
Orthogonalization

[9] Orthogonalization

Finding the closest point in a plane

Goal: Given a point b and a plane, find the point in the plane closest to b.

Finding the closest point in a plane
Goal: Given a point b and a plane, find the point in the plane closest to b.

By translation, we can assume the plane includes the origin.

The plane is a vector space V. Let {v1, v2}
be a basis for V.

Goal: Given a point b, find the point in
Span {v1, v2} closest to b.

Example:

v1 = [8,�2, 2] and v2 = [4, 2, 4]

b = [5,�5, 2]
point in plane closest to b: [6,�3, 0].

Closest-point problem in in higher dimensions
Goal: An algorithm that, given a vector b and vectors v1, . . . , vn, finds the vector in
Span {v1, . . . , vn} that is closest to b.

Special case: We can use the algorithm to determine whether b lies in
Span {v1, . . . , vn}:
If the vector in Span {v1, . . . , vn} closest to b is b itself then clearly b is in the span;
if not, then b is not in the span.

Let A =

2

4 v1 · · · vn

3

5.

Using the linear-combinations interpretation of matrix-vector multiplication, a vector in
Span {v1, . . . , vn} can be written Ax.

Thus testing if b is in Span {v1, . . . , vn} is equivalent to testing if the equation
Ax = b has a solution.
More generally:
Even if Ax = b has no solution, we can use the algorithm to find the point in
{Ax : x 2 Rn} closest to b.

Moreover: We hope to extend the algorithm to also find the best solution x.

Closest point and coe�cients
Not enough to find the point p in Span {v1, . . . , vn} closest to b....
We need an algorithm to find the representation of p in terms of v1, . . . , vn.

Goal: find the coe�cients x1, . . . , xn so that x1 v1 + · · ·+ xn vn is the vector in
Span {v1, . . . , vn} closest to b.

Equivalent: Find the vector x that minimizes

������

������

2

4 b

3

5�

2

4 v1 · · · vn

3

5

2

4 x

3

5

������

������

Equivalent: Find the vector x that minimizes

������

������

2

4 b

3

5�

2

4 v1 · · · vn

3

5

2

4 x

3

5

������

������

2

Equivalent: Find the vector x that minimizes

�������

�������

2

4 b

3

5�

2

64
a1
...
am

3

75

2

4 x

3

5

�������

�������

2

Equivalent: Find the vector x that minimizes (b[1]� a1 · x)2 + · · ·+ (b[m]� am · x)2

This last problem was addressed using gradient descent in Machine Learning lab.

Closest point and least squares

Find the vector x that minimizes

������

������

2

4 b

3

5�

2

4 v1 · · · vn

3

5

2

4 x

3

5

������

������

2

Equivalent: Find the vector x that minimizes (b[1]� a1 · x)2 + · · ·+ (b[m]� am · x)2

This problem is called least squares (”méthode des moindres carrés”, due to
Adrien-Marie Legendre but often attributed to Gauss)

Equivalent: Given a matrix equation Ax = b that might have no solution, find the
best solution available in the sense that the norm of the error b� Ax is as small as
possible.

I There is an algorithm based on Gaussian elimination.

I We will develop an algorithm based on orthogonality (used in solver)

Much faster and more reliable than gradient descent.

High-dimensional projection onto/orthogonal to
For any vector b and any vector a, define vectors b||a and b?a so that

b = b||a + b?a

and there is a scalar � 2 R such that

b||a = � a
and

b?a is orthogonal to a

Definition: For a vector b and a vector space V, we define the projection of b onto V
(written b||V) and the projection of b orthogonal to V (written b?V) so that

b = b||V + b?V

and b||V is in V, and b?V is orthogonal to every vector in V.

b

b||V b⊥V

projection onto V projection orthogonal toV

b = +

High-Dimensional Fire Engine Lemma

Definition: For a vector b and a vector space V, we define the projection of b onto V
(written b||V) and the projection of b orthogonal to V (written b?V) so that

b = b||V + b?V

and b||V is in V, and b?V is orthogonal to every vector in V.

One-dimensional Fire Engine Lemma: The point in Span {a} closest to b is

b||a and the distance is kb?ak.

High-Dimensional Fire Engine Lemma: The point in a vector space V closest to
b is b||V and the distance is kb?Vk.

Finding the projection of b orthogonal to Span {a1, . . . , an}

High-Dimensional Fire Engine Lemma: Let b be a vector and let V be a vector
space. The vector in V closest to b is b||V . The distance is kb?Vk.

Suppose V is specified by generators v1, . . . , vn

Goal: An algorithm for computing b?V in this case.

I input: vector b, vectors v1, . . . , vn
I output: projection of b orthogonal to V = Span {v1, . . . , vn}

We already know how to solve this when n = 1:

def project_orthogonal_1(b, v):

return b - project_along(b, v)

Let’s try to generalize....

project orthogonal(b, vlist)

def project_orthogonal_1(b, v):

return b - project_along(b, v)

+
def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

Reviews are in....

“Short, elegant, and flawed”

“Beautiful—if only it worked!”

“A tragic failure.”

project orthogonal(b, vlist) doesn’t work

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

b = [1,1]
vlist =[[1, 0],

[
p
2
2 ,

p
2
2]]

Let bi be value of the variable b after i iterations.

b1 = b0 � (projection of [1, 1] along [1, 0])

= b0 � [1, 0]

= [0, 1]

b2 = b1 � (projection of [0, 1] along [

p
2

2
,

p
2

2
])

= b1 � [
1

2
,
1

2
]

= [�1

2
,
1

2
] which is not orthogonal to [1, 0]

(1,0)

(√2/2, √2/2)

(1,1)

b

project orthogonal(b, vlist) doesn’t work

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

b = [1,1]
vlist =[[1, 0],

[
p
2
2 ,

p
2
2]]

Let bi be value of the variable b after i iterations.

b1 = b0 � (projection of [1, 1] along [1, 0])

= b0 � [1, 0]

= [0, 1]

b2 = b1 � (projection of [0, 1] along [

p
2

2
,

p
2

2
])

= b1 � [
1

2
,
1

2
]

= [�1

2
,
1

2
] which is not orthogonal to [1, 0]

(1,0)

(√2/2, √2/2)

(1,1)

b

project orthogonal(b, vlist) doesn’t work

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

b = [1,1]
vlist =[[1, 0],

[
p
2
2 ,

p
2
2]]

Let bi be value of the variable b after i iterations.

b1 = b0 � (projection of [1, 1] along [1, 0])

= b0 � [1, 0]

= [0, 1]

b2 = b1 � (projection of [0, 1] along [

p
2

2
,

p
2

2
])

= b1 � [
1

2
,
1

2
]

= [�1

2
,
1

2
] which is not orthogonal to [1, 0]

(1,0)

(√2/2, √2/2)

(1,1)

b

(1,0)

(√2/2, √2/2)

(0,1)

b1

project orthogonal(b, vlist) doesn’t work

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

b = [1,1]
vlist =[[1, 0],

[
p
2
2 ,

p
2
2]]

Let bi be value of the variable b after i iterations.

b1 = b0 � (projection of [1, 1] along [1, 0])

= b0 � [1, 0]

= [0, 1]

b2 = b1 � (projection of [0, 1] along [

p
2

2
,

p
2

2
])

= b1 � [
1

2
,
1

2
]

= [�1

2
,
1

2
] which is not orthogonal to [1, 0]

(1,0)

(√2/2, √2/2)

(0,1)

b1

project orthogonal(b, vlist) doesn’t work

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

b = [1,1]
vlist =[[1, 0],

[
p
2
2 ,

p
2
2]]

Let bi be value of the variable b after i iterations.

b1 = b0 � (projection of [1, 1] along [1, 0])

= b0 � [1, 0]

= [0, 1]

b2 = b1 � (projection of [0, 1] along [

p
2

2
,

p
2

2
])

= b1 � [
1

2
,
1

2
]

= [�1

2
,
1

2
] which is not orthogonal to [1, 0]

(1,0)

(√2/2, √2/2)

(1,1)

b2

(-1/2,1/2)

How to repair project orthogonal(b, vlist)?

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

b = [1,1]
vlist =[[1, 0],

[
p
2
2 ,

p
2
2]]

Final vector is not
orthogonal to [1, 0]

Maybe the problem will go away if the algorithm

I first finds the projection of b along each of the vectors in vlist, and

I only afterwards subtracts all these projections from b.

def classical_project_orthogonal(b, vlist):

w = all-zeroes-vector

for v in vlist:

w = w + project_along(b, v)

return b - w

Alas, this procedure also does not work. For the inputs

b = [1, 1], vlist = [[1, 0], [
p
2
2 ,

p
2
2]]

the output vector is [�1, 0]
which is orthogonal to neither of the two vectors in vlist.

What to do with project orthogonal(b, vlist)?
Try it with two vectors v1 and v2 that are orthogonal...

v1 = [1, 2, 1]

v2 = [�1, 2,�1]

b = [1, 1, 2]

b1 = b0 �
b0 · v1
v1 · v1

v1

= [1, 1, 2]� 5

6
[1, 2, 1]

=


1

6
,�4

6
,
7

6

�

b2 = b1 �
b1 · v2
v2 · v2

v2

=


1

6
,�4

6
,
7

6

�
� 1

2
[�1, 0, 1]

=


2

3
,�2

3
,
2

3

�
and note b2 is orthogonal to v1 and v2.

What to do with project orthogonal(b, vlist)?
Try it with two vectors v1 and v2 that are orthogonal...

v1 = [1, 2, 1]

v2 = [�1, 2,�1]

b = [1, 1, 2]

b1 = b0 �
b0 · v1
v1 · v1

v1

= [1, 1, 2]� 5

6
[1, 2, 1]

=


1

6
,�4

6
,
7

6

�

b2 = b1 �
b1 · v2
v2 · v2

v2

=


1

6
,�4

6
,
7

6

�
� 1

2
[�1, 0, 1]

=


2

3
,�2

3
,
2

3

�
and note b2 is orthogonal to v1 and v2.

Maybe project orthogonal(b, vlist) works with v1, v2 orthogonal?
Assume hv1, v2i = 0.
Remember: bi is value of b after i iterations

First iteration:
b1 = b0 � �1 v1

gives b1 such that hv1,b1i = 0.

Second iteration:
b2 = b1 � �1 v2

gives b2 such that hv2,b2i = 0

But what about hv1,b2i?

hv1,b2i = hv1,b1 � � v2i
= hv1,b1i � hv1,� v2i
= hv1,b1i � � hv1, v2i
= 0 + 0

Thus b2 is orthogonal to v1 and v2

Don’t fix project orthogonal(b, vlist). Fix the spec.

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

Instead of trying to fix the flaw by changing the procedure, we will change the spec we
expect the procedure to fulfill.

Require that vlist consists of mutually orthogonal vectors:
the i

th vector in the list is orthogonal to the j
th vector in the list for every i 6= j .

New spec:

I input: a vector b, and a list vlist of mutually orthogonal vectors

I output: the projection b? of b orthogonal to the vectors in vlist

Loop invariant of project orthogonal(b, vlist)

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

Loop invariant: Let vlist = [v1, . . . , vn]
For i = 0, . . . , n, let bi be the value of the variable b after i iterations. Then bi is the
projection of b orthogonal to Span {v1, . . . , vi}. That is,

I bi is orthogonal to the first i vectors of vlist, and

I b� bi is in the span of the first i vectors of vlist

We use induction to prove the invariant holds.

For i = 0, the invariant is trivially true:

I b0 is orthogonal to each of the first 0 vectors (every vector is), and

I b� b0 is in the span of the first 0 vectors (because b� b0 is the zero vector).

Proof of loop invariant of project orthogonal(b, [v1, . . . , vn])
bi = projection of b orthogonal to
Span {v1, . . . , vi}:
• bi is orthogonal to v1, . . . , vi , and
• b� bi is in Span {v1, . . . , vi}

for v in vlist:

b = b - project_along(b, v)

Assume invariant holds for i = k � 1 iterations, and prove it for i = k iterations.

In k
th iteration, algorithm computes bk = bk�1 � �k vk

By induction hypothesis, bk�1 is the projection of b orthogonal to Span {v1, . . . , vk�1}
Must prove

I bk is orthogonal to v1, . . . , vk , X
I and b� bk is in Span {v1, . . . , vk} X

Choice of �k ensures that bk is orthogonal to vk .
Must show bk also orthogonal to vj for j = 1, . . . , k � 1

hbk , vji = hbk�1 � �kvk , vji
= hbk�1, vji � �k hvk , vji
= 0� �k hvk , vji by the inductive hypothesis

= 0� �k0 by mutual orthogonality

Shows bk orthogonal to v1, . . . , vk

Now we prove b� bk is in Span {v1, . . . , vk}

b� bk = b� (bk�1 � �k vk) by algorithm

= (b� bk�1) + �k vk
= (a vector in Span {v1, . . . , vk�1}) + ↵k vk by inductive hypothesis

= a vector in Span {v1, . . . , vk})

Correctness of project orthogonal(b, vlist)

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

We have proved:
If v1, . . . , vn are mutually orthogonal then
output of project orthogonal(b, [v1, . . . , vn]) is the vector b? such that

I b = b|| + b?

I b|| is in Span {v1, . . . , vn}
I b? is orthogonal to v1, . . . , vn.

Change to zero-based indexing::
If v0, . . . , vn are mutually orthogonal then
output of project orthogonal(b, [v0, . . . , vn]) is the vector b? such that

I b = b|| + b?

I b|| is in Span {v0, . . . , vn}
I b? is orthogonal to v0, . . . , vn.

Augmenting project orthogonal
Since b|| = b� b? is in Span {v0, . . . , vn}, there are coe�cients ↵0, . . . ,↵n such that

b� b? = ↵0 v0 + · · ·+ ↵n vn

b = ↵0 v0 + · · ·+ ↵n vn + 1b?

Write as
2

4 b

3

5 =

2

4 v0 · · · vn b?

3

5

2

6664

↵0
...
↵n

1

3

7775

The procedure project orthogonal(b, vlist) can be augmented to output the
vector of coe�cients.

For technical reasons, we will represent the vector of coe�cents as a dictionary, not a
Vec.

Augmenting project orthogonal

2

4 b

3

5 =

2

4 v0 · · · vn b?

3

5

2

6664

↵0
...
↵n

1

3

7775

Must create and populate a dictionary.

I One entry for each vector in vlist

I One additional entry, 1, for b?

Initialize dictionary with the additonal
entry.

We reuse code from two prior procedures.

def project_along(b, v):

sigma = ((b*v)/(v*v)) \

if v*v != 0 else 0

return sigma * v

def project_orthogonal(b, vlist):

for v in vlist:

b = b - project_along(b, v)

return b

def aug_project_orthogonal(b, vlist):

alphadict = {len(vlist):1}

for i in range(len(vlist)):

v = vlist[i]

sigma = (b*v)/(v*v) \

if v*v > 0 else 0

alphadict[i] = sigma

b = b - sigma*v

return (b, alphadict)

Building an orthogonal set of generators

Original stated goal:
Find the projection of b orthogonal to the space V spanned by arbitrary vectors
v1, . . . , vn.

So far we know how to find the projection of b orthogonal to the space spanned by
mutually orthogonal vectors.

This would su�ce if we had a procedure that, given arbitrary vectors v1, . . . , vn,
computed mutually orthogonal vectors v⇤1, . . . , v

⇤
n that span the same space.

We consider a new problem: orthogonalization:

I input: A list [v1, . . . , vn] of vectors over the reals

I output: A list of mutually orthogonal vectors v⇤1, . . . , v
⇤
n such that

Span {v⇤1, . . . , v⇤n} = Span {v1, . . . , vn}

How can we solve this problem?

The orthogonalize procedure
Idea: Use project orthogonal iteratively to make a longer and longer list of
mutually orthogonal vectors.

I First consider v1. Define v⇤1 := v1 since the set {v⇤1} is trivially a set of mutually
orthogonal vectors.

I Next, define v⇤2 to be the projection of v2 orthogonal to v⇤1.

I Now {v⇤1, v⇤2} is a set of mutually orthogonal vectors.

I Next, define v⇤3 to be the projection of v3 orthogonal to v⇤1 and v⇤2, so {v⇤1, v⇤2, v⇤3}
is a set of mutually orthogonal vectors....

In each step, we use project orthogonal to find the next orthogonal vector.

In the i
th iteration, we project vi orthogonal to v⇤1, . . . , v

⇤
i�1 to find v⇤i .

def orthogonalize(vlist):

vstarlist = []

for v in vlist:

vstarlist.append(project_orthogonal(v, vstarlist))

return vstarlist

Correctness of the orthogonalize procedure, Part I

def orthogonalize(vlist):

vstarlist = []

for v in vlist:

vstarlist.append(project_orthogonal(v, vstarlist))

return vstarlist

Lemma: Throughout the execution of orthogonalize, the vectors in vstarlist

are mutually orthogonal.

In particular, the list vstarlist at the end of the execution, which is the list returned,
consists of mutually orthogonal vectors.

Proof: by induction, using the fact that each vector added to vstarlist is
orthogonal to all the vectors already in the list. QED

Example of orthogonalize
Example: When orthogonalize is called on a vlist consisting of vectors

v1 = [2, 0, 0], v2 = [1, 2, 2], v3 = [1, 0, 2]
it returns the list vstarlist consisting of

v⇤1 = [2, 0, 0], v⇤2 = [0, 2, 2], v⇤3 = [0,�1, 1]

(1) In the first iteration, when v is v1, vstarlist is empty, so the first vector v⇤1
added to vstarlist is v1 itself.

(2) In the second iteration, when v is v2, vstarlist consists only of v⇤1. The
projection of v2 orthogonal to v⇤1 is

v2 �
hv2, v⇤1i
hv⇤1, v⇤1i

v⇤1 = [1, 2, 2]� 2

4
[2, 0, 0]

= [0, 2, 2]

so v⇤2 = [0, 2, 2] is added to vstarlist.
(3) In the third iteration, when v is v3, vstarlist consists of v⇤1 and v⇤2. The

projection of v3 orthogonal to v⇤1 is [0, 0, 2], and the projection of [0, 0, 2]
orthogonal to v⇤2 is

[0, 0, 2]� 1

2
[0, 2, 2] = [0,�1, 1]

so v⇤3 = [0,�1, 1] is added to vstarlist

Correctness of the orthogonalize procedure, Part II
Lemma: Consider orthogonalize applied to an n-element list [v1, . . . , vn]. After i
iterations of the algorithm, Span vstarlist = Span {v1, . . . , vi}.
Proof: by induction on i .
The case i = 0 is trivial.
After i � 1 iterations, vstarlist consists of vectors v⇤1, . . . , v

⇤
i�1.

Assume the lemma holds at this point. This means that

Span {v⇤1, . . . , v⇤i�1} = Span {v1, . . . , vi�1}
By adding the vector vi to sets on both sides, we obtain

Span {v⇤1, . . . , v⇤i�1, vi} = Span {v1, . . . , vi�1, vi}
... It therefore remains only to show that

Span {v⇤1, . . . , v⇤i�1, v
⇤
i } = Span {v⇤1, . . . , v⇤i�1, vi}.

The i
th iteration computes v⇤i using project orthogonal(vi , [v⇤1, . . . , v

⇤
i�1]).

There are scalars ↵i1,↵i2, . . . ,↵i ,i�1 such that

vi = ↵1iv⇤1 + · · ·+ ↵i�1,iv⇤i�1 + v⇤i
This equation shows that any linear combination of

v⇤1, v
⇤
2 . . . , v

⇤
i�1, vi

can be transformed into a linear combination of

v⇤1, v
⇤
2 . . . , v

⇤
i�1, v

⇤
i

and vice versa. QED

Order in orthogonalize

Order matters!

Suppose you run the procedure orthogonalize twice, once with a list of vectors and
once with the reverse of that list.

The output lists will not be the reverses of each other.

Contrast with project orthogonal(b, vlist).

The projection of a vector b orthogonal to a vector space is unique,
so in principle the order of vectors in vlist doesn’t a↵ect the output of
project orthogonal(b, vlist).

Matrix form for orthogonalize

For project orthogonal, we had

2

4 b

3

5 =

2

4 v0 · · · vn b?

3

5

2

6664

↵0
...
↵n

1

3

7775
For orthogonalize, we have

2

4 v0

3

5 =

2

4 v⇤0

3

5 ⇥
1
⇤

2

4 v0 v1 v2 v3

3

5 =

2

4 v⇤0 v⇤1 v⇤2 v⇤3

3

5

2

664

1 ↵01 ↵02 ↵03

1 ↵12 ↵13

1 ↵23

1

3

775

2

4 v1

3

5 =

2

4 v⇤0 v⇤1

3

5

↵01

1

�

2

4 v2

3

5 =

2

4 v⇤0 v⇤1 v⇤2

3

5

2

4
↵02

↵12

1

3

5

2

4 v3

3

5 =

2

4 v⇤0 v⇤1 v⇤2 v⇤3

3

5

2

664

↵03

↵13

↵23

1

3

775

2

666666664

v0 v1 v2 · · · vn

3

777777775

=

2

666666664

v⇤0 v⇤1 v⇤2 · · · v⇤n

3

777777775

2

666664

1 ↵01 ↵02 ↵0n

1 ↵12 ↵1n

1 ↵2n
. . .

1

3

777775

The two matrices on the right are special:

I Columns of first one are mutually orthogonal.

I Second is upper triangular.

We will use these properties in algorithms....

Example of matrix form for orthogonalize

Example: for vlist consisting of vectors

v0 =

2

4
2
0
0

3

5 , v1 =

2

4
1
2
2

3

5 , v2 =

2

4
1
0
2

3

5

we saw that the output list vstarlist of orthogonal vectors consists of

v⇤0 =

2

4
2
0
0

3

5 , v⇤1 =

2

4
0
2
2

3

5 , v⇤2 =

2

4
0
�1
1

3

5

The corresponding matrix equation is

2

4 v0 v1 v2

3

5 =

2

4
2 0 0
0 2 �1
0 2 1

3

5

2

4
1 0.5 0.5

1 0.5
1

3

5

Solving closest point in the span of many vectors

Let V = Span {v0, . . . , vn}.

The vector in V closest to b is b||V , which is b� b?V .

There are two equivalent ways to find b?V ,

I One method:

Step 1: Apply orthogonalize to v0, . . . ,vn, and obtain v⇤
0 , . . . ,v⇤

n.
(Now V = Span {v⇤

0 , . . . ,v⇤
n})

Step 2: Call project orthogonal(b, [v⇤
0 , . . . ,v⇤

n])

and obtain b?
as the result.

I Another method: Exactly the same computations take place when
orthogonalize is applied to [v0, . . . , vn,b] to obtain [v⇤0, . . . , v

⇤
n,b

⇤].

In the last iteration of orthogonalize, the vector b⇤ is obtained by projecting b
orthogonal to v⇤0, . . . , v

⇤
n. Thus b

⇤ = b?.

Mutually orthogonal nonzero vectors are linearly independent

Proposition: Mutually orthogonal nonzero vectors are linearly independent.

Proof: Let v⇤0, v
⇤
2, . . . , v

⇤
n be mutually orthogonal nonzero vectors.

Suppose ↵0,↵1, . . . ,↵n are coe�cients such that

0 = ↵0 v⇤0 + ↵1 v⇤1 + · · ·+ ↵n v⇤n

We must show that therefore the coe�cients are all zero.
To show that ↵0 is zero, take inner product with v⇤0 on both sides:

hv⇤0,0i = hv⇤0,↵0 v⇤0 + ↵1 v⇤1 + · · ·+ ↵n v⇤ni
= ↵0 hv⇤0, v⇤0i+ ↵1 hv⇤0, v⇤1i+ · · ·+ ↵n hv⇤0, v⇤ni
= ↵0kv⇤0k2 + ↵1 0 + · · ·+ ↵n 0

= ↵0kv⇤0k2

The inner product hv⇤0, 0i is zero, so ↵0 kv⇤0k2 = 0. Since v⇤0 is nonzero, its norm is
nonzero, so the only solution is ↵0 = 0.
Can similarly show that ↵1 = · · · = ↵n = 0. QED

Computing a basis
Proposition: Mutually orthogonal nonzero vectors are linearly independent.

What happens if we call the orthogonalize procedure on a list vlist=[v0, . . . , vn]
of vectors that are linearly dependent?

dimSpan {v0, . . . , vn} < n + 1.

orthogonalize([v0, . . . , vn]) returns [v⇤0, . . . , v
⇤
n]

The vectors v⇤0, . . . , v
⇤
n are mutually orthogonal.

They can’t be linearly independent since they span a space of dimension less than
n + 1.

Therefore some of them must be zero vectors.

Leaving out the zero vectors does not change the space spanned...

Let S be the subset of {v⇤0, . . . , v⇤n} consisting of nonzero vectors.

Span S = Span {v⇤0, . . . , v⇤n} = Span {v0, . . . , vn}

Proposition implies that S is linearly independent.

Thus S is a basis for Span {v0, . . . , vn}.

Orthogonal complement

Let U be a subspace of W.
For each vector b in W, we can write b = b||U + b?U where

I b||U is in U , and
I b?U is orthogonal to every vector in U .

Let V be the set {b?U : b 2 W}.
Definition: We call V the orthogonal complement of U in W

Easy observations:

I Every vector in V is orthogonal to every vector in U .
I Every vector b in W can be written as the sum of a vector in U and a vector in V.

Maybe U � V = W? To show direct sum of U and V is defined, we need to show that
the only in vector that is in both U and V is the zero vector.

Any vector w in both U and V is orthogonal to itself.
Thus 0 = hw,wi = kwk2.
By Property N2 of norms, that means w = 0.

Therefore U � V = W. Recall: dimU + dimV = dimU � V

Orthogonal complement: example

Example: Let U = Span {[1, 1, 0, 0], [0, 0, 1, 1]}. Let V denote the orthogonal
complement of U in R4. What vectors form a basis for V?

Every vector in U has the form [a, a, b, b].

Therefore any vector of the form [c ,�c , d ,�d] is orthogonal to every vector in U .

Every vector in Span {[1,�1, 0, 0], [0, 0, 1,�1]} is orthogonal to every vector in U
... so Span {[1,�1, 0, 0], [0, 0, 1,�1]} is a subspace of V, the orthogonal complement
of U in R4.

Is it the whole thing?

U � V = R4 so dimU + dimV = 4.

{[1, 1, 0, 0], [0, 0, 1, 1]} is linearly independent so dimU = 2... so dimV = 2

{[1,�1, 0, 0], [0, 0, 1,�1]} is linearly independent
so dimSpan {[1,�1, 0, 0], [0, 0, 1,�1]} is also 2....
so Span {[1,�1, 0, 0], [0, 0, 1,�1]} = V.

Computing the orthogonal complement
Suppose we have a basis u1, . . . ,uk for U and a basis w1, . . . ,wn for W. How can we
compute a basis for the orthogonal complement of U in W?

One way: use orthogonalize(vlist) with

vlist = [u1, . . . ,uk ,w1, . . . ,wn]

Write list returned as [u⇤
1, . . . ,u

⇤
k ,w

⇤
1, . . . ,w

⇤
n]

These span the same space as input vectors u1, . . . ,uk ,w1, . . . ,w⇤
n, namely W, which

has dimension n.

Therefore exactly n of the output vectors u⇤
1, . . . ,u

⇤
k ,w

⇤
1, . . . ,w

⇤
n are nonzero.

The vectors u⇤
1, . . . ,u

⇤
k have same span as u1, . . . ,uk and are all nonzero since

u1, . . . ,uk are linearly independent.

Therefore exactly n � k of the remaining vectors w⇤
1, . . . ,w

⇤
n are nonzero.

Every one of them is orthogonal to u1, . . . ,un...
so they are orthogonal to every vector in U ...
so they lie in the orthogonal complement of U .
By Direct-Sum Dimension Lemma, orthogonal complement has dimension n � k , so
the remaining nonzero vectors are a basis for the orthogonal complement.

Augmenting orthogonalize(vlist)
We will write a procedure aug orthogonalize(vlist) with the following spec:

I input: a list [v1, . . . , vn] of vectors
I output: the pair ([v⇤1, . . . , v

⇤
n], [r1, . . . , rn]) of lists of vectors such that

v⇤1, . . . , v
⇤
n are mutually orthogonal vectors whose span equals Span {v1, . . . , vn},

and 2

4 v1 · · · vn

3

5 =

2

4 v⇤1 · · · v⇤n

3

5

2

4 r1 · · · rn

3

5

def orthogonalize(vlist):

vstarlist = []

for v in vlist:

vstarlist.append(

project_orthogonal(v, vstarlist))

return vstarlist

def aug_orthogonalize(vlist):

vstarlist = []

r_vecs = []

D = set(range(len(vlist)))

for v in vlist:

(vstar, alphadict) =

aug_project_orthogonal(v, vstarlist)

vstarlist.append(vstar)

r_vecs.append(Vec(D, alphadict))

return vstarlist, r_vecs

Towards QR factorization

We will now develop the QR factorization. We will show that certain matrices can be
written as the product of matrices in special form.
Matrix factorizations are useful mathematically and computationally:

I Mathematical: They provide insight into the nature of matrices—each
factorization gives us a new way to think about a matrix.

I Computational: They give us ways to compute solutions to fundamental
computational problems involving matrices.

Matrices with mutually orthogonal columns

2

64
v⇤1

T

...
v⇤n

T

3

75

2

666666664

v⇤1 · · · v⇤n

3

777777775

=

2

64
kv1k2

. . .
kvnk2

3

75

Cross-terms are zero because of mutual orthogonality.
To make the product into the identity matrix, can normalize the columns.

Normalizing a vector means
scaling it to make its norm 1.

Just divide it by its norm.

>>> def normalize(v): return v/sqrt(v*v)

>>> q = normalize(list2vec[1,1,1])

>>> q * q

1.0000000000000002

>>> print(q)

0 1 2

0.577 0.577 0.577

Matrices with mutually orthogonal columns

2

64
v⇤1

T

...
v⇤n

T

3

75

2

666666664

v⇤1 · · · v⇤n

3

777777775

=

2

64
kv1k2

. . .
kvnk2

3

75

Cross-terms are zero because of mutual orthogonality.
To make the product into the identity matrix, can normalize the columns.

Normalize columns

2

666666664

v⇤1 · · · v⇤n

3

777777775

)

2

666666664

q1 · · · qn

3

777777775

Matrices with mutually orthogonal columns

2

64
qT
1
...
qT
n

3

75

2

666666664

q1 · · · qn

3

777777775

=

2

64
1

. . .
1

3

75

Normalize columns

2

666666664

v⇤1 · · · v⇤n

3

777777775

)

2

666666664

q1 · · · qn

3

777777775

Matrices with mutually orthogonal columns

2

64
qT
1
...
qT
n

3

75

2

666666664

q1 · · · qn

3

777777775

=

2

64
1

. . .
1

3

75

Proposition: If columns of Q are mutually orthogonal with norm 1 then Q
T
Q is identity

matrix.

Definition: Vectors that are mutually orthogonal and have norm 1 are orthonormal.

Definition: If columns of Q are orthonormal then we call Q a column-orthogonal matrix.
should be called orthonormal but oh well

Definition: If Q is square and column-orthogonal, we call Q an orthogonal matrix.

Proposition: If Q is an orthogonal matrix then its inverse is QT .

Towards QR factorization

Orthogonalization of columns of matrix A gives us a representation of A as product of

I matrix with mutually orthogonal columns

I invertible triangular matrix
2

666666664

v1 v2 v3 · · · vn

3

777777775

=

2

666666664

v⇤1 v⇤2 v⇤3 · · · v⇤n

3

777777775

2

66666664

1 ↵12 ↵13 ↵1n

1 ↵23 ↵2n

1 ↵3n
. . .

↵n�1,n

1

3

77777775

Suppose columns v1, . . . , vn are linearly independent. Then v⇤1, . . . , v
⇤
n are nonzero.

I Normalize v⇤1, . . . , v
⇤
n (Matrix is called Q)

I To compensate, scale the rows of the triangular matrix. (Matrix is R)

The result is the QR factorization.
Q is a column-orthogonal matrix and R is an upper-triangular matrix.

Towards QR factorization

Orthogonalization of columns of matrix A gives us a representation of A as product of

I matrix with mutually orthogonal columns

I invertible triangular matrix
2

666666664

v1 v2 v3 · · · vn

3

777777775

=

2

666666664

q1 q2 q3 · · · qn

3

777777775

2

6666666664

kv⇤1k �12 �13 �1n
kv⇤2k �23 �2n

kv⇤3k �3n
. . .

�n�1,n

kv⇤nk

3

7777777775

Suppose columns v1, . . . , vn are linearly independent. Then v⇤1, . . . , v
⇤
n are nonzero.

I Normalize v⇤1, . . . , v
⇤
n (Matrix is called Q)

I To compensate, scale the rows of the triangular matrix. (Matrix is R)

The result is the QR factorization.
Q is a column-orthogonal matrix and R is an upper-triangular matrix.

Using the QR factorization to solve a matrix equation Ax = b

First suppose A is square and its columns are linearly independent.
Then A is invertible.
It follows that there is a solution (because we can write x = A

�1b)
QR Solver Algorithm to find the solution in this case:

Find Q,R such that A = QR and Q is column-orthogonal and R is triangular
Compute vector c = Q

Tb
Solve R = c using backward substitution, and return the solution.

Why is this correct?

I Let x̂ be the solution returned by the algorithm.

I We have R x̂ = Q
Tb

I Multiply both sides by Q: Q(R x̂) = Q(QTb)
I Use associativity: (QR)x̂ = (QQT)b
I Substitute A for QR : Ax̂ = (QQT)b
I Since Q and Q

T are inverses, we know QQ
T is identity matrix: Ax̂ = 1b

Thus Ax̂ = b.

Solving Ax = b

What if columns of A are not independent?

Let v1, v2, v3, v4 be columns of A.

Suppose v1, v2, v3, v4 are linearly dependent.

Then there is a basis consisting of a subset, say v1, v2, v4
8
>><

>>:

2

4 v1 v2 v3 v4

3

5

2

664

x1

x2

x3

x4

3

775 : x1, x2, x3, x4 2 R

9
>>=

>>;
=

8
<

:

2

4 v1 v2 v4

3

5

2

4
x1

x2

x4

3

5 : x1, x2, x4 2 R

9
=

;

Therefore: if there is a solution to Ax = b then there is a solution to A
0x0 = b where

columns of A0 are a subset basis of columns of A (and x0 consists of corresponding
variables).

The least squares problem
Suppose A is an m ⇥ n matrix and its
columns are linearly independent.

Since each column is an m-vector,
dimension of column space is at most m,
so n  m.

What if n < m? How can we solve the
matrix equation Ax = b?

Remark: There might not be a solution:

I Define f : Rn �! Rm by f (x) = Ax
I Dimension of Im f is n

I Dimension of co-domain is m.

I Thus f is not onto.

2

4
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

3

5

2

66664

x1

x2

x3

x4

x5

3

77775
= b

2

664

1 2 3
4 5 6
7 8 9
10 11 12

3

775

2

4
x1

x2

x3

3

5 = b

Goal: An algorithm that, given equation Ax = b, where columns are linearly
independent, finds the vector x̂ minimizing kb� Ax̂k.

Solution: Same algorithm as we used for square A

The least squares problem

Recall...

High-Dimensional Fire Engine Lemma: The point in a vector space V closest to
b is b||V and the distance is kb?Vk.

Given equation Ax = b, let V be the column space of A.

We need to show that the QR Solver Algorithm returns the vector x̂ such that
Ax̂ = b||V .

The least squares problem
Suppose A is an m ⇥ n matrix and its
columns are linearly independent.

Since each column is an m-vector,
dimension of column space is at most m,
so n  m.

What if n < m? How can we solve the
matrix equation Ax = b?

Remark: There might not be a solution:

I Define f : Rn �! Rm by f (x) = Ax
I Dimension of Im f is n

I Dimension of co-domain is m.

I Thus f is not onto.

2

4
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

3

5

2

66664

x1

x2

x3

x4

x5

3

77775
= b

2

664

1 2 3
4 5 6
7 8 9
10 11 12

3

775

2

4
x1

x2

x3

3

5 = b

Goal: An algorithm that, given a matrix A whose columns are linearly independent and
given b, finds the vector x̂ minimizing kb� Ax̂k.

Solution: Same algorithm as we used for square A

The least squares problem

Recall...

High-Dimensional Fire Engine Lemma: The point in a vector space V closest to
b is b||V and the distance is kb?Vk.

Given equation Ax = b, let V be the column space of A.

We need to show that the QR Solver Algorithm returns b||V .

Representation of b|| in terms of columns of Q
Let Q be a column-orthogonal matrix. Let b be a vector, and write b = b|| + b?

where b|| is projection of b onto Col Q and b? is projection orthogonal to Col Q.

Let u be the coordinate representation of b|| in terms of columns of Q.

By linear-combinations definition of matrix-vector multiplication,

2

66664
b||

3

77775
=

2

66664
Q

3

77775

2

4 u

3

5

Multiply both sides on the left by Q
T :

2

4 Q
T

3

5

2

66664
b||

3

77775
=

2

4 Q
T

3

5

2

66664
Q

3

77775

2

4 u

3

5

Substitute using Q
T
Q = 1

2

4 Q
T

3

5

2

66664
b||

3

77775
= 1

2

4 u

3

5 =

2

4 u

3

5

I Q
Tb|| = u

I Q
Tb? = 0

Since b? is orthogonal to Col Q,

qi · b
? = 0 for every column qi of Q

Therefore, by dot-product definition of matrix-vector multiplication,

2

4 Q
T

3

5

2

66664
b?

3

77775
=

2

64
0
...
0

3

75

Therefore
Q

Tb = Q
T
⇣
b|| + b?

⌘
= Q

Tb|| + Q
Tb? = Q

Tb|| = u

To go from representation u to b||,
multiply by Q:

2

66664
Q

3

77775

2

4 u

3

5 =

2

66664
b||

3

77775

Putting these together,

2

66664
Q

3

77775

2

4 Q
T

3

5

2

66664
b

3

77775
=

2

66664
b||

3

77775

Summary:

I QQ
Tb = b||

QR Solver Algorithm for Ax ⇡ b

Summary:

I QQ
Tb = b||

Proposed algorithm:

Find Q,R such that A = QR and Q is column-orthogonal and R is triangular
Compute vector c = Q

Tb
Solve Rx = c using backward substitution, and return the solution x̂.

Goal: To show that the solution x̂ returned is the vector that minimizes kb� Ax̂k

Every vector of the form Ax is in Col A (= Col Q)

By the High-Dimensional Fire Engine Lemma, the vector in Col A closest to b is b||,
the projection of b onto Col A.

Solution x̂ satisfies R x̂ = Q
Tb

Multiply by Q: QR x̂ = QQ
Tb

Therefore Ax̂ = b||

Application of least squares: linear regression
Finding the line that best fits some two-dimensional data.

Data on age versus
brain mass from the
Bureau of Made-up
Numbers:

age brain mass
45 4 lbs.
55 3.8
65 3.75
75 3.5
85 3.3

Let f (x) be the function that predicts brain mass for someone
of age x .
Hypothesis: after age 45, brain mass decreases linearly with
age, i.e. that f (x) = mx + b for some numbers m, b.
Goal: find m, b to as to minimize the sum of squares of
prediction errors
The observations are (x1, y1) = (45, 4), (x2, y2) = (55, 3.8),
(x3, y3) = (64, 3.75),(x4, y4) = (75, 3.5), (x5, y5) = (85, 3.3).
The prediction error on the the i

th observation is |f (xi)� yi |.
The sum of squares of prediction errors is

P
i (f (xi)� yi)2.

For each observation, measure the di↵erence
between the predicted and observed y -value.
In this application, this di↵erence is measured in
pounds.
Measuring the distance from the point to the line
wouldn’t make sense.

Application of least squares: linear regression
Finding the line that best fits some two-dimensional data.

Data on age versus
brain mass from the
Bureau of Made-up
Numbers:

age brain mass
45 4 lbs.
55 3.8
65 3.75
75 3.5
85 3.3

Let f (x) be the function that predicts brain mass for someone
of age x .
Hypothesis: after age 45, brain mass decreases linearly with
age, i.e. that f (x) = mx + b for some numbers m, b.
Goal: find m, b to as to minimize the sum of squares of
prediction errors
The observations are (x1, y1) = (45, 4), (x2, y2) = (55, 3.8),
(x3, y3) = (64, 3.75),(x4, y4) = (75, 3.5), (x5, y5) = (85, 3.3).
The prediction error on the the i

th observation is |f (xi)� yi |.
The sum of squares of prediction errors is

P
i (f (xi)� yi)2.

For each observation, measure the di↵erence
between the predicted and observed y -value.
In this application, this di↵erence is measured in
pounds.
Measuring the distance from the point to the line
wouldn’t make sense.

Application of least squares: linear regression
Finding the line that best fits some two-dimensional data.

Data on age versus
brain mass from the
Bureau of Made-up
Numbers:

age brain mass
45 4 lbs.
55 3.8
65 3.75
75 3.5
85 3.3

Let f (x) be the function that predicts brain mass for someone
of age x .
Hypothesis: after age 45, brain mass decreases linearly with
age, i.e. that f (x) = mx + b for some numbers m, b.
Goal: find m, b to as to minimize the sum of squares of
prediction errors
The observations are (x1, y1) = (45, 4), (x2, y2) = (55, 3.8),
(x3, y3) = (64, 3.75),(x4, y4) = (75, 3.5), (x5, y5) = (85, 3.3).
The prediction error on the the i

th observation is |f (xi)� yi |.
The sum of squares of prediction errors is

P
i (f (xi)� yi)2.

years

po
un
ds

For each observation, measure the di↵erence
between the predicted and observed y -value.
In this application, this di↵erence is measured in
pounds.
Measuring the distance from the point to the line
wouldn’t make sense.

Linear regression

To find the best line for given data (x1, y1),(x2, y2),(x3, y3),(x4, y4),(x5, y5),
solve this least-squares problem

2

66664

x1 1
x2 1
x3 1
x4 1
x5 1

3

77775


m

b

�
⇡

2

66664

y1

y2

y3

y4

y5

3

77775

The dot-product of row i with the vector [m, b] is mxi + b,
i.e. the value predicted by f (x) = mx + b for the i

th

observation.

Therefore, the vector of predictions is A


m

b

�
.

The vector of di↵erences between predictions and observed values is A


m

b

�
�

2

66664

y1

y2

y3

y4

y5

3

77775
,

and the sum of squares of di↵erences is the squared norm of this vector.
Therefore the method of least squares can be used to find the pair (m, b) that
minimizes the sum of squares, i.e. the line that best fits the data.

Application of least squares: coping with approximate data
Recall the industrial espionage problem: finding the number of each product being
produced from the amount of each resource being consumed.

Let M =

metal concrete plastic water electricity
garden gnome 0 1.3 .2 .8 .4
hula hoop 0 0 1.5 .4 .3
slinky .25 0 0 .2 .7

silly putty 0 0 .3 .7 .5
salad shooter .15 0 .5 .4 .8

We solved uT
M = b where b is vector giving amount of each resource consumed:

b =
metal concrete plastic water electricity
226.25 1300 677 1485 1409.5

solve(M.transpose(), b) gives us u ⇡ gnome hoop slinky putty shooter
1000 175 860 590 75

Application of least squares: industrial espionage problem

More realistic scenario: measurement of resources consumed is approximate

True amounts: b =
metal concrete plastic water electricity
226.25 1300 677 1485 1409.5

Solving with true amounts gives
gnome hoop slinky putty shooter
1000 175 860 590 75

Measurements: b̃ =
metal concrete plastic water electricity
223.23 1331.62 679.32 1488.69 1492.64

Solving with measurements gives
gnome hoop slinky putty shooter
1024.32 28.85 536.32 446.7 594.34

Slight changes in input data leads to pretty big changes in output.

Output data not accurate, perhaps not useful! (see slinky, shooter)

Question: How can we improve accuracy of output without more accurate
measurements?

Answer: More measurements!

Application of least squares: industrial espionage problem

Have to measure something else, e.g. amount of waste water produced
metal concrete plastic water electricity waste water

garden gnome 0 1.3 .2 .8 .4 .3
hula hoop 0 0 1.5 .4 .3 .35
slinky .25 0 0 .2 .7 0

silly putty 0 0 .3 .7 .5 .2
salad shooter .15 0 .5 .4 .8 .15

Measured: b̃ =
metal concrete plastic water electricity waste water
223.23 1331.62 679.32 1488.69 1492.64 489.19

Equation u ⇤M = b̃ is more constrained) has no solution

but least-squares solution is
gnome hoop slinky putty shooter
1022.26 191.8 1005.58 549.63 41.1

True amounts:
gnome hoop slinky putty shooter
1000 175 860 590 75

Better output accuracy with same input accuracy

Application of least squares: Sensor node problem
Recall sensor node problem: estimate current draw for each hardware component
Define D = {’radio’, ’sensor’, ’memory’, ’CPU’}.
Goal: Compute a D-vector u that, for each hardware component, gives the current
drawn by that component.
Four test periods:

I total mA-seconds in these test periods b = [140, 170, 60, 170]
I for each test period, vector specifying how long each hardware device was

operating:
duration1 = Vec(D, ’radio’:0.1, ’CPU’:0.3)

duration2 = Vec(D, ’sensor’:0.2, ’CPU’:0.4)

duration3 = Vec(D, ’memory’:0.3, ’CPU’:0.1)

duration4 = Vec(D, ’memory’:0.5, ’CPU’:0.4)

To get u, solve Ax = b where

A =

2

664

duration1
duration2
duration3
duration4

3

775

Application of least squares: Sensor node problem

If measurement are exact, get back true current draw for each hardware component:

b = [140, 170, 60, 170]

solve Ax = b

radio sensor CPU memory
500 250 300 100

More realistic: approximate measurement

b̃ = [141.27, 160.59, 62.47, 181.25]

solve Ax = b̃

radio sensor CPU memory
421 142 331 98.1

How can we get more accurate results?

Solution: Add more test periods and solve least-squares problem

Application of least squares: Sensor node problem
duration1 = Vec(D, ’radio’:0.1, ’CPU’:0.3)

duration2 = Vec(D, ’sensor’:0.2, ’CPU’:0.4)

duration3 = Vec(D, ’memory’:0.3, ’CPU’:0.1)

duration4 = Vec(D, ’memory’:0.5, ’CPU’:0.4)

duration5 = Vec(D, ’radio’:0.2, ’CPU’:0.5)

duration6 = Vec(D, ’sensor’:0.3, ’radio’:0.8, ’CPU’:0.9, ’memory’:0.8)

duration7 = Vec(D, ’sensor’:0.5, ’radio’:0.3 ’CPU’:0.9, ’memory’:0.5)

duration8 = Vec(D, ’radio’:0.2 ’CPU’:0.6)

Let A =

2

666666666664

duration1
duration2
duration3
duration4
duration5
duration6
duration7
duration8

3

777777777775

Measurement vector is b̃ =
[141.27, 160.59, 62.47, 181.25, 247.74, 804.58, 609.10, 282.09]

Now Ax = b̃ has no solution

But solution to least-squares problem is
radio sensor CPU memory
451.40 252.07 314.37 111.66

True solution is
radio sensor CPU memory
500 250 300 100

Better output accuracy with same input accuracy

Applications of least squares: breast cancer machine-learning problem

Recall: breast-cancer machine-learning lab

Input: vectors a1, . . . ,am giving features of specimen, values b1, . . . , bm specifying +1
(malignant) or -1 (benign)

Informal goal: Find vector w such that sign of ai ·w predicts sign of bi

Formal goal: Find vector w to minimize sum of squared errors
(b1 � a1 ·w)2 + · · ·+ (bm � am ·w)2

Approach: Gradient descent

Results: Took a few minutes to get a solution with error rate around 7%

Can we do better with least squares?

Applications of least squares: breast cancer machine-learning problem

Goal: Find the vector w that minimizes (b[1]� a1 ·w)2 + · · ·+ (b[m]� am ·w)2

Equivalent: Find the vector w that minimizes

�������

�������

2

4 b

3

5�

2

64
a1
...
am

3

75

2

4 x

3

5

�������

�������

2

This is the least-squares problem.

Using the algorithm based on QR factorization takes a fraction of a second and gets a
solution with smaller error rate.

Even better solutions using more sophisticated techniques in linear algebra:

I Use an inner product that better reflects the variance of each of the features.

I Use linear programming

I Even more general: use convex programming

