
The Singular Value Decomposition

[11] The Singular Value Decomposition

The Singular Value Decomposition

Gene Golub’s license plate, photographed by Professor P. M. Kroonenberg of Leiden
University.

Frobenius norm for matrices
We have defined a norm for vectors over R: ‖[x1, x2, . . . , xn]‖ =

√
x2
1 + x2

2 + · · ·+ x2
n

Now we define a norm for matrices: interpret the matrix as a vector.

‖A‖F =
√

sum of squares of elements of A

called the Frobenius norm of a matrix.
Squared norm is just sum of squares of the elements.

Example:

∣∣∣∣∣∣∣∣[1 2 3
4 5 6

]∣∣∣∣∣∣∣∣2
F

= 12 + 22 + 32 + 42 + 52 + 62

Can group in terms of rows or columns∣∣∣∣∣∣∣∣[1 2 3

4 5 6

]∣∣∣∣∣∣∣∣2
F

= (12 + 22 + 32) + (42 + 52 + 62) = ‖[1, 2, 3]‖2 + ‖[4, 5, 6]‖2

∣∣∣∣∣∣∣∣[1 2 3
4 5 6

]∣∣∣∣∣∣∣∣2
F

= (12 + 42) + (22 + 52) + (32 + 62) = ‖[1, 4]‖2 + ‖[2, 5]‖2 + ‖[3, 6]‖2

Proposition: Squared Frobenius norm of a matrix is the sum of the squared norms of
its rows ... or of its columns.

Frobenius norm for matrices

Example:

∣∣∣∣∣∣∣∣[1 2 3
4 5 6

]∣∣∣∣∣∣∣∣2
F

= 12 + 22 + 32 + 42 + 52 + 62

Can group in terms of rows or columns∣∣∣∣∣∣∣∣[1 2 3

4 5 6

]∣∣∣∣∣∣∣∣2
F

= (12 + 22 + 32) + (42 + 52 + 62) = ‖[1, 2, 3]‖2 + ‖[4, 5, 6]‖2

∣∣∣∣∣∣∣∣[1 2 3
4 5 6

]∣∣∣∣∣∣∣∣2
F

= (12 + 42) + (22 + 52) + (32 + 62) = ‖[1, 4]‖2 + ‖[2, 5]‖2 + ‖[3, 6]‖2

Proposition: Squared Frobenius norm of a matrix is the sum of the squared norms of
its rows ...

or of its columns.

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 a1

...

am


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

= ‖a1‖2 + · · ·+ ‖am‖2

Frobenius norm for matrices

Example:

∣∣∣∣∣∣∣∣[1 2 3
4 5 6

]∣∣∣∣∣∣∣∣2
F

= 12 + 22 + 32 + 42 + 52 + 62

Can group in terms of rows or columns∣∣∣∣∣∣∣∣[1 2 3

4 5 6

]∣∣∣∣∣∣∣∣2
F

= (12 + 22 + 32) + (42 + 52 + 62) = ‖[1, 2, 3]‖2 + ‖[4, 5, 6]‖2

∣∣∣∣∣∣∣∣[1 2 3
4 5 6

]∣∣∣∣∣∣∣∣2
F

= (12 + 42) + (22 + 52) + (32 + 62) = ‖[1, 4]‖2 + ‖[2, 5]‖2 + ‖[3, 6]‖2

Proposition: Squared Frobenius norm of a matrix is the sum of the squared norms of
its rows ... or of its columns.∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

 v1 · · · vn


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

F

= ‖v1‖2 + · · ·+ ‖vn‖2

Low-rank matrices

Saving space and saving time

 u

 [vT
]

 u

 [vT
] w

 =

 u

[vT
]  w


 u1 u2

[vT
1

vT
2

]

Silly compression
Represent a grayscale m × n image by an m × n matrix A. (Requires mn numbers to
represent.) Find a low-rank matrix Ã that is as close as possible to A. (For rank r ,
requires only r(m + n) numbers to represent.)
Original image (625× 1024, so about 625k numbers)

Silly compression
Represent a grayscale m × n image by an m × n matrix A. (Requires mn numbers to
represent.) Find a low-rank matrix Ã that is as close as possible to A. (For rank r ,
requires only r(m + n) numbers to represent.)
Rank-50 approximation (so about 82k numbers)

The trolley-line-location problem

Given the locations of m houses a1, . . . ,am,
we must choose where to run a trolley line.

The trolley line must go through downtown
(origin) and must be a straight line.

The goal is to locate the trolley line so that it is
as close as possible to the m houses.

a1

a2

a4

a3

Specify line by unit-norm vector v: line is Span {v}.

In measuring objective, how to combine individual objectives?

As in least squares, we minimize the 2-norm of the vector [d1, . . . , dm] of distances.

Equivalent to minimizing the square of the 2-norm of this vector, i.e. d2
1 + · · ·+ d2

m.

The trolley-line-location problem

Given the locations of m houses a1, . . . ,am,
we must choose where to run a trolley line.

The trolley line must go through downtown
(origin) and must be a straight line.

The goal is to locate the trolley line so that it is
as close as possible to the m houses.

v

Specify line by unit-norm vector v: line is Span {v}.

In measuring objective, how to combine individual objectives?

As in least squares, we minimize the 2-norm of the vector [d1, . . . , dm] of distances.

Equivalent to minimizing the square of the 2-norm of this vector, i.e. d2
1 + · · ·+ d2

m.

The trolley-line-location problem

Given the locations of m houses a1, . . . ,am,
we must choose where to run a trolley line.

The trolley line must go through downtown
(origin) and must be a straight line.

The goal is to locate the trolley line so that it is
as close as possible to the m houses.

distance to a1 distance
to a3

distance to a4

distance to a2

Specify line by unit-norm vector v: line is Span {v}.

In measuring objective, how to combine individual objectives?

As in least squares, we minimize the 2-norm of the vector [d1, . . . , dm] of distances.

Equivalent to minimizing the square of the 2-norm of this vector, i.e. d2
1 + · · ·+ d2

m.

Solution to the trolley-line-location problem
For each vector ai , write ai = a‖vi + a⊥v

i where a‖vi is the projection of ai along v
and a⊥v

i is the projection orthogonal to v.

a⊥v
1 = a1 − a‖v1

...

a⊥v
m = am − a‖vm

By the Pythagorean Theorem,

‖a⊥v
1 ‖2 = ‖a1‖2 − ‖a‖v1 ‖2

...

‖a⊥v
m ‖2 = ‖am‖2 − ‖a‖vm ‖2

Since the distance from ai to Span {v} is ‖a⊥v
i ‖, we have

(dist from a1 to Span {v})2 = ‖a1‖2 − ‖a‖v1 ‖2
...

(dist from am to Span {v})2 = ‖am‖2 − ‖a‖vm ‖2

∑
i (dist from ai to Span {v})2 = ‖a1‖2 + · · ·+ ‖am‖2 −

(
‖a‖v1 ‖2 + · · ·+ ‖a‖vm ‖2

)
= ‖A‖2F −

(
〈a1, v〉2 + · · ·+ 〈am, v〉2

)

using a||vi = 〈ai , v〉 v and hence ‖a||vi ‖2 = 〈ai , v〉2 ‖v‖2

= 〈ai , v〉2

Solution to the trolley-line-location problem

a⊥v
1 = a1 − a‖v1

...

a⊥v
m = am − a‖vm

By the Pythagorean Theorem,

‖a⊥v
1 ‖2 = ‖a1‖2 − ‖a‖v1 ‖2

...

‖a⊥v
m ‖2 = ‖am‖2 − ‖a‖vm ‖2

Since the distance from ai to Span {v} is ‖a⊥v
i ‖, we have

(dist from a1 to Span {v})2 = ‖a1‖2 − ‖a‖v1 ‖2
...

(dist from am to Span {v})2 = ‖am‖2 − ‖a‖vm ‖2∑
i (dist from ai to Span {v})2 = ‖a1‖2 + · · ·+ ‖am‖2 −

(
‖a‖v1 ‖2 + · · ·+ ‖a‖vm ‖2

)
= ‖A‖2F −

(
〈a1, v〉2 + · · ·+ 〈am, v〉2

)
using a||vi = 〈ai , v〉 v and hence ‖a||vi ‖2 = 〈ai , v〉2 ‖v‖2 = 〈ai , v〉2

Solution to the trolley-line-location problem, continued

∑
i

(dist from ai to Span {v})2 = ‖A‖2F −
(
〈a1, v〉2 + · · ·+ 〈am, v〉2

)
Next, we show that

(
〈a1, v〉2 + · · ·+ 〈am, v〉2

)
can be replaced by ‖Av‖2. By our

dot-product interpretation of matrix-vector multiplication, a1
...

am


 v

 =

 〈a1, v〉
...

〈am, v〉

 (1)

so
‖Av‖2 =

(
〈a1, v〉2 + 〈a2, v〉2 + · · ·+ 〈am, v〉2

)
Substituting into Equation 1, we obtain∑

i (distance from ai to Span {v})2 = ||A||2F − ‖Av‖2

Therefore the best vector v is a unit vector that maximizes ||Av||2 (equivalently,
maximizes ||Av||).

Solution to the trolley-line-location problem, continued

∑
i (distance from ai to Span {v})2 = ||A||2F − ‖Av‖2

Therefore the best vector v is a unit vector that maximizes ||Av||2 (equivalently,
maximizes ||Av||).

def trolley line location(A):
v1 = arg max{||Av|| : ||v|| = 1}
σ1 = ||Av1||
return v1

So far, this is a solution only in principle since we have not specified how to actually
compute v1.

Definition: We refer to σ1 as the first singular value of A, and we refer to v1 as the
first right singular vector.

Trolley-line-location problem, example

Example: Let A =

[
1 4
5 2

]
, so a1 = [1, 4] and a2 = [5, 2]. In this case, a unit vector

maximizing ||Av|| is v1 ≈
[
.78
.63

]
. We use σ1 to denote ||Av1||, which is about 6.1:

-1 0 1 2 3 4 5 6

-1

1

2

3

4

5

6

a1=[1,4]

a2=[5,2]

v1=[.777, .629]

Theorem

def trolley line location(A):
v1 = arg max{||Av|| : ||v|| = 1}
σ1 = ||Av1||
return v1

Definition: We refer to σ1 as the first
singular value of A, and we refer to v1 as
the first right singular vector.

Theorem: Let A be an m × n matrix over R with rows a1, . . . ,am. Let v1 be the first
right singular vector of A. Then Span {v1} is the one-dimensional vector space V that
minimizes

(distance from a1 to V)2 + · · ·+ (distance from am to V)2

How close is the closest vector space to the rows of A?

Lemma: The minimum sum of squared distances is ||A||2F − σ21.

Proof: The distance is
∑

i ||ai ||2 −
∑

i ||a
‖v
i ||2.

The first sum is ||A||2F .
The second sum is the square of the quantity ||Av1||, a quantity we have named σ1.

Example, continued

Let A =

[
1 4
5 2

]
, so a1 = [1, 4] and a2 = [5, 2]. Solution: v1 ≈

[
.78
.63

]
.

We next calculate the sum of squared distances:
First we find the projection of a1 orthogonal to v1:

a1 − 〈a1, v1〉 v1 ≈ [1, 4]− (1 · .78 + 4 · .63)[.78, .63]

≈ [1, 4]− 3.3 [.78, .63]

≈ [−1.6, 1.9]

The norm of this vector, about 2.5, is the distance from a1 to Span {v1}.
Next we find the projection of a2 orthogonal to v1:

a2 − 〈a1, v1〉 v1 ≈ [5, 2]− (5 · .78 + 2 · .63)[.78, .63]

≈ [5, 2]− 5.1 [.78, .63]

≈ [1,−1.2]

The norm of this vector, about 1.6, is the distance from a2 to Span {v1}.
Thus the sum of squared distances is about 2.52 + 1.62, which is about 8.7.
The sum of squared distances should be ||A||2F − σ21.
‖A‖2F = 12 + 42 + 52 + 22 = 46 and σ1 ≈ 6.1 so ||A||2F − σ21 is about 8.7. X

Application to voting data

Let a1, . . . ,a100 be the voting records for US Senators.
Same as you used in politics lab.
These are 46-vectors with ±1 entries.
Find the unit-norm vector v that minimizes least-squares distance from a1, . . . ,a100 to
Span {v}.
Look at projection along v of each of these vectors.

Not so meaningful:
Snowe 0.106605199 moderate Republican from Maine
Lincoln 0.106694552 moderate Republican from Rhode Island
Collins 0.107039376 moderate Republican from Maine
Crapo 0.107259689 not so moderate Republican from Idaho
Vitter 0.108031374 not so moderate Republican from Louisiana

We’ll have to come back to this data.

Best rank-one approximation to a matrix

A rank-one matrix is a matrix whose row space is one-dimensional.
All rows must lie in Span {v} for some vector v.
That is, every row is a scalar multiple of v.

A rank-one matrix can be written as

 u

 [v
]

Goal: Given matrix A, find the rank-one matrix Ã that minimizes ‖A− Ã‖F .

Ã =

 vector in Span {v} closest to a1
...

vector in Span {v} closest to am


How close is Ã to A?

||A− Ã||2F =
∑
i

||row i of A− Ã||2

=
∑
i

||distance from ai to Span {v}||2

To minimize the sum of squares of
distances, choose v to be first
right singular vector. Sum of
squared distances is ||A||2F − σ21.
Ã= closest rank-one matrix.

An expression for the best rank-one approximation

Using the formula a‖v1

i = 〈ai , v1〉 v1, we
obtain

Ã =

 〈a1, v1〉 vT
1

...

〈am, v1〉 vT
1



Using the linear-combinations
interpretation of vector-matrix
multiplication, we can write this as an
outer product of two vectors:

Ã =

 〈a1, v1〉
...

〈am, v1〉

 [vT
1

]

The first vector in the outer product can be
written as Av1. We obtain

Ã =

 Av1

 [vT
1

]

Remember σ1 = ‖Av1‖. Define u1 to be
the norm-one vector such that
σ1 u1 = Av1. Then

Ã = σ1

 u1

 [vT
1

]

Best rank-one approximation

Definition: The first left singular vector of A is defined to be the vector u1 such that
σ1 u1 = Av1, where σ1 and v1 are, respectively, the first singular value and the first
right singular vector.
Theorem: The best rank-one approximation to A is σ1 u1vT

1 where σ1 is the first
singular value, u1 is the first left singular vector, and v1 is the first right singular vector
of A.

Best rank-one approximation: example

Example: For the matrix A =

[
1 4
5 2

]
, the first right singular vector is

v1 ≈
[
.78
.63

]
and the first singular value σ1 is about 6.1. The first left singular vector

is u1 ≈
[
.54
.84

]
, meaning σ1 u1 = Av1.

We then have

Ã = σ1 u1vT
1

≈ 6.1

[
.54
.84

] [
.78 .63

]
≈

[
2.6 2.1
4.0 3.2

]

Then

A− Ã ≈
[

1 4
5 2

]
−
[

2.6 2.1
4.0 3.2

]
≈

[
−1.56 1.93
1.00 −1.23

]
so the squared Frobenius norm of A− Ã is

1.562 + 1.932 + 12 + 1.232 ≈ 8.7

||A− Ã||2F = ||A||2F − σ21 ≈ 8.7. X

The closest one-dimensional affine space

In trolley-line problem, line must go through origin:
closest one-dimensional vector space.
Perhaps line not through origin is much closer.

An arbitrary line (one not necessarily passing
through the origin) is a one-dimensional affine
space.

Given points a1, . . . ,am,

I choose point ā and translate each of the input points by subtracing ā:
a1 − ā, . . . ,am − ā

I find the one-dimensional vector space closest to these translated points, and then
translate that vector space by adding back ā.

Best choice of ā is the centroid of the input points, the vector ā = 1
m (a1 + · · ·+ am)

Translating the points by subtracting off the centroid is called centering the points.

The closest one-dimensional affine space

In trolley-line problem, line must go through origin:
closest one-dimensional vector space.
Perhaps line not through origin is much closer.

An arbitrary line (one not necessarily passing
through the origin) is a one-dimensional affine
space.

Given points a1, . . . ,am,

I choose point ā and translate each of the input points by subtracing ā:
a1 − ā, . . . ,am − ā

I find the one-dimensional vector space closest to these translated points, and then
translate that vector space by adding back ā.

Best choice of ā is the centroid of the input points, the vector ā = 1
m (a1 + · · ·+ am)

Translating the points by subtracting off the centroid is called centering the points.

The closest one-dimensional affine space

In trolley-line problem, line must go through origin:
closest one-dimensional vector space.
Perhaps line not through origin is much closer.

An arbitrary line (one not necessarily passing
through the origin) is a one-dimensional affine
space.

Given points a1, . . . ,am,

I choose point ā and translate each of the input points by subtracing ā:
a1 − ā, . . . ,am − ā

I find the one-dimensional vector space closest to these translated points, and then
translate that vector space by adding back ā.

Best choice of ā is the centroid of the input points, the vector ā = 1
m (a1 + · · ·+ am)

Translating the points by subtracting off the centroid is called centering the points.

Politics revisited

We center the voting data, and find the closest one-dimensional vector space
Span {v1}.
Now projection along v gives better spread.

Which of the senators to the left of the origin are Republican?

>>> {r for r in senators if is_neg[r] and is_Repub[r]}

{’Collins’, ’Snowe’, ’Chafee’}

Similarly, only three of the senators to the right of the origin are Democrat.

Principal component

Closest line is the axis of maximum variance.
Given vectors a1,a2, . . . ,am in Rn, choose a line in R to maximize

(f (a1)− µ)2 + (f (a2)− µ)2 + · · ·+ (f (am)− µ)2

where µ = 1
m (f (a1) + f (a2) + · · ·+ f (am))

and f (x) is the point on the line closest to x

Good way to visualize data spread across one dimension.

What about two dimensions or more?

Closest dimension-k vector space
Computational Problem: closest low-dimensional
subspace:

I input: Vectors a1, . . .am and positive integer k

I output: basis for the k-dimensional vector
space Vk that minimizes∑

i

(distance from ai to Vk)2

algorithm for one dimension:
choose unit-norm vector v that
maximizes ||Av||
Natural generalization of this
algorithm in which an orthonormal
basis is sought.

In the i th iteration, the vector v selected is the one that maximizes ||Av|| subject to
being orthogonal to all previously selected vectors:

• Let v1 be the norm-one vector v
maximizing ||Av||,
• let v2 be the norm-one vector v orthog.
to v1 that maximizes ||Av||,
• let v3 be the norm-one vector v orthog.
to v1 and v2 that maximizes ||Av||,
and so on.

def find right singular vectors(A):
for i = 1, 2, . . . ,min{m, n}

vi =arg max{||Av|| : ||v|| = 1,
v is orthog. to v1, v2, . . . vi−1}

σi = ||Avi ||
until Av = 0 for every vector v orthogonal

to v1, . . . , vi

let r be the final value of the loop variable i .
return [v1, v2, . . . , vr]

def find right singular vectors(A):
for i = 1, 2, . . . ,min{m, n}

vi =arg max{||Av|| : ||v|| = 1,
v is orthog. to v1, v2, . . . vi−1}

σi = ||Avi ||
until Av = 0 for every vector v orthogonal

to v1, . . . , vi

let r be the final value of the loop variable i .
return [v1, v2, . . . , vr]

Proposition: The singular values are
positive and in noninreasing order.

Proof: σi = ‖Avi‖ and norm of a vector is
nonnegative. The algorithm stops before it
would choose a vector vi such that ‖Avi‖
is zero, so the singular values are positive.
First right singular vector is chosen most
freely, followed by second, etc. QED

Proposition: Right singular vectors are orthonormal.
Proof: In iteration i , vi is chosen from among vectors that have norm one and are
orthogonal to v1, . . . , vi−1. QED

Theorem: Let A be an m × n matrix, and let a1, . . . ,am be its rows. Let v1, . . . , vr

be its right singular vectors, and let σ1, . . . , σr be its singular values. For
k = 1, 2, . . . , r , Span {v1, . . . , vk} is the k-dimensional vector space V that minimizes

(distance from a1 to V)2 + · · ·+ (distance from am to V)2

Proposition: Left singular vectors u1, . . . ,ut are orthonormal. (See text for proof.)

Closest k-dimensional affine space

Use the centering technique:
Find the centroid ā of the input points a1, . . . ,am, and subtract it from each of the
input points. Then find a basis v1, . . . , vk for the k-dimensional vector space closest to
a1 − ā, . . . ,am − ā. The k-dimensional affine space closest to the original points
a1, . . . ,am is

{ā + v : v ∈ Span {v1, . . . , vk}}

Deriving the Singular Value Decomposition
Let A be an m × n matrix.
We have defined a procedure to obtain

v1, . . . , vr the right singular vectors orthonormal by choice
σ1, . . . , σr the singular values positive
u1, . . . ,ur the left singular vectors orthonormal by Proposition

such that σi ui = Avi for i = 1, . . . , r .
Express equations using matrix-matrix multiplication: σ1u1 · · · σrur

 =

 A


 v1 · · · vr


We rewrite equation as u1 · · · ur


 σ1

. . .

σr

 =

 A


 v1 · · · vr



Assume number r of singular values is n. Then the rightmost matrix is square and its
columns are orthonormal, so it is an orthogonal matrix, so its inverse is its transpose.
Multiplying both sides of equation, we obtain A

 =

 u1 · · · un


 σ1

. . .

σn


 vT

1
...

vT
n



A = UΣV T

where U and V are column-orthogonal and Σ is diagonal with positive diagonal
elements.
called the (compact) singular value decomposition (SVD) of A.

Deriving the Singular Value Decomposition
We rewrite equation as u1 · · · ur


 σ1

. . .

σr

 =

 A


 v1 · · · vr


Assume number r of singular values is n. Then the rightmost matrix is square and its
columns are orthonormal, so it is an orthogonal matrix, so its inverse is its transpose.
Multiplying both sides of equation, we obtain A

 =

 u1 · · · un


 σ1

. . .

σn


 vT

1
...

vT
n


A = UΣV T

where U and V are column-orthogonal and Σ is diagonal with positive diagonal
elements.
called the (compact) singular value decomposition (SVD) of A.

The Singular Value Decomposition

The (compact) SVD of a matrix A is the factorization of A as

A = UΣV T

where U and V are column-orthogonal and Σ is diagonal with positive diagonal
elements.

In general, Σ is allowed to have zero diagonal elements.

Traditionally, the term SVD refers to a decomposition in which U and V are both
square, and Σ consists of a diagonal matrix with extra rows (if A has more rows than
columns) or extra columns (if A has more columns than rows).

The term reduced SVD is used when Σ is required to be a diagonal matrix. We use
just the reduced SVD.

Existence of the Singular Value Decomposition

Theorem: Every matrix A has a (reduced) SVD
We outlined a construction using the procedure find right singular vectors(A).
We made the assumption that the number of iterations equals the number of columns
of A. For a more general proof, see the text.

SVD of the transpose

We can go from the SVD of A to the SVD of AT . A

 =

 U

 Σ

 V T


Define Ū = V and V̄ = U. Then AT

 =

 Ū


 Σ

 V̄ T



Best rank-k approximation in terms of the singular value decomposition

Start by writing SVD of A: A

 =

 U



σ1

. . .

σ1


 V T


Replace σk+1, . . . , σn with zeroes. We obtain Ã

 =

 U



σ1

. . .

σk


 V T


This gives the same approximation as before.

Example: Senators

First center the data. Then find first two right singular vectors v1 and v2.
Projecting onto these gives two coordinates.
To find singular vectors,

I make a matrix A whose rows are the centered versions of vectors

I find SVD of A using svd module.

>>> U, Sigma, V = svd.factor(A)

I first two columns of V are first two right singular vectors.

Example: Senators, two principal components

Example: Senators, two principal components

Function interpretation of SVD
A = UΣVT
The function x 7→ Ax can be written as the composition of three functions:

I x 7→ V Tx
I y 7→ Σy
I z 7→ Uz

Assuming number of rows of A is at least number of columns, here’s an interpretation:

I (vec2rep) x 7→ V Tx means: “given a vector x, find its coordinate representation
in terms of the columns of V .”

I (scaling of coordinates) y 7→ Σy means: “given a coordinate representation, scale
the coordinates by some numbers (the diagonal elements of Σ)”

I (rep2vec) z 7→ Uz means: “given some coordinates, interpret those coordinates
as coefficients of the columns of U, and find the corresponding vector.”

So, for any m × n matrix A with m ≥ n, multiplication of a vector by A can be
interpreted as:

I find the coordinates of the vector in terms of one orthonormal basis,

I scale those coordinates, and

I find the vector with the scaled coordinates over another orthonormal basis.

Uses of SVD

The most famous use of SVD is in principal components analysis and its cousins.
However, SVD is useful for more prosaic problems:

I Computing rank: rank is the number of singular values above some small specified
tolerance.

I Useful in computing orthonormal bases of Null A and Col A.

I least-squares: unlike QR decomposition, SVD can be used even when matrix A
does not have linearly independent columns.

Least squares via SVD

Algorithm for finding minimizer of ‖b− Ax‖:

Find singular value decomposition (U,Σ,V) of A
return V Σ−1UTb

Justification: Let x̂ be the vector returned by the algorithm.

Ax̂ = (UΣV T)(V Σ−1UTb)

= UΣΣ−1UTb

= UUTb

= U(coord. repr. of b|| in terms of cols of U)

= b||

