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Starting to peek inside the black box

So far solve(A, b) is a black box.

With Gaussian elimination, we begin to find out what’s inside.
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So far solve(A, b) is a black box.

With Gaussian elimination, we begin to find out what’s inside.



Gaussian Elimination: Origins

Method illustrated in Chapter Eight of a Chinese text,
The Nine Chapters on the Mathematical Art, that was
written roughly two thousand years ago.

Rediscovered in Europe by Isaac Newton (England) and
Michel Rolle (France)

Gauss called the method eliminiationem vulgarem
(“common elimination”)
Gauss adapted the method for another problem (one we
study soon) and developed notation.



Gaussian elimination: Uses

I Finding a basis for the span of given vectors. This additionally gives us an
algorithm for rank and therefore for testing linear dependence.

I Solving a matrix equation,which is the same as expressing a given vector as a
linear combination of other given vectors, which is the same as solving a system of
linear equations

I Finding a basis for the null space of a matrix, which is the same as finding a basis
for the solution set of a homogeneous linear system, which is also relevant to
representing the solution set of a general linear system.



Echelon form

Echelon form a generalization of triangular matrices

Example:

2

664

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 1 2
0 0 0 0 0 9

3

775

Note that

I the first nonzero entry in row 0 is in column 1,

I the first nonzero entry in row 1 is in column 2,

I the first nonzero entry in row 2 is in column 4, and

I the first nonzero entry in row 4 is in column 5.

Definition: An m⇥ n matrix A is in echelon form if it satisfies the following condition:
for any row, if that row’s first nonzero entry is in position k then every previous row’s
first nonzero entry is in some position less than k .



Echelon form

Definition: An m⇥ n matrix A is in echelon form if it satisfies the following condition:
for any row, if that row’s first nonzero entry is in position k then every previous row’s
first nonzero entry is in some position less than k .

This definition implies that, as you iterate through the rows of A, the first nonzero
entries per row move strictly right, forming a sort of staircase that descends to the
right.

2

664

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 1 2
0 0 0 0 0 9

3

775

0 0 10 0 00 0
30 0 10 220

6 30 0 401 1
79314012

2

664

4 1 3 0
0 3 0 1
0 0 1 7
0 0 0 9

3

775



Echelon form

Definition: An m⇥ n matrix A is in echelon form if it satisfies the following condition:
for any row, if that row’s first nonzero entry is in position k then any previous row’s
first nonzero entry is in some position less than k .

If a row of a matrix in echelon form is all zero then every subsequent row must also be
all zero, e.g.2

664

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 0 0
0 0 0 0 0 0

3

775



Uses of echelon form
What good is it having a matrix in echeleon form?

Lemma: If a matrix is in echelon form, the nonzero rows form a basis for the row
space.

For example, a basis for the row space of

2

664

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 0 0
0 0 0 0 0 0

3

775

is {[0, 2, 3, 0, 5, 6], [0, 1, 0, 3, 4]}.
In particular, if every row is nonzero, as in each of the matrices

2

664

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 1 2
0 0 0 0 0 9

3

775 ,

2

664

2 1 0 4 1 3 9 7
0 6 0 1 3 0 4 1
0 0 0 0 2 1 3 2
0 0 0 0 0 0 0 1

3

775 ,

2

664

4 1 3 0
0 3 0 1
0 0 1 7
0 0 0 9

3

775

then the rows form a basis of the row space.



Uses of echelon form
Lemma: If matrix is in echelon form, the nonzero rows form a basis for row space.

It is obvious that the nonzero rows span the row space. We need only show that these
vectors are linearly independent. We prove it using the Grow algorithm:

def Grow(V)
S = ;
repeat while possible:

find a vector v in V that is not in Span S , and put it in S

2

664

4 1 3 0
0 3 0 1
0 0 1 7
0 0 0 9

3

775

We run the Grow algorithm, adding rows of matrix in reverse order to S :
I Since Span ; does not include [0, 0, 0, 9], the algorithm adds this vector to S .

I Now S = {[0, 0, 0, 9]}. Every vector in Span S has zeroes in positions 0, 1, 2, so
Span S does not contain [0, 0, 1, 7], so the algorithm adds this vector to S .

I Now S = {[0, 0, 0, 9], [0, 0, 1, 7]}. Every vector in Span S has zeroes in
positions 0, 1, so Span S does not contain [0, 3, 0, 1], so the algorithm adds it.

I Now S = {[0, 0, 0, 9], [0, 0, 1, 7], [0, 3, 0, 1]}. Every vector in Span S has a zero in
position 0, so Span S does not contain [4, 1, 3, 0], so the algorithm adds it, and
we are done.



Transforming a matrix to echelon form

Lemma: If matrix is in echelon form, the nonzero rows form a basis for row space.

Suggests an approach: To find basis for row space of a matrix A,
iteratively transform A into a matrix B

I in echelon form

I with no zero rows

I whose row space is the same as that of A.

We will represent current matrix as a rowlist.

Assume rowlist has been initialized with a list of Vecs, e.g..

rowlist =


A B C

0 1 2
,

A B C

1 2 3
,

A B C

0 0 1

�

We will mutate this variable.

To handle Vecs with arbitrary D, must decide on an ordering:

col_label_list = sorted(rowlist[0].D, key=str)



First attempt: Sorting rows by position of the leftmost nonzero

Goal: Transform a matrix rowlist into a matrix new rowlist in echelon form.

Here’s an easy matrix to start with:

A B C D E F

0 0 0 0 0 1 2
1 0 2 3 0 5 6
2 0 0 0 0 0 0
3 0 0 1 0 3 4

A B C D E F

0 0 2 3 0 5 6

Suggests an algorithm: sort the rows according to position of leftmost nonzero entry.
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First attempt: Sorting rows by position of the leftmost nonzero

Goal: Transform a matrix rowlist into a matrix new rowlist in echelon form.
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First attempt: Sorting rows by position of the leftmost nonzero

Goal: Transform a matrix rowlist into a matrix new rowlist in echelon form.

Here’s an easy matrix to start with:

A B C D E F

0 0 0 0 0 1 2
1 0 2 3 0 5 6
2 0 0 0 0 0 0
3 0 0 1 0 3 4

A B C D E F

0 0 2 3 0 5 6
1 0 0 1 0 3 4
2 0 0 0 0 1 2
3 0 0 0 0 0 0

Suggests an algorithm: sort the rows according to position of leftmost nonzero entry.



Sorting rows by position of the leftmost nonzero

Goal: a method of transforming a rowlist into one that is in echelon form.

First attempt: Sort the rows by position of the leftmost nonzero entry.

We will use a naive algorithm of sorting:

I first choose a row with a nonzero in first column,

I then choose a row with a nonzero in second column,
...

accumulating these in a list new rowlist, initially empty:

new_rowlist = []

The algorithm maintains the set of indices of rows remaining to be sorted, rows left,
initially consisting of all the row indices:

rows_left = set(range(len(rowlist)))



Sorting rows by position of the leftmost nonzero

col_label_list = sorted(rowlist[0].D, key=str)

new_rowlist = []

rows_left = set(range(len(rowlist)))

I Algorithm iterates through the column labels in order.

I In each iteration, algorithm finds a list
rows with nonzero

of indices of the remaining rows that have nonzero entries in the current column

I Algorithm selects one of these rows (the pivot row), adds it to new rowlist, and
removes its index from rows left.

for c in col_label_list:

rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]

pivot = rows_with_nonzero[0]

new_rowlist.append(rowlist[pivot])

rows_left.remove(pivot)



Sorting rows by position of the leftmost nonzero
for c in col label list:

rows with nonzero = [r for r in rows left if rowlist[r][c] != 0]

if rows with nonzero != []:

pivot = rows with nonzero[0]

new rowlist.append(rowlist[pivot])

rows left.remove(pivot)

Run the algorithm on2

664

0 2 3 4 5
0 0 0 0 5
1 2 3 4 5
0 0 0 4 5

3

775

new rowlist

I After first two iterations, new rowlist is [[1, 2, 3, 4, 5], [0, 2, 3, 4, 5]], and
rows left is {1, 3}.

I The algorithm runs into trouble in third iteration since none of the remaining rows
have a nonzero in column 2.

I In this case, the algorithm should just move on to the next column without
changing new rowlist or rows left.



Sorting rows by position of the leftmost nonzero

Run the algorithm on2
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3

775

new rowlist⇥
1 2 3 4 5

⇤

I After first two iterations, new rowlist is [[1, 2, 3, 4, 5], [0, 2, 3, 4, 5]], and
rows left is {1, 3}.

I The algorithm runs into trouble in third iteration since none of the remaining rows
have a nonzero in column 2.

I In this case, the algorithm should just move on to the next column without
changing new rowlist or rows left.



Sorting rows by position of the leftmost nonzero

Run the algorithm on2

664

0 2 3 4 5
0 0 0 0 5
1 2 3 4 5
0 0 0 4 5

3

775

new rowlist
1 2 3 4 5
0 2 3 4 5

�

I After first two iterations, new rowlist is [[1, 2, 3, 4, 5], [0, 2, 3, 4, 5]], and
rows left is {1, 3}.

I The algorithm runs into trouble in third iteration since none of the remaining rows
have a nonzero in column 2.

I In this case, the algorithm should just move on to the next column without
changing new rowlist or rows left.



Sorting rows by position of the leftmost nonzero

Run the algorithm on2

664

0 2 3 4 5
0 0 0 0 5
1 2 3 4 5
0 0 0 4 5

3

775

new rowlist2

4
1 2 3 4 5
0 2 3 4 5
0 0 0 4 5

3

5

I After first two iterations, new rowlist is [[1, 2, 3, 4, 5], [0, 2, 3, 4, 5]], and
rows left is {1, 3}.

I The algorithm runs into trouble in third iteration since none of the remaining rows
have a nonzero in column 2.

I In this case, the algorithm should just move on to the next column without
changing new rowlist or rows left.



Sorting rows by position of the leftmost nonzero

Run the algorithm on2

664

0 2 3 4 5
0 0 0 0 5
1 2 3 4 5
0 0 0 4 5

3

775

new rowlist2

664

1 2 3 4 5
0 2 3 4 5
0 0 0 4 5
0 0 0 0 5

3

775

I After first two iterations, new rowlist is [[1, 2, 3, 4, 5], [0, 2, 3, 4, 5]], and
rows left is {1, 3}.

I The algorithm runs into trouble in third iteration since none of the remaining rows
have a nonzero in column 2.

I In this case, the algorithm should just move on to the next column without
changing new rowlist or rows left.



Flaw in sorting

for c in col label list:

rows with nonzero = [r for r in rows left if rowlist[r][c] != 0]

if rows with nonzero != []:

pivot = rows with nonzero[0]

new rowlist.append(rowlist[pivot])

rows left.remove(pivot)

rowlist new rowlist2

664

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7

3

775 )

2

664

1 2 3 4 5
0 2 3 4 5
0 0 0 3 2
0 0 0 6 7

3

775

Result is not in echelon form.

Need to introduce another transformation....



Elementary row-addition operations
2

664

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7

3

775 )

2

664

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3

3

775

Repair the problem by changing the rows:

Subtract twice the second row
2 [0, 0, 0, 3, 2]

from the fourth
[0, 0, 0, 6, 7]

gettting new fourth row

[0, 0, 0, 6, 7]� 2 [0, 0, 0, 3, 2] = [0, 0, 0, 6� 6, 7� 4] = [0, 0, 0, 0, 3]

The 3 in the second row is called the pivot element.
That element is used to zero out another element in same column.



Elementary row-addition operations

Transformation is multiplication by a elementary row-addition matrix:

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 �2 0 1

3

775

2

664

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7

3

775 =

2

664

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3

3

775

Such a matrix is invertible:
2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 �2 0 1

3

775 and

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 2 0 1

3

775 are inverses.

We will show:
Proposition: If MA = B where M is invertible then Row A = Row B .

Therefore change to row causes no change in row space.

Therefore basis for changed rowlist is also a basis for original rowlist.



Preserving row space

Lemma: Row NA ✓ Row A.

Proof: Let v be any vector in Row NA.
That is, v is a linear combination of the rows of NA.
By the linear-combinations definition of vector-matrix multiplication, there is a vector
u such that

v =
⇥

uT
⇤
0

@

2

4 N

3

5

2

4 A

3

5

1

A

=

0

@⇥
uT

⇤
2

4 N

3

5

1

A

2

4 A

3

5 by associativity

which shows that v can be written as a linear combination of the rows of A. QED



Preserving row space
Lemma: Row NA ✓ Row A.

Proposition: If M is invertible then Row MA = Row A

Proof: Must show Row MA ✓ Row A and Row A ✓ Row MA

I Lemma shows Row MA ✓ Row A.

I Let B = MA

I M has an inverse M�1 ) M�1B = A

I Lemma shows Row M�1B| {z }
A

✓ Row B|{z}
MA

I That is, Row A ✓ Row MA QED



Gaussian elimination

Applying elementary row-addition operations does not change the row space.

Incorporate into the algorithm

for c in col label list:

rows with nonzero = [r for r in rows left if rowlist[r][c] != 0]

if rows with nonzero != []:

pivot = rows with nonzero[0]

rows left.remove(pivot)

new rowlist.append(rowlist[pivot])

add suitable multiple of rowlist[pivot] to each row in rows with nonzero[1:]

2

664

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

3

775 )

2

664

1 2 3 4
0 �1 �2 �3
0 �2 �4 �6
0 �3 �6 �9

3

775 )

2

664

1 2 3 4
0 �1 �2 �3
0 0 0 0
0 0 0 0

3

775

This algorithm is mathematically correct...



Gaussian elimination

Applying elementary row-addition operations does not change the row space.

Incorporate into the algorithm

for c in col label list:

rows with nonzero = [r for r in rows left if rowlist[r][c] != 0]

if rows with nonzero != []:

pivot = rows with nonzero[0]

rows left.remove(pivot)

new rowlist.append(rowlist[pivot])

for r in rows with nonzero[1:]:

multiplier = rowlist[r][c]/rowlist[pivot][c]

rowlist[r] -= multiplier * rowlist[pivot]2

664

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

3

775 )

2

664

1 2 3 4
0 �1 �2 �3
0 �2 �4 �6
0 �3 �6 �9

3

775 )

2

664

1 2 3 4
0 �1 �2 �3
0 0 0 0
0 0 0 0

3

775

This algorithm is mathematically correct...



Failure of Gaussian elimination

But we compute using floating-point numbers!

2

4
10�20 0 1
1 1020 1
0 1 �1

3

5 )

2

4
10�20 0 1
0 1020 1� 1020

0 1 �1

3

5

)

2

4
10�20 0 1
0 1020 �1020

0 1 �1

3

5 )

2

4
10�20 0 1
0 1020 �1020

0 0 0

3

5

Gaussian elimination got the wrong answer due to round-o↵ error.

These problems can be mitigated by choosing the pivot element carefully:

I Partial pivoting: Among rows with nonzero entries in column c , choose row with
entry having largest absolute value.

I Complete pivoting: Instead of selecting order of columns beforehand, in each
iteration choose column to maximize absolute value of pivot element.

In this course, we won’t study these techniques in detail.
Instead, we will use Gaussian elimination only for GF (2).



Gaussian elimination for GF (2)

A B C D
0 0 0 1 1

X 1 1 0 1 1
2 1 0 0 1
3 1 1 1 1

A: Select row 1 as pivot.
Put it in new rowlist

Since rows 2 and 3 have
nonzeroes, we must add
row 1 to rows 2 and 3.

new rowlist

⇥
1 0 1 1

⇤

A B C D
0 0 0 1 1

X 1 1 0 1 1
2 0 0 1 0

X 3 0 1 0 0

B: Select row 3 as pivot.
Put it in new rowlist

Other remaining rows
have zeroes in column B,
so no row additions
needed.

new rowlist
1 0 1 1
0 1 0 0

�

A B C D

X 0 0 0 1 1
X 1 1 0 1 1

2 0 0 1 0
X 3 0 1 0 0

C: Select row 0 as pivot .
Put it in new rowlist.
Only other remaining row
is row 2, and we add
row 0 to row 2.

new rowlist2

4
1 0 1 1
0 1 0 0
0 0 1 1

3

5



Gaussian elimination for GF (2)

new rowlist2

4
1 0 1 1
0 1 0 0
0 0 1 1

3

5

A B C D
X 0 0 0 1 1
X 1 1 0 1 1
X 2 0 0 0 1
X 3 0 1 0 0

D: Only remaining row is
row 2, so select it as pivot
row.
Put it in new rowlist

No other rows, so no row
additions.

new rowlist2

664

1 0 1 1
0 1 0 0
0 0 1 1
0 0 0 1

3

775

We are done.



Using Gaussian elimination for other problems

So far:

I we know how to use Gaussian elimination to transform a matrix into echelon form;

I nonzero rows form a basis for row space of original matrix

We can do other things with Gaussian elimination:

I Solve linear systems (used in e.g. Lights Out)

I Find vectors in null space (used in e.g. integer factoring)

Key idea: keep track of transformations performed in putting matrix in echelon form.



Gaussian Elimination: Solving system of equations
Key idea: keep track of transformations performed in putting matrix in echelon form.

Given matrix A, compute matrices M and U such that MA = U

I U is in echelon form
I M is invertible

To solve Ax = b:
I Compute M and U so that MA = U

I Compute the matrix-vector product Mb, and solve Ux = Mb.

Claim: This gives correct solution to Ax = b
Proof: Suppose v is a solution to Ux = Mb, so Uv = Mb

I Multiply both sides by M�1: M�1(Uv) = M�1Mb
I Use associativity: (M�1U)v = (M�1M)b
I Cancel M�1 and M: (M�1U)v = 1b
I Use M�1U = A: Av = 1b = b

How to solve Ux = Mb?
I If U is triangular, can solve using back-substitution (triangular solve)
I In general, can use similar algorithm



Gaussian Elimination: Finding basis for null space
Instead of finding basis for null space of A, find basis for {u : u ⇤ A = 0} = Null AT

Input:

A B C D

0 1 0 1 0
1 1 1 1 0
2 0 1 0 1
3 1 1 1 1
4 0 0 0 1

Find M such that the matrix U = MA is in echelon form and M is invertible
0 1 2 3 4

0 1 0 0 0 0
1 1 1 0 0 0
2 1 1 1 0 0
3 1 0 1 1 0
4 1 1 1 0 1
| {z }

M

⇤

A B C D

0 1 0 1 0
1 1 1 1 0
2 0 1 0 1
3 1 1 1 1
4 0 0 0 1
| {z }

A

=

0 1 2 3
0 1 0 1 0
1 0 1 0 0
2 0 0 0 1
3 0 0 0 0
4 0 0 0 0
| {z }

U
Last two rows of U are zero vectors

I Row 3 of U is (row 3 of M) * A
I Row 4 of U is (row 4 of M) * A

Therefore two rows in {u : u ⇤ A = 0} are rows 3 and 4 of M
To show that these two rows form a basis for {u : u ⇤ A = 0}....
dimRow A = 3
By Rank-Nullity Theorem, dimRow A+ dimNull AT = number of rows = 5
Shows that dimNull AT = 2
Since M is invertible, all its rows are linearly independent.



Gaussian Elimination: Finding basis for null space

Find M such that the matrix U = MA is in echelon form and M is invertible
0 1 2 3 4

0 1 0 0 0 0
1 1 1 0 0 0
2 1 1 1 0 0
3 1 0 1 1 0
4 1 1 1 0 1
| {z }

M

⇤

A B C D

0 1 0 1 0
1 1 1 1 0
2 0 1 0 1
3 1 1 1 1
4 0 0 0 1
| {z }

A

=

0 1 2 3
0 1 0 1 0
1 0 1 0 0
2 0 0 0 1
3 0 0 0 0
4 0 0 0 0
| {z }

U
Last two rows of U are zero vectors

I Row 3 of U is (row 3 of M) * A

I Row 4 of U is (row 4 of M) * A

Therefore two rows in {u : u ⇤ A = 0} are rows 3 and 4 of M
To show that these two rows form a basis for {u : u ⇤ A = 0}....
dimRow A = 3
By Rank-Nullity Theorem, dimRow A+ dimNull AT = number of rows = 5
Shows that dimNull AT = 2
Since M is invertible, all its rows are linearly independent.



Gaussian elimination: recording the transformations

2

4 A

3

5 =

2

4 U1

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U2

3

5

2

4 M2

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U3

3

5

2

4 M3

3

5

2

4 M2

3

5

2

4 M1

3

5

2

4 A

3

5 =

2

4 U4

3

5



Gaussian elimination: recording the transformations
2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 -2.5 0 1

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
0 �2.5 0 �10.5 �2

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 0 4 �5 �2
0 �2.5 0 �10.5 �2

3

775



Gaussian elimination: recording the transformations
2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 0 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
5 0 0 2 8

3

775

2

664

1 0 0 0
0 1 0 0
0 -2 1 0
0 -2.5 0 1

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 �1 2 �6 �6
0 �2.5 0 �10.5 �2

3

775

2

664

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

3

775 =

2

664

0 2 4 2 8
2 1 0 5 4
0 0 4 �5 �2
0 �2.5 0 �10.5 �2

3

775



Gaussian elimination: recording the transformations
2

664

0 2 4 2 8
2 1 0 5 4
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Gaussian elimination: recording the transformations
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Gaussian elimination: recording the transformations
I Maintain M (initially identity) and U (initially A)
I Whatever transformations you do to U, do same transformations to M

0 1 2 3
0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1

⇤

A B C D
0 0 0 1 1
1 1 0 1 1 X
2 1 0 0 1
3 1 1 1 1

=

A B C D

0 0 0 1 1
1 1 0 1 1
2 1 0 0 1
3 1 1 1 1

ColumnA:
select row 1
add it to rows 2,3

0 1 2 3
0 1 0 0 0
1 0 1 0 0
2 0 1 1 0
3 0 1 0 1

⇤

A B C D
0 0 0 1 1 X
1 1 0 1 1 X
2 1 0 0 1
3 1 1 1 1 X

=

A B C D

0 0 0 1 1
1 1 0 1 1
2 0 0 1 0
3 0 1 0 0

ColumnB:
select row 3
add it to no rows
ColumnC:
select row 0
add it to row 2

0 1 2 3
0 1 0 0 0
1 0 1 0 0
2 1 1 1 0
3 0 1 0 1

⇤

A B C D
0 0 0 1 1 X
1 1 0 1 1 X
2 1 0 0 1 X
3 1 1 1 1 X

=

A B C D

0 0 0 1 1
1 1 0 1 1
2 0 0 0 1
3 0 1 0 0

ColumnD:
select row 2
done



Code for finding transformation to echelon form

I Initialize rowlist to be list of rows of A

I Initialize M rowlist to be list of rows of identity matrix

for c in sorted(col_labels, key=str):

rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]

if rows_with_nonzero != []:

pivot = rows_with_nonzero[0]

rows_left.remove(pivot)

new_M_rowlist.append(M_rowlist[pivot])

for r in rows_with_nonzero[1:]:

multiplier = rowlist[r][c]/rowlist[pivot][c]

rowlist[r] -= multiplier*rowlist[pivot]

M_rowlist[r] -= multiplier*M_rowlist[pivot]

for r in rows_left: new_M_rowlist.append(M_rowlist[r])

Finally, return matrix M formed from M rowlist

Code provided in module echelon



The black box starts to become less opaque

The modules independence and solver both Gaussian elimination when working
over GF (2):

I The procedure solve(A, b) computes a matrix M such that MA is in echelon
form, and uses M to try to find a solution.

I The procedure rank(L) converts to echelon form and counts the nonzero rows to
find the rank of L.

We saw that Gaussian elimination can be used to find a nonzero vector in the null
space of a matrix.... You will use this in an algorithm for factoring integers.



The black box starts to become less opaque

The modules independence and solver both Gaussian elimination when working
over GF (2):

I The procedure solve(A, b) computes a matrix M such that MA is in echelon
form, and uses M to try to find a solution.

I The procedure rank(L) converts to echelon form and counts the nonzero rows to
find the rank of L.

We saw that Gaussian elimination can be used to find a nonzero vector in the null
space of a matrix.... You will use this in an algorithm for factoring integers.



Factoring integers
Prime Factorization Theorem: For every integer N � 1, there is a unique bag of
prime numbers whose product is N.
Example:

I 75 is the product of the elements in the bag {3, 5, 5}
I 126 is the product of the elements in the bag {2, 3, 3, 7}
I 23 is the product of the elements in the bag {23}

All the elements in a bag must be prime. If N is itself prime, the bag for N is just {N}.

“The problem of distinguishing prime numbers from

composite numbers and of resolving the latter into their
prime factors is known to be one of the most important

and useful in arithmetic. It has engaged the industry and

wisdom of ancient and modern geometers to such an

extent that it would be superfluous to discuss the

problem at length Further, the dignity of the science

itself seems to require solution of a problem so elegant

and so celebrated.”

Carl Friedrich Gauss, Disquisitiones Arithmeticae, 1801

def factor(N):

for d in range(2, N-1):

if N % d == 0: return d



Factoring integers
Prime Factorization Theorem: For every integer N � 1, there is a unique bag of
prime numbers whose product is N.
Example:

I 75 is the product of the elements in the bag {3, 5, 5}
I 126 is the product of the elements in the bag {2, 3, 3, 7}
I 23 is the product of the elements in the bag {23}

All the elements in a bag must be prime. If N is itself prime, the bag for N is just {N}.

“Because both the system’s privacy and the security of
digital money depend on encryption, a breakthrough in
mathematics or computer science that defeats the
cryptographic system could be a disaster. The obvious
mathematical breakthrough would be the development of
an easy way to factor large prime numbers.”

(Bill Gates, The Road Ahead, 1995).



Secure Sockets Layer

Secure communication with websites uses HTTPS (Secure HTTP)

which is based on SSL (Secure Sockets Layer)

which is based on the RSA (Rivest-Shamir-Adelman) cryptosystem

which depends on the computational di�culty of factoring integers



Factoring integers

Testing whether a number is prime is now well-understood and easy.

Here’s a one-line Python script that gives false positives when input is a Carmichael
number (rare) and otherwise with probability 1

220 :

def is_prime(p, n=20): return all([pow(randint(1,p-1),p-1,p) == 1

for i in range(n)])}

With a few more lines, can get correct answers for Carmichael numbers as well.

The hard part of factoring seems to be this: given an integer N, find any nontrivial
divisor (divisor other than 1 and N).

If you can do that reliably, you can factor.



Factoring integers the naive way

def factor(N):

for d in range(2, N-1):

if N % d == 0: return d

If d is a divisor of N then so is N/d .

min{d ,N/d} 
p
N

This shows that it su�ces to search among 2, 3, . . . , int(
p
N)

def factor(N):

for d in range(2, intsqrt(N)):

if N % d == 0: return d

where intsqrt(N) is a procedure I provide



Useful subroutine: gcd(m,n)

gcd(m,n) return the greatest common divisor of positive integers m and n. This
algorithm is attributed to Euclid, and it is very fast. Here’s the code:

def gcd(x,y): return x if y == 0 else gcd(y, x % y)

Example:

I gcd(12, 16) is 4

I gcd(276534813447635747652, 333070702552660863114) is 18172055646



Using square roots to factor N

Find integers a and b such that
a2 � b2 = N

for then
(a� b)(a+ b) = N

so a� b and a+ b are divisors (ideally nontrivial)

How to find such integers? Naive approach...

I Choose integer a slightly more than
p
N

I Check if
p
a2 � N is an integer.

I If so, let b =
p
a2 � N Success! ,

Now a� b is a divisor of N

I If not, repeat with another value for a

Example: N = 77

a = 9p
a2 � N =

p
4 = 2

so let b = 2
a� b = 7 is a divisor of N
Example: N = 23 · 41
a = 31 ) a2 � N = 18 /
a = 32 ) a2 � N = 81 ,

For large N, it takes too long to find a good integer a. /
We will show how linear algebra , helps us synthesize a good integer a.



Using square roots to factor N
Find a and b such that

a2 � b2 = kN

for some integer k . Then
(a� b)(a+ b) = kN

{prime factors of a� b} [ {prime factors of a+ b} = {prime factors of k} [ {prime factors of N}

Suppose {prime factors of N} = {p, q}.

If

I p and q are both factors of a� b, or

I p and q are both factors of a+ b

then gcd(a� b,N) will not find a nontrivial divisor.
However, if

I p is a factor of a� b and q is a factor of a+ b,
or

I p is a factor of a+ b and q is a factor of a� b

then gcd(a� b,N) will find a nontrivial divisor.

Example:: N = 7 · 11
k = 2 · 3 · 5 · 13

if a� b = 2 · 7 · 11 and
a+ b = 3 · 5 · 13
then gcd(a� b,N) = N /
if a� b = 2 · 5 · 11 and
a+ b = 3 · 7 · 13

then gcd(a� b,N) = 11 ,



How to find integers a, b such that a2 � b2 = kN
Idea: Start by finding the first thousand prime numbers p1, . . . , p1000.

I Choose a
I Compute a2 � N.
I See if a2 � N can be factored using only p1, . . . , p1000
I If not, throw it away.
I If so, record a and the factorization of a2 � N

Repeat a thousand and one times

a a ⇤ a� N factorization
51 182 2 · 7 · 13
52 285 3 · 5 · 19
53 390 2 · 3 · 5 · 13
58 945 33 · 5 · 7
61 1302 2 · 3 · ·7 · 13
62 1425 3 · 52 · 19
63 1550 2 · 52 · 31
67 2070 2 · 32 · 5 · 23
68 2205 32 · 5 · 72
71 2622 2 · 3 · 19 · 23

Now we want to find a subset {a1, . . . , ak} such
that (a21 � N) · · · (a2k � N) is a perfect square.

Combine a1 = 52, a2 = 67, a3 = 71

(a21 � N)(a22 � N)(a23 � N) =
(3 · 5 · 19)(2 · 32 · 5 · 23)(2 · 3 · 19 · 23)
= 22 · 34 · 52 · 192 · 232 = (2 · 32 · 5 · 19 · 23)2

How to find a subset that works?



Finding a subset that works

Represent each factorization as a vector over GF (2):
Represent pa11 pa22 · · · pakk by {p1 : (a1 % 2), p2 : (a2 % 2) . . . , pk : (ak % 2)}
Let A = matrix whose rows are these vectors.

A subset of factorizations whose product is a perfect square = a subset of A’s rows
whose sum is the zero vector

Therefore need to find a nonzero vector in {u : u ⇤ A = 0}
If number of rows > rank of matrix then there exists such a nonzero vector.

a a ⇤ a� N factorization vector.f
51 182 2 · 7 · 13 {2 : one, 13 : one, 7 : one}
52 285 3 · 5 · 19 {19 : one, 3 : one, 5 : one}
53 390 2 · 3 · 5 · 13 {2 : one, 3 : one, 5 : one, 13 : one}
58 945 3

3 · 5 · 7 {3 : one, 5 : one, 7 : one}
61 1302 2 · 3 · ·7 · 13 {31 : one, 2 : one, 3 : one, 7 : one}
62 1425 3 · 52 · 19 {19 : one, 3 : one, 5 : 0}
63 1550 2 · 52 · 31 {2 : one, 5 : 0, 31 : one}
67 2070 2 · 32 · 5 · 23 {2 : one, 3 : 0, 5 : one, 23 : one}
68 2205 3

2 · 5 · 72 {3 : 0, 5 : one, 7 : 0}
71 2622 2 · 3 · 19 · 23 {19 : one, 2 : one, 3 : one, 23 : one}



Other uses of Gaussian elimination over GF (2)

Simple examples of other uses of Gaussian elimination over GF (2):

I Solving Lights Out puzzles.

I Attacking Python’s pseudo-random-number generator:

>>> import random

>>> random.getrandbits(32)

1984256916

>>> random.getrandbits(32)

4135536776

>>> random.getrandbits(32)

What are the next thirty-two bits to be generated? Using Gaussian elimination,
you can predict them accurately.

I Breaking simple authentication scheme (playing the role of Eve)....



Improving on the simple authentication scheme

• Password is an n-vector x̂ over GF (2)
• Challenge: Computer sends random n-vector a
• Response: Human sends back a · x̂.
Repeated until Computer is convinced that Human
knowns password x̂.

Eve eavesdrops on communication,
learns m pairs a1, b1, . . . ,am, bm
such that bi is right response to challenge ai

The password x̂ is a solution to2

64
a1
...
am

3

75

| {z }
A

2

4 x

3

5 =

2

64
b1
...
bm

3

75

| {z }
b

Once rank A reaches n, the solution is unique, and
Eve can use Gaussian elimination to find it,
obtaining the password.

Making the scheme more secure:
The way to make the scheme more secure
is to introduce mistakes.

I In about 1/6 of the rounds, randomly,
Human sends the wrong dot-product.

I Computer is convinced if Human gets
the right answers 75% of the time.

Even if Eve knows that Human is making
mistakes, she doesn’t know which rounds
involve mistakes.

Gaussian elimination does not find the
solution when some of the right-hand side
values bi are wrong.

In fact, we don’t know any e�cient
algorithm Eve can use to find the solution,
even if Eve observes many, many rounds.



Threshold secret-sharing

All-or-nothing secret-sharing is a method to split the secret into two pieces so that
both are required to recover the secret.

We could generalize to split the secret among four teaching assistants (TAs), so that
jointly they could recover the secret but any three cannot.

However, it is risky to rely on all four TAs showing up for a meeting.

Instead we want a threshold secret-sharing scheme: share a secret among four TAs so
that

I any three TAs could jointly recover the secret, but

I any two TAs could not.

There are such schemes that use fields other than GF (2), but let’s see if we can do it
using GF (2).



Threshold secret-sharing using five 3-vectors over GF (2)
Failing attempt: Here’s an idea: select five 3-vectors over GF (2) a0,a1,a2,a3,a4.

These vectors are supposed to satisfy the following requirement:

Requirement: every set of three are linearly independent.

To share a one-bit secret s among the TAs,
I randomly select a 3-vector u such that
a0 · u = s. I keep u secret, but I compute
the other dot-products:

�1 = a1 · u
�2 = a2 · u
�3 = a3 · u
�4 = a4 · u

I give the bit �1 to TA 1, I give �2 to TA 2,
I give �3 to TA 3, and I give �4 to TA 4.
The bit given to a TA is her share.

Can any three TAs recover the secret?
For example, suppose TAs 1, 2, and 3 want
to recover the secret. They solve the
matrix-vector equation

2

4
a1
a2
a3

3

5

2

4
x1
x2
x3

3

5 =

2

4
�1
�2
�3

3

5

Since the matrix is square and the rows
a1,a2,a3 are linearly independent, the
matrix is is invertible, so u is the only
solution. The TAs use solve to recover u,
and take the dot-product with a0 to get
the secret s.



Is the secret safe?
Now suppose two rogue TAs, TA 1 and TA 2, decide they want to obtain the secret
without involving either of the other TAs. They know �1 and �2. Can they use these
to get the secret s? The answer is no: their information is consistent with both s = 0
and s = 1. Since the matrix 2

4
a0
a1
a2

3

5

is invertible, each of the two matrix equations
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3
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2
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3

5

2
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3

5

2

4
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x2

3

5 =

2

4
1
�1
�2

3

5

has a solution. The solution to the first equation is a vector v such that a0 · v = 0,
and the solution to the second equation is a vector v such that a0 · v = 1.



Threshold secret-sharing with five pairs of 6-vectors
The proposed scheme seems to work. The catch is that first step:
• Select five 3-vectors over GF (2) a0,a1,a2,a3,a4 satisfying

Requirement: every set of three are linearly independent.

Unfortunately, there are no such five vectors.

Instead, we seek ten 6-vectors a0,b0,a1,b1,a2,b2,a3,b3,a4,b4 over GF (2).

We think of them as forming five pairs:

I Pair 0 consists of a0 and b0,

I Pair 1 consists of a1 and b1,

I Pair 2 consists of a2 and b2, and

I Pair 3 consists of a3 and b3.

I Pair 4 consists of a4 and b4.

The requirement is as follows:

Requirement: For any three pairs, the
corresponding six vectors are linearly in-
dependent.

To share two bits s and t:

• I choose a secret 6-vector u such that
a0 · u = s and b0 · u = t.

• I give TA 1 the two bits �1 = a1 · u and
�1 = b1 · u, I give TA 2 the two bits
�2 = a2 ·u and �2 = b2 ·u, and so on.

Each TA’s share consists of a pair of bits.



Threshold secret-sharing with five pairs of 6-vectors: recoverability

Any three TAs jointly can solve a matrix-vector equation with a 6⇥ 6 matrix to obtain
u, whence they can obtain the secret bits s and t. Suppose, for example, TAs 1, 2,
and 3 came together. Then they would solve the equation

2

6666664

a1
b1

a2
b2

a3
b3

3

7777775

2

6666664

x

3

7777775
=

2

6666664

�1
�1
�2
�2
�3
�3

3

7777775

to obtain u and thereby obtain the secret bits. Since the vectors a1,b1,a2,b2,a3,b3

are linearly independent, the matrix is invertible, so there is a unique solution to this
equation.



Threshold secret-sharing with five pairs of 6-vectors: recoverability
Suppose TAs 1 and 2 go rogue and try to recover s and t. They possess the bits
�1, �1,�2, �2. Are these bits consistent with s = 0 and t = 1? They are if there is a
vector u that solves the equation

2

6666664

a0
b0

a1
b1

a2
b2

3

7777775

2

6666664

x

3

7777775
=

2

6666664

0
1
�1
�1
�2
�2

3

7777775

where the first two entries of the right-hand side are the guessed values of s and t.

Since the vectors a0,b0,a1,b1,a2,b2 are linearly independent, the matrix is invertible,
so a solution exists.

Similarly, no matter what you put in the first two entries of the right-hand side, there
is exactly one solution.

This shows that the shares of TAs 1 and 2 tell them nothing about the true values of s
and t. The secret is safe.


