectors over R:

Example:

I Let U = Span {[4,−1, 1]}.
I Let V = Span {[0, 1, 1]}.

The only intersection is at the origin, so U ⊕ V is defined.

I U ⊕ V is the set of vectors u + v
where u ∈ U and v ∈ V.

I This is just Span {[4,−1, 1], [0, 1, 1]}
I Plane containing the two lines



Properties of direct sum

Lemma: U ⊕ V is a vector space.

(Prove using Properties V1, V2, V3.)

Lemma: The union of

I a set of generators of U , and

I a set of generators of V
is a set of generators for U ⊕ V.

Proof: Suppose U = Span {u1, . . . ,um} and V = Span {v1, . . . , vn}.
Then

I every vector in U can be written as α1 u1 + · · ·+ αm um, and

I every vector in V can be written as β1 v1 + · · ·+ βn vn

so every vector in U ⊕ V can be written as

α1 u1 + · · ·+ αm um + β1 v1 + · · ·+ βn vn

QED



Properties of direct sum
Direct Sum Basis Lemma:

Union of a basis of U and a basis of V is a basis of U ⊕ V.

Proof: Clearly

I a basis of U is a set of generators for U , and

I a basis of V is a set of generators for V.

Therefore the previous lemma shows that

I the union of a basis for U and a basis for V is a generating set for U ⊕ V.

We just need to show that the union is linearly independent.



Properties of direct sum
Direct Sum Basis Lemma:

Union of a basis of U and a basis of V is a basis of U ⊕ V.

Proof, cont’d: Let {u1, . . . ,um} be a basis for U . Let {v1, . . . , vn} be a basis for V.
We need to show that {u1, . . . ,um, v1, . . . , vn} is independent.
Suppose

0 = α1 u1 + · · ·+ αmum + β1 v1 + · · ·+ βn vn.
Then

α1 u1 + · · ·+ αm um︸ ︷︷ ︸
in U

= (−β1) v1 + · · ·+ (−βn) vn︸ ︷︷ ︸
in V

Left-hand side is a vector in U , and right-hand side is a vector in V.

By definition of U ⊕ V, the only vector in both U and V is the zero vector.

This shows:
0 = α1 u1 + · · ·+ αm um

and
0 = (−β1) v1 + · · ·+ (−βn) vn

By linear independence, the linear combinations must be trivial. QED



Direct Sum

Direct Sum Basis Lemma:
Union of a basis of U and a basis of V is a basis of U ⊕ V.

Direct Sum Dimension Corollary: dimU + dimV = dimU ⊕ V

Proof: A basis for U together with a basis for V forms a basis for U ⊕ V. QED



Complementary subspace

If U ⊕ V =W, we say U and V are
complementary subspaces of W.

Example: Suppose U is a plane in R3.

Then any line through the origin that does
not lie in U is complementary subspace
with respect to R3

Example illustrates that, for a given
subspace U of W, there can be many
different subspaces V such that U and V
are complementary.



Complementary subspace
Proposition: For any finite-dimensional vector space W and any subspace U , there is
a subspace V such that U and V are complementary.

Proof: Let u1, . . . ,uk be a basis for U . By Superset-Basis Lemma, there is a basis for

W that includes u1, . . . ,uk :
B = {u1, . . . ,uk , v1, . . . , vr}

Let V = Span {v1, . . . , vr}.
Any vector in W can be written in terms of its basis:

w = α1 u1 + · · ·+ αk uk︸ ︷︷ ︸
in U

+β1 v1 + · · ·+ βr vr︸ ︷︷ ︸
in V

If some vector v is in Span {u1, . . . ,uk} and in Span {v1, . . . , vr}
then v = α1 u1 + · · ·+ αk uk and v = β1 v1 + · · ·+ βr vr

so
α1 u1 + · · ·+ αk uk = β1 v1 + · · ·+ βr vr

0 = α1 u1 + · · ·+ αk uk − β1 v1 − · · · − βr vr

so α1 = · · · = αk = β1 = · · · = βr = 0 so v = 0. QED



Linear function invertibility
How to tell if a linear function f : V −→ W is invertible?

I One-to-one? f is one-to-one if its kernel is trivial. Equivalent: if its kernel has
dimension zero.

I Onto? f is onto if its image equals its co-domain

Recall that the image of a function f with domain V is {f (v) : v ∈ V}.

Lemma: The image of f is a subspace of W.

How can we tell if the image of f equals W?

Dimension Lemma: If U is a subspace of W then

Property D1: dimU ≤ dimW, and

Property D2: if dimU = dimW then U =W

Use Property D2 with U = Im f .
Shows that the function f is onto iff dim Im f = dimW

We conclude:

f is invertible dim Ker f = 0 and dim Im f = dimW



Linear function invertibility

f is one-to-one if dim Ker f = 0 and dim Im f = dimW

How does this relate to dimension of the domain?

Conjecture: For f to be invertible, need dimV = dimW.



Extracting an invertible function

Starting with a linear function f we will
extract a largest possible subfunction that
is invertible.

Make it onto by setting co-domain to be
image of f .

Make it one-to-one by getting rid of extra
domain elements sharing same image.

V W

V W
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Extracting an invertible function

Start with linear function f : V −→ W
Step 1: Choose smaller co-domain W∗

Step 2: Choose smaller domain V∗

Step 3: Define function f ∗ : V∗ −→W∗ by
f ∗(x) = f (x)

In fact, we will end up selecting a basis of
W∗ and a basis of V∗.

V W
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Extracting an invertible function

Start with linear function f : V −→ W
Step 1: Choose smaller co-domain W∗

Step 2: Choose smaller domain V∗

Step 3: Define function f ∗ : V∗ −→W∗ by
f ∗(x) = f (x)

In fact, we will end up selecting a basis of
W∗ and a basis of V∗.
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Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

V W



Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

Onto:
Let w be any vector in co-domain W∗.
There are scalars α1, . . . , αr such that

w = α1 w1 + · · ·+ αr wr

Because f is linear,

f (α1 v1 + · · ·+ αr vr )

= α1 f (v1) + · · ·+ αr f (vr )

= α1 w1 + · · ·+ αr wr

so w is image of α1 v1 + · · ·+ αr vr ∈ V∗
QED



Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

One-to-one:
By One-to-One Lemma, need only show
kernel is trivial.

Suppose v∗ is in V∗ and f (v∗) = 0

Because V∗ = Span {v1, . . . , vr}, there are
scalars α1, . . . , αr such that

v∗ = α1 v1 + · · ·+ αr vr

Applying f to both sides,

0 = f (α1 v1 + · · ·+ αr vr )

= α1 w1 + · · ·+ αr wr

Because w1, . . . ,wr are linearly
independent, α1 = · · · = αr = 0

so v∗ = 0 QED



Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

Bonus: v1, . . . , vr form a basis for V∗
Need only show linear independence
Suppose 0 = α1 v1 + · · ·+ αr vr

Applying f to both sides,

0 = f (α1 v1 + · · ·+ αr vr )

= α1 w1 + · · ·+ αr wr

Because w1, . . . ,wr are linearly
independent, α1 = · · · = αr = 0. QED



Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

Example:

Let A =

 1 2 1
2 1 1
1 2 1

, and define

f : R3 −→ R3 by f (x) = Ax.

Define W∗ = Im f = Col A =
Span {[1, 2, 1], [2, 1, 2], [1, 1, 1]}.

One basis for W∗ is
w1 = [0, 1, 0], w2 = [1, 0, 1]

Pre-images for w1 and w2:
v1 = [12 ,−

1
2 ,

1
2 ] and v2 = [−1

2 ,
1
2 ,

1
2 ],

for then Av1 = w1 and Av2 = w2.

Let V∗ = Span {v1, v2}

Then f ∗ : V∗ −→ Im f is onto and
one-to-one.



Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

To show about original function f :
original domain V = Ker f ⊕ V∗
Must prove two things:

1. Ker f and V∗ share only zero vector

2. every vector in V is the sum of a
vector in Ker f and a vector in V∗

We already showed kernel of f ∗ is trivial.
This shows only vector of Ker f in V∗ is
zero vector. —thing 1 is proved.

Let v be any vector in V, and let w = f (v).
Since f ∗ is onto, its domain V∗ contains a
vector v∗ such that f (v∗) = w
Therefore f (v) = f (v∗) so
f (v)− f (v∗) = 0 so f (v− v∗) = 0
Thus u = v− v∗ is in Ker f
and v = u + v∗ —thing 2 is proved.



Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

original domain V = Ker f ⊕ V∗

Example: Let A =

 1 2 1
2 1 1
1 2 1

, and

define f : R3 −→ R3 by f (x) = Ax.

v1 = [12 ,−
1
2 ,

1
2 ] and v2 = [−1

2 ,
1
2 ,

1
2 ]

V∗ = Span {v1, v2}

Ker f = Span {[1, 1,−3]}

Therefore
V = (Span {[1, 1,−3]})⊕ (Span {v1, v2})



Extracting an invertible function from linear function f : V −→ W
I Choose smaller co-domain W∗

Let W∗ be image of f

Let w1, . . . ,wr be a basis of W∗

I Choose smaller domain V∗
Let v1, . . . , vr be pre-images of
w1, . . . ,wr

That is, f (v1) = w1, . . . , f (vr ) = wr

Let V∗ = Span {v1, . . . , vr}

I Define function f ∗ : V∗ −→W∗
by f ∗(x) = f (x)

We will show:

I f ∗ is onto

I f ∗ is one-to-one (kernel is trivial)

I Bonus: v1, . . . , vr form a basis for V∗

original domain V = Ker f ⊕ V∗
By Direct-Sum Dimension Corollary,

dimV = dim Ker f + dimV∗

Since v1, . . . , vr form a basis for V∗,
dimV∗ = r = dim Im f

We have proved...

Kernel-Image Theorem:
For any linear function f : V →W ,

dim Ker f + dim Im f = dimV



Linear function invertibility, revisited
Kernel-Image Theorem:
For any linear function f : V →W ,

dim Ker f + dim Im f = dimV

Linear-Function Invertibility Theorem: Let f : V −→ W be a linear function. Then
f is invertible iff dim Ker f = 0 and dimV = dimW.

Proof: We saw before that f

I is one-to-one iff dim Ker f = 0

I is onto if dim Im f = dimW
Therefore f is invertible if dim Ker f = 0 and dim Im f = dimW.

Kernel-Image Theorem states dim Ker f + dim Im f = dimV

Therefore

dim Ker f = 0 and dim Im f = dimW
iff

dim Ker f = 0 and dimV = dimW
QED



Rank-Nullity Theorem

Kernel-Image Theorem:
For any linear function f : V →W ,

dim Ker f + dim Im f = dimV

Apply Kernel-Image Theorem to the function f (x) = Ax:

I Ker f = Null A

I dim Im f = dim Col A = rank A

Definition: The nullity of matrix A is dim Null A

Rank-Nullity Theorem: For any n-column matrix A,

nullity A + rank A = n



Checksum problem revisited

Checksum function maps n-vectors over GF (2) to 64-vectors over GF (2):
x 7→ [a1 · x, . . . ,a64 · x]

Original “file” p, transmission error e
so corrupted file is p + e.

If error is chosen according to uniform distribution,
Probability (p + e has same checksum as p)

= 2dimV

2n

where V is the null space of the matrix

A =

 a1
...

a64


Fact: Can easily choose a1, . . . ,a64 so that

rank A = 64

(Randomly chosen vectors will probably work.)

Rank-Nullity Theorem ⇒
rank A + nullity A = n

64 + dimV = n
dimV = n − 64

Therefore
Probability = 2n−64

2n = 1
264

very tiny chance that the change
is undetected



Matrix invertibility

Rank-Nullity Theorem: For any n-column matrix A,

nullity A + rank A = n

Corollary: Let A be an R × C matrix. Then A is invertible if and only if |R| = |C | and
the columns of A are linearly independent.

Proof: Let F be the field. Define f : FC −→ FR by f (x) = Ax.
Then A is an invertible matrix if and only if f is an invertible function.

The function f is invertible iff dim Ker f = 0 and dimFC = dimFR

iff nullity A = 0 and |C | = |R|.

nullity A = 0 iff dim Null A = 0
iff Null A = {0}
iff the only vector x such that Ax = 0 is x = 0
iff the columns of A are linearly independent. QED



Matrix invertibility examples

[
1 2 3
4 5 6

]
is not square so cannot be invertible.

[
1 2
3 4

]
is square and its columns are linearly independent so it is invertible.

 1 1 2
2 1 3
3 1 4

 is square but columns not linearly independent so it is not invertible.



Transpose of invertible matrix is invertible

Theorem: The transpose of an invertible matrix is invertible.

A =

 v1 · · · vn

 =

 a1
...

an

 AT =

 a1 · · · an


Proof: Suppose A is invertible. Then A is square and its columns are linearly
independent. Let n be the number of columns. Then rank A = n.

Because A is square, it has n rows. By Rank Theorem, rows are linearly independent.

Columns of transpose AT are rows of A, so columns of AT are linearly independent.

Since AT is square and columns are linearly independent, AT is invertible. QED



More matrix invertibility
Earlier we proved: If A has an inverse A−1 then AA−1 is identity matrix
Converse: If BA is identity matrix then A and B are inverses? Not always true.

Theorem: Suppose A and B are square matrices such that BA is an identity matrix 1.
Then A and B are inverses of each other.
Proof: To show that A is invertible, need to show its columns are linearly independent.

Let u be any vector such that Au = 0. Then B(Au) = B0 = 0.
On the other hand, (BA)u = 1u = u, so u = 0.

This shows A has an inverse A−1. Now must show B = A−1.
We know AA−1 is an identity matrix.

BA = 1

(BA)A−1 = 1A−1 by multiplying on the right by B−1

(BA)A−1 = A−1

B(AA−1) = A−1 by associativity of matrix-matrix mult

B 1 = A−1

B = A−1 QED



Representations of vector spaces
Two important ways to represent a vector space:

As the solution set of homogeneous linear system
a1 · x = 0, . . . ,am · x = 0

Equivalently,

Null

 a1
...

am



As Span {b1, . . . ,bk}

Equivalently,

Row

 b1
...

bk



How to transform between these two representations?

From left to right: Given homogeneous linear system a1 · x = 0, . . . ,am · x = 0,
find generators b1, . . . ,bk for solution set

From right to left:
Given generators b1, . . . ,bk ,
find homogeneous linear system a1 · x = 0, . . . ,am · x = 0 whose solution set equals
Span {b1, . . . ,bk}



Annihilator of a vector space
From left to right: Given system a1 · x = 0, . . . ,am · x = 0,
find generators b1, . . . ,bk for solution set

Solution set is the set of vectors u such
that a1 · u = 0, . . . ,am · u = 0

 a1
...

am


︸ ︷︷ ︸

A

 x

 =

 0
...
0


Equivalent: Given rows of a matrix A, find
generators for Null A

rows of a matrix A
↓

Algorithm X

↓
generators for Null A

If u is such a vector then
u · (α1 a1 + · · ·+ αm am) = 0

for any coefficients α1, . . . , αm.

Definition: The set of vectors u such that
u · v = 0 for every vector v in V is called
the annihilator of V. Written as Vo .

Example: The annihilator of
Span {a1, . . . ,am} is the solution set for
a1 · x = 0, . . . ,am · x = 0

generators for a vector space V
↓

Algorithm X

↓
generators for annihilator Vo



Annihilator of a vector space
Definition: For a subspace V of Fn, the annihilator of V, written Vo , is

Vo = {u ∈ Fn : u · v = 0 for every vector v ∈ V}
Example over R: Let V = Span {[1, 0, 1], [0, 1, 0]}. Then Vo = Span {[1, 0,−1]}:

I Note that [1, 0,−1] · [1, 0, 1] = 0 and [1, 0,−1] · [0, 1, 0] = 0.
Therefore [1, 0,−1] · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}.

I For any scalar β,
β [1, 0,−1] · v = β ([1, 0,−1] · v) = 0

for every vector v in Span {[1, 0, 1], [0, 1, 0]}.
I Which vectors u satisfy u · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}?

Only scalar multiples of [1, 0,−1].

Example over GF (2): Let V = Span {[1, 0, 1], [0, 1, 0]}. Then Vo = Span {[1, 0, 1]}:
I Note that [1, 0, 1] · [1, 0, 1] = 0 (remember GF (2) addition) and

[1, 0, 1] · [0, 1, 0] = 0.

I Therefore [1, 0, 1] · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}.
I Of course [0, 0, 0] · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}.
I [1, 0, 1] and [0, 0, 0] are the only such vectors.



Annihilator of a vector space

Example over R: Let V = Span {[1, 0, 1], [0, 1, 0]}. Then Vo = Span {[1, 0,−1]}
dimV + dimVo = 3

Example over GF (2): Let V = Span {[1, 0, 1], [0, 1, 0]}. Then Vo = Span {[1, 0, 1]}.
dimV + dimVo = 3

Example over R: Let V = Span {[1, 0, 1, 0], [0, 1, 0, 1]}.
Then Vo = Span {[1, 0,−1, 0], [0, 1, 0,−1]}.
dimV + dimVo = 4

Annihilator Dimension Theorem: dimV + dimVo = n

Proof: Let a1, . . . ,am be generators for V.

Let A =

 a1
...

am


Then Vo = Null A.

Rank-Nullity Theorem states that

rank A + nullity A = n
dimV + dimVo = n

QED



Annihilator of a vector space

Definition: For a subspace V of Fn, the annihilator of V, written Vo , is

Vo = {u ∈ Fn : u · v = 0 for every vector v ∈ V}

rows of a matrix A generators for a vector space V
↓ ↓

Algorithm X = Algorithm X

↓ ↓
generators for Null A generators for annihilator Vo

From left to right: Given system a1 · x = 0, . . . ,am · x = 0, find generators
b1, . . . ,bk for solution set

Algorithm X solves left-to-right problem....

what about right-to-left problem?



Annihilator of a vector space

From left to right: Given system
a1 · x = 0, . . . ,am · x = 0,
find generators b1, . . . ,bk for solution set

generators for a vector space V
↓

Algorithm X

↓
generators for annihilator Vo

What happens if we apply Algorithm X to
generators for annihilator Vo?

generators for annihilator Vo
↓

Algorithm X

↓
generators for annihilator of annihilator (Vo)o

From right to left: Given generators
b1, . . . ,bk , find system
a1 · x = 0, . . . ,am · x = 0 whose solution
set equals Span {b1, . . . ,bk}

generators for annihilator Vo
↓

Algorithm Y

↓
generators for original space V

Theorem: (Vo)o = V (The annihilator of
the annihilator is the original space.)

Theorem shows:
Algorithm X = Algorithm Y

We still must prove the Theorem...



Annihilator
Theorem: (Vo)o = V (The annihilator of the annihilator is the original space.)

Proof:
Let a1, . . . ,am be a basis for V. Let b1, . . . ,bk be a basis for Vo .
Since b1 · v = 0 for every vector v in V,

b1 · a1 = 0,b1 · a2 = 0, . . . ,b1 · am = 0

Similarly bi · a1 = 0,bi · a2 = 0, . . . ,bi · am = 0 for i = 1, 2, . . . , k .

Reorganizing,
a1 · b1 = 0,a1 · b2 = 0, . . . ,a1 · bk = 0

which implies that a1 · u = 0 for every vector u in Span {b1, . . . ,bk}︸ ︷︷ ︸
Vo

This shows a1 is in (Vo)o . Similarly a2 is in (Vo)o , a3 is in (Vo)o , ..., am is in (Vo)o .

Therefore every vector in Span {a1,a2, . . . ,am} is in (V o)o .

Thus Span {a1,a2, . . . ,am}︸ ︷︷ ︸
V

is a subspace of (Vo)o .

To show that these are equal, we must show that dimV = dim(Vo)o .

By Annihilator Dimension Theorem, dimV + dimVo = n.

By Annihilator Dimension Theorem applied to Vo , dimVo + dim(Vo)o = n.

Together these equations show dimV = dim(Vo)o . QED
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