
The Eigenvector

[12] The Eigenvector



Two interest-bearing accounts

Suppose Account 1 yields 5% interest and Account 2 yields 3% interest.

Represent balances in the two accounts by a 2-vector x(t) =

[
amount in Account 1
amount in Account 2

]
.

x(t+1) =

[
1.05 0

0 1.03

]
x(t)

Let A denote the matrix. It is diagonal.
To find out how, say, x(100) compares to x(0), we can use Equation repeatedly:

x(100) = Ax(99)

= A(Ax(98))
...

= A · A · · · · A︸ ︷︷ ︸
100 times

x(0)

= A100x(0)

Since A is a diagonal matrix, easy to compute powers of A:

The takeaway:[
Account 1 balance after t years
Account 2 balance after t years

]
=

[
1.05t · (initial Account 1 balance)
1.03t · (initial Account 2 balance)

]



Two interest-bearing accounts

x(100) = Ax(99)

= A(Ax(98))
...

= A · A · · · · A︸ ︷︷ ︸
100 times

x(0)

= A100x(0)

Since A is a diagonal matrix, easy to compute powers of A:

The takeaway:[
Account 1 balance after t years
Account 2 balance after t years

]
=

[
1.05t · (initial Account 1 balance)
1.03t · (initial Account 2 balance)

]



Two interest-bearing accounts

x(100) = Ax(99)

= A(Ax(98))
...

= A · A · · · · A︸ ︷︷ ︸
100 times

x(0)

= A100x(0)

Since A is a diagonal matrix, easy to compute powers of A:[
1.05 0

0 1.03

] [
1.05 0

0 1.03

]
=

[
1.052 0

0 1.032

]

The takeaway:[
Account 1 balance after t years
Account 2 balance after t years

]
=

[
1.05t · (initial Account 1 balance)
1.03t · (initial Account 2 balance)

]



Two interest-bearing accounts

x(100) = Ax(99)

= A(Ax(98))
...

= A · A · · · · A︸ ︷︷ ︸
100 times

x(0)

= A100x(0)

Since A is a diagonal matrix, easy to compute powers of A:

[
1.05 0

0 1.03

]
· · ·
[

1.05 0
0 1.03

]
︸ ︷︷ ︸

100 times

=

[
1.05100 0

0 1.03100

]
≈
[

131.5 0
0 19.2

]

The takeaway:[
Account 1 balance after t years
Account 2 balance after t years

]
=

[
1.05t · (initial Account 1 balance)
1.03t · (initial Account 2 balance)

]



Rabbit reproduction

To avoid getting into trouble, I’ll pretend
sex doesn’t exist.

I Each month, each adult rabbit gives
birth to one baby.

I A rabbit takes one month to become
an adult.

I Rabbits never die.

Time 0

Time 4

Time 3

Time 1

Time 2

[
adults at time t + 1

juveniles at time t + 1

]
=

[
a11 a12
a21 a22

]
︸ ︷︷ ︸

A

[
adults at time t

juveniles at time t

]

Use x(t) =

[
number of adults after t months

number of juveniles after t months

]
Then x(t+1) = Ax(t) where A =

[
1 1
1 0

]
.

[1, 0], [1, 1], [2, 1], [3, 2], [5, 3], [8, 3], . . .



Analyzing rabbit reproduction

x(t+1) = Ax(t) where A =

[
1 1
1 0

]
.

As in bank-account example, x(t) = Atx(0).
How can this help us calculate how the entries of x (t) grow as a function of t? In the
bank-account example, we were able to understand the behavior because A was a
diagonal matrix. This time, A is not diagonal. However, there is a workaround:

Let S =

[
1+
√
5

2
1−
√
5

2
1 1

]
. Then S−1AS is the diagonal matrix

[
1+
√
5

2 0

0 1−
√
5

2

]
.

At = A A · · ·A︸ ︷︷ ︸
t times

= (SΛS−1)(SΛS−1) · · · (SΛS−1)

= SΛtS−1

Λ is a diagonal matrix ⇒ easy to compute Λt .

If Λ =

[
λ1

λ2

]
then Λt =

[
λt1

λt2

]
. Here Λ =

[
1+
√
5

2
1−
√
5

2

]
.



Interpretation using change of basis

Interpretation:To make the analysis easier, we will use a change of basis

Basis consists of the two columns of the matrix S , v1 =

[
1+
√
5

2
1

]
, v2 =

[
1−
√
5

2
1

]
Let u(t) = coordinate representation of x(t) in terms of v1 and v2.

I (rep2vec) To go from repres. u(t) to vector x(t) itself, we multiply u(t) by S .

I (Move forward one month) To go from x(t) to x(t+1), we multiply x(t) by A.

I (vec2rep) To go to coord. repres., we multiply by S−1.

Multiplying by the matrix S−1AS carries out the three steps above.

But S−1AS = Λ =

[
1+
√
5

2 0

0 1−
√
5

2

]
so u(t+1) =

[
1+
√
5

2 0

0 1−
√
5

2

]
u(t)

so

u(t) =

[
(1+
√
5

2 )t 0

0 (1−
√
5

2 )t

]
u(0)



Eigenvalues and eigenvectors
For this topic, consider only matrices A such that row-label set = col-label set
(endomorphic matrices).

Definition: If λ is a scalar and v is a nonzero vector such that Av = λv, we say
that λ is an eigenvalue of A, and v is a corresponding eigenvector.

Any nonzero vector in the eigenspace is considered an eigenvector. However, it is often
convenient to require that the eigenvector have norm one.

Example:

[
1.05 0

0 1.03

]
has eigenvalues 1.05 and 1.03, and corresponding

eigenvectors [1, 0] and [0, 1].

Example:

[
1 1
1 0

]
has eigenvalues λ1 = 1+

√
5

2 and λ2 = 1−
√
5

2 , and corresponding

eigenvectors [1+
√
5

2 , 1] and [1−
√
5

2 , 1].

Example: What does it mean when A has 0 as an eigenvalue? There is a nonzero
vector v such that Av = 0v. That is, A’s null space is nontrivial.

Last example suggests a way to find an eigenvector corresp. to eigenvalue 0: find
nonzero vector in the null space. What about other eigenvalues?



Eigenvector corresponding to an eigenvalue

Suppose λ is an eigenvalue of A, with corresponding eigenvector v. Then Av = λ v.
That is, Av− λ v is the zero vector.The expression Av− λ v can be written as
(A− λ1)v,so (A− λ1)v is the zero vector. That means that v is a nonzero vector in
the null space of A− λ1. That means that A− λ1 is not invertible.
Conversely, suppose A− λ1 is not invertible. It is square, so it must have a nontrivial
null space. Let v be a nonzero vector in the null space. Then (A− λ1)v = 0, so
Av = λv.
We have proved the following:
Lemma: Let A be a square matrix.

I The number λ is an eigenvalue of A if and only if A− λ1 is not invertible.

I If λ is in fact an eigenvalue of A then the corresponding eigenspace is the null
space of A− λ1.

Corollary

If λ is an eigenvalue of A then it is an eigenvalue of AT .



Similarity

Definition: Two matrices A and B are similar if there is an invertible matrix S such
that S−1AS = B.
Proposition: Similar matrices have the same eigenvalues.
Proof: Suppose λ is an eigenvalue of A and v is a corresponding eigenvector. By
definition, Av = λ v. Suppose S−1AS = B, and let w = S−1v. Then

Bw = S−1ASw

= S−1ASS−1v

= S−1Av

= S−1λ v

= λ S−1v

= λw

which shows that λ is an eigenvalue of B.



Example of similarity

Example: We will see later that the eigenvalues of the matrix A =

 6 3 −9
0 9 15
0 0 15

 are

its diagonal elements (6, 9, and 15) because U is upper triangular. The matrix

B =

 92 −32 −15
−64 34 39
176 −68 −99

 has the property that B = S−1AS where

S =

 −2 1 4
1 −2 1
−4 3 5

. Therefore the eigenvalues of B are also 6, 9, and 15.



Diagonalizability
Definition: If A is similar to a diagonal matrix, i.e. if there is an invertible matrix S
such that S−1AS = Λ where Λ is a diagonal matrix, we say A is diagonalizable.

Equation S−1AS = Λ is equivalent to equation A = SΛS−1, which is the form used in
the analysis of rabbit population. How is diagonalizability related to eigenvalues?

I Eigenvalues of a diagonal matrix Λ =

 λ1
. . .

λn

 are its diagonal entries.

I If matrix A is similar to Λ then the eigenvalues of A are the eigenvalues of Λ

I Equation S−1AS = Λ is equivalent to AS = SΛ. Write S in terms of columns: A

 v1 · · · vn

 =

 v1 · · · vn

 λ1
. . .

λn



Columns v1, . . . , vn of S are eigenvectors. Because S is invertible, the
eigenvectors are linearly independent.

I The argument goes both ways: if n × n matrix A has n linearly independent
eigenvectors then A is diagonalizable.
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Definition: If A is similar to a diagonal matrix, i.e. if there is an invertible matrix S
such that S−1AS = Λ where Λ is a diagonal matrix, we say A is diagonalizable.
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 are its diagonal entries.

I If matrix A is similar to Λ then the eigenvalues of A are the eigenvalues of Λ

I Equation S−1AS = Λ is equivalent to AS = SΛ. Write S in terms of columns: Av1 · · · Avn

 =

 λ1v1 · · · λnvn


Columns v1, . . . , vn of S are eigenvectors. Because S is invertible, the
eigenvectors are linearly independent.

I The argument goes both ways: if n × n matrix A has n linearly independent
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Diagonalizability Theorem

Diagonalizability Theorem: An n × n matrix A is diagonalizable iff it has n linearly
independent eigenvectors.

Example: Consider the matrix

[
1 1
0 1

]
. Its null space is trivial so zero is not an

eigenvalue. For any 2-vector

[
x
y

]
, we have

[
1 1
0 1

] [
x
y

]
=

[
x + y
y

]
. Suppose λ

is an eigenvector. Then for some vector [x , y ],

λ[x , y ] = [x + y , y ]

Therefore λ y = y . Therefore y = 0. Therefore every eigenvector is in Span {[1, 0]}.
Thus the matrix does not have two linearly independent eigenvectors, so it is not
diagonalizable.



Interpretation using change of basis, revisited
Idea used for rabbit problem can be used more generally.

Suppose A is a diagonalizable matrix. Then A = SΛS−1 for a diagonal matrix Λ and
invertible matrix S .
Suppose x(0) is a vector. The equation x(t+1) = A x(t) then defines x(1), x(2), x(3), . . ..
Then

x(t) = A A · · · A︸ ︷︷ ︸
t times

x(0)

= (SΛS−1)(SΛS−1) · · · (SΛS−1) x(0)

= SΛtS−1 x(0)

Interpretation: Let u(t) be the coordinate representation of x(t) in terms of the
columns of S . Then we have the equation u(t+1) = Λ u(t). Therefore

u(t) = Λ Λ · · · Λ︸ ︷︷ ︸
t times

u(0)

= Λt u(0)

If Λ =

 λ1
. . .

λn

 then

Λt =

 λt1
. . .

λtn





Rabbit reproduction and death
A disease enters the rabbit population. In each month,

I A δ fraction of the adult population catches it,

I an ε fraction of the juvenile population catches it, and

I an η fraction of the sick population die, and the rest recover.

Sick rabbits don’t produce babies.
Equations

well adults′ = (1− δ) well adults + (1− ε)juveniles + (1− η) sick
juveniles′ = well adults

sick′ = δ well adults + ε juveniles + 0

Represent change in populations by matrix-vector equation well adults at time t + 1
juveniles at time t + 1

sick at time t + 1

 =

 1− δ 1− ε (1− η)
1 0 0
δ ε 0

 well adults at time t
juveniles at time t

sick at time t


(You might question fractional rabbits, deterministic infection.)

Question: Does the rabbit population still grow?



Analyzing the rabbit population in the presence of disease

 well adults at time t + 1
juveniles at time t + 1

sick at time t + 1

 =

 1− δ 1− ε (1− η)
1 0 0
δ ε 0

 well adults at time t
juveniles at time t

sick at time t


Question: Does the rabbit population still grow?
Depends on the values of the parameters (δ = infection rate among adults, ε =
infection rate among juveniles, η = death rate among sick).

Plug in different values for parameters and then compute eigenvalues

I δ = 0.5, ε = 0.5, η = 0.8. The largest eigenvalue is 1.1172 (with eigenvector
[0.6299, 0.5638, 0.5342]). This means that the population grows exponentially in
time (roughly proportional to 1.117t).

I δ = 0.7, ε = 0.7, η = 0.8. The largest eigenvalue is 0.9327. This means the
population shrinks exponentially.

I δ = 0.6, ε = 0.6, η = 0.8. The largest eigenvalue is 1.02. Population grows
exponentially.



Interpretation using change of basis, re-revisited
Suppose n × n matrix A is diagonalizable, so it has linearly independent eigenvectors.
Suppose eigenvalues are λ1 ≥ λ2 ≥ . . . ≥ λn and corresponding eigenvectors are
v1, v2, . . . , vn. The eigenvectors form a basis for Rn, so any vector x can be written as
a linear combination:

x = α1 v1 + · · ·+ αn vn

Left-multiply by A on both sides of the equation:

Ax = A(α1v1) + A(α2v2) + · · ·+ A(αnvn)

= α1Av1 + α2Av2 + · · ·+ αnAvn

= α1λ1v1 + α2λ2v2 + · · ·+ αnλnvn

Applying the same reasoning to A(Ax), we get

A2x = α1λ
2
1v1 + α2λ

2
2v2 + · · ·+ αnλ

2
nvn

More generally, for any nonnegative integer t,

Atx = α1λ
t
1v1 + α2λ

t
2v2 + · · ·+ αnλ

t
nvn

If |λ1| is bigger than the other eigenvalues then eventually λt1 will be much bigger than
λt2, . . . , λ

t
n, so first term will dominate. For a large enough value of t, Atx will be

approximately α1λ
t
1v1.



Expected number of rabbits

There’s these issues of fractional rabbits and deterministic disease.
The matrix-vector equation really describes the expected values of the various
populations.



The Internet Worm of 1988

Robert T. Morris, Jr. He wrote a program that exploited some known security holes in
unix to spread running copies of itself through the Internet. Whenever a worm
(running copy) on one computer managed to break into another computer, it would
spawn a worm on the other computer.

It was intended to remain undetected but eventually it took down most of the
computers on the Internet. The reason is that each computer was running many
independent instances of the program.
He took steps to prevent this.

I Each worm would check whether there was another worm running on same
computer.

I If so, worm would set a flag indicating it was supposed to die.

I However, with probability 1/7 the worm would designate itself immortal.

Does the number of worms grow? If so, how fast?



Modeling the Worm
Suppose Internet consists of just three computers in a triangular network.

In each iteration, each worm has probability 1/10 of spawning a child worm on each
neighboring computer. if it is a mortal worm, with probability 1/7 it becomes
immortal, and otherwise it dies.

Worm population represented by a vector x = [x1, y1, x2, y2, x3, y3]: for i = 1, 2, 3, xi is
the expected number of mortal worms at computer i , and yi is the expected number of
immortal worms at computer i .

For t = 0, 1, 2, . . . ,, let x(t) = (x
(t)
1 , y

(t)
1 , x

(t)
2 , y

(t)
2 , x

(t)
3 , y

(t)
3 ).

Any mortal worm at computer 1 is a child of a worm at computer 2 or computer 3.
Therefore the expected number of mortal worms at computer 1 after t + 1 iterations is
1/10 times the expected number of worms at computers 2 and 3 after t iterations.
Therefore

x
(t+1)
1 =

1

10
x
(t)
2 +

1

10
y
(t)
2 +

1

10
x
(t)
3 +

1

10
y
(t)
3

With probability 1/7, a mortal worm at computer 1 becomes immortal. The previously
immortal worms stay immortal.Therefore

y
(t+1)
1 =

1

7
x
(t)
1 + y

(t)
1

The equations for x
(t+1)
2 and y

(t+1)
2 and x

(t+1)
3 and y

(t+1)
3 are similar. We therefore

get
x(t+1) = Ax(t)

where A is the matrix

A =



0 0 1/10 1/10 1/10 1/10
1/7 1 0 0 0 0

1/10 1/10 0 0 1/10 1/10
0 1/7 1 0 0

1/10 1/10 1/10 1/10 0 0
0 0 0 0 1/7 1





Modeling the Worm
Therefore

x
(t+1)
1 =

1

10
x
(t)
2 +

1

10
y
(t)
2 +

1

10
x
(t)
3 +

1

10
y
(t)
3

With probability 1/7, a mortal worm at computer 1 becomes immortal. The previously
immortal worms stay immortal.Therefore

y
(t+1)
1 =

1

7
x
(t)
1 + y

(t)
1

The equations for x
(t+1)
2 and y

(t+1)
2 and x

(t+1)
3 and y

(t+1)
3 are similar. We therefore

get
x(t+1) = Ax(t)

where A is the matrix

A =



0 0 1/10 1/10 1/10 1/10
1/7 1 0 0 0 0

1/10 1/10 0 0 1/10 1/10
0 1/7 1 0 0

1/10 1/10 1/10 1/10 0 0
0 0 0 0 1/7 1





Analyzing the worm, continued

x(t+1) = Ax(t)

where A is the matrix

A =



0 0 1/10 1/10 1/10 1/10
1/7 1 0 0 0 0

1/10 1/10 0 0 1/10 1/10
0 1/7 1 0 0

1/10 1/10 1/10 1/10 0 0
0 0 0 0 1/7 1


This matrix has linearly independent eigenvectors, and its largest eigenvalue is about
1.034. Because this is larger than 1, we can infer that the number of worms will grow
exponentially with the number of iterations.

t 1.034t

100 29
200 841
500 20, 000, 000
600 600, 000, 000



Power method
The most efficient methods for computing eigenvalues and eigenvectors are beyond
scope of this class.

However, here is a simple method to get a rough estimate of the eigenvalue of largest
absolute value (and a rough estimate of a corresponding eigenvector).

Assume A is diagonalizable, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding
eigenvectors v1, v2, . . . , vn. Recall

Atx = α1λ
t
1v1 + α2λ

t
2v2 + · · ·+ αnλ

t
nvn

If |λ1| > |λ2|, . . . , |λn| then first term will dominate others.

I Start with a vector x0.
I Find xt = Atx0 by repeated matrix-vector multiplication.
I Maybe xt is an approximate eigenvector corresponding to eigenvalue of largest

absolute value.

Which vector x0 to start with? Algorithm depends on projection onto v1 being not too
small. Random start vector should work okay.

Failure modes of the power method:

I Initial vector might have tiny projection onto v1. Not likely.
I First few eigenvalues might be the same. Algorithm will “work” anyway.
I First eigenvalue might not be much bigger than next. Can still get a good

estimate.
I First few eigenvalues might be different but have same absolute value. This is a

real problem!

Matrix

 2
−2

1

 has two eigenvalues with absolute value 2.

Matrix

[
1
2

1
4

−3 1
2

]
has two complex eigenvalues, 1

2 −
√
3
2 i and 1

2 +
√
3
2 i.
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Failure modes of the power method:

I Initial vector might have tiny projection onto v1. Not likely.

I First few eigenvalues might be the same. Algorithm will “work” anyway.

I First eigenvalue might not be much bigger than next. Can still get a good
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√
3
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Modeling population movement
Dance-club dynamics: At the beginning of each song,

I 56% of the people standing on the side go onto the dance floor, and

I 12% of the people on the dance floor leave it.

Suppose that there are a hundred people in the club. Assume nobody enters the club
and nobody leaves. What happens to the number of people in each of the two
locations?

Represent state of system by

x(t) =

[
x
(t)
1

x
(t)
2

]
=

[
number of people standing on side after t songs
number of people on dance floor after t songs

]
[

x
(t+1)
1

x
(t+1)
2

]
=

[
.44 .12
.56 .88

][
x
(t)
1

x
(t)
2

]

Diagonalize: S−1AS = Λ where

A =

[
.44 .12
.56 .88

]
, S =

[
0.209529 −1
0.977802 1

]
,Λ =

[
1 0
0 0.32

]



Analyzing dance-floor dynamics

[
x
(t)
1

x
(t)
2

]
=

(
SΛS−1

)t [ x
(0)
1

x
(0)
2

]

= SΛtS−1

[
x
(0)
1

x
(0)
2

]

=

[
.21 −1
.98 1

] [
1 0
0 .32

]t [
.84 .84
−.82 .18

][
x
(0)
1

x
(0)
2

]

=

[
.21 −1
.98 1

] [
1t 0
0 .32t

] [
.84 .84
−.82 .18

][
x
(0)
1

x
(0)
2

]

= 1t(.84x
(0)
1 + .84x

(0)
2 )

[
.21
.98

]
+ (0.32)t(−.82x

(0)
1 + .18x

(0)
2 )

[
−1
1

]
= 1t

(
x
(0)
1 + x

(0)
2

)
︸ ︷︷ ︸
total population

[
.18
.82

]
+ (0.32)t

(
−.82x

(0)
1 + .18x

(0)
2

)[ −1
1

]



Analyzing dance-floor dynamics, continued

[
x
(t)
1

x
(t)
2

]
=
(
x
(0)
1 + x

(0)
2

)
︸ ︷︷ ︸
total population

[
.18
.82

]
+ (0.32)t

(
−.82x

(0)
1 + .18x

(0)
2

)[ −1
1

]

The numbers of people in the two locations after t songs depend on the initial
numbers of people in the two locations.

However, the dependency grows weaker as the number of songs increases: (0.32)t gets
smaller and smaller, so the second term in the sum matters less and less.

After ten songs, (0.32)t is about 0.00001.

The first term in the sum is

[
.18
.82

]
times the total number of people. This shows

that, as the number of songs increases, the proportion of people on the dance floor
gets closer and closer to 82%.



Modeling Randy

Without changing math, we switch interpretations. Instead of modeling whole
dance-club population, we model one person, Randy.

Randy’s behavior captured in transition diagram:

S1 S2

0.56

0.88

0.12

0.44

State S1 represents Randy being on the side. State S2 represents Randy being on the
dance floor.

After each song, Randy follows one of the arrows from current state. Which arrow?
Chosen randomly according to probabilities on the arrows (transition probabilities).

For each state, labels on arrows from that state must sum to 1.



Where is Randy?
Even if we know where Randy starts at time 0, we can’t predict with certainty where
he will be at time t. However, for each time t, we can calculate the probability
distribution for his location.

Since there are two possible locations (off floor, on floor), the probability distribution is

given by a 2-vector x(t) =

[
x
(t)
1

x
(t)
2

]
where x

(t)
1 + x

(t)
2 = 1.

Probability distribution for Randy’s location at time t + 1 is related to probability
distribution for Randy’s location at time t:[

x
(t+1)
1

x
(t+1)
2

]
=

[
.44 .12
.56 .88

][
x
(t)
1

x
(t
2 )

]
Using earlier analysis,[

x
(t)
1

x
(t)
2

]
=

(
x
(0)
1 + x

(0)
2

)[ .18
.82

]
+ (0.32)t

(
−.82x

(0)
1 + .18x

(0)
2

)[ −1
1

]
=

[
.18
.82

]
+ (0.32)t

(
−.82x

(0)
1 + .18x

(0)
2

)[ −1
1

]



Where is Randy?

[
x
(t)
1

x
(t)
2

]
=

[
.18
.82

]
+ (0.32)t

(
−.82x

(0)
1 + .18x

(0)
2

)[ −1
1

]

If we know Randy starts off the dance floor at time 0 then x
(0)
1 = 1 and x

(0)
2 = 0.

If we know Randy starts on the dance floor at time 0 then x
(0)
1 = 0 and x

(0)
2 = 1.

In either case, we can plug in to equation to get exact probability distribution for
time t.

But after a few songs, the starting location doesn’t matter much—the probability

distribution gets very close to

[
.18
.82

]
in either case.

This is called Randy’s stationary distribution.

It doesn’t mean Randy stays in one place—we expect him to move back and forth all
the time. It means that the probability distribution for his location after t steps
depends less and less on t.



From Randy to spatial locality in CPU memory fetches
We again switch interpretations without changing the math.

CPU uses caches and prefetching to improve performance.
To help computer architects, it is useful to model CPU access patterns.

After accessing location x , CPU usually accesses location x + 1.
Therefore simple model is:

Probability[address requested at time t + 1 is 1 + address requested at time t] = .6

However, a slightly more sophisticated model predicts much more accurately.

Observation: Once consecutive addresses have been requested in timesteps t and
t + 1, it is very likely that the address requested in timestep t + 2 is also consecutive.

Use same model as used for Randy.

S1 S2

0.56

0.88

0.12

0.44 State S1 = CPU is requesting nonconsecutive addresses.
State S2 = CPU is requesting consecutive addresses.

Once CPU starts requesting consecutive addresses, it tends to stay in that mode for a
while. This tendency is captured by the model.

As with Randy, after a while the probability distribution is [0.18, 0.82]. Being in the
first state means the CPU is issuing the first of a run of consecutive addresses
(possibly of length 1) Since the system is in the first state roughly 18% of the time,
the average length of such a run is 1/0.18.

Various such calculations can be useful in designing architectures and improving
performance.
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Markov chains

An n-state Markov chain is a system such that

I At each time, the system is in one of n states, say 1, . . . , n, and

I there is a matrix A such that, if at some time t the system is in state j then for
i = 1, . . . , n, the probability that the system is in state i at time t + 1 is A[i , j ].

That is, A[i , j ] is the probability of transitioning from j to i , the j → i transition
probability.

A is called the transition matrix of the Markov chain.

A[1, 1] + A[2, 1] + · · ·+ A[n, 1] = Probability(1→ 1) + Probability(1→
2) + · · ·+ Probability(1→ n) = 1

Similarly, every column’s elements must sum to 1.

Called a left stochastic matrix (common convention is to use right stochastic matrices,
where every row’s elements sum to 1).

Example:

[
.44 .12
.56 .88

]
is the transition matrix for a two-state Markov chain.



Big Markov chains
Of course, bigger Markov chains can be useful... or fun.
A text such as a Shakespeare play can give rise to a Markov chain.
The Markov chain has one state for each word in the text.
To compute the transition probability from word1 to word2, see how often an occurence
of word1 is followed immediately by word2 (versus being followed by some other word).

Once you have constructed the transition matrix from a text, you can use it to
generate random texts that resemble the original.

Or, as Zarf did, you can combine two texts to form a single text, and then generate a
random text from this chimera.

Example from Hamlet/Alice in Wonderland:
”Oh, you foolish Alice!” she answered herself.
”How can you learn lessons in the world were now but to follow him thither with
modesty enough, and likelihood to lead it, as our statists do, A baseness to write this
down on the trumpet, and called out ”First witness!” ... HORATIO: Most like. It
harrows me with leaping in her hand, watching the setting sun, and thinking of little
pebbles came rattling in at the door that led into a small passage, not much larger
than a pig, my dear,” said Alice (she was so much gentry and good will
As to expend your time with us a story!” said the Caterpillar.



The biggest Markov chain in the world

Randy’s web-surfing behavior: From whatever page he’s viewing, he selects one of the
links uniformly at random and follows it.

Defines a Markov chain in which the states are web pages.

Idea: Suppose this Markov chain has a stationary distribution.

I Find the stationary distribution ⇒ probabilities for all web pages.

I Use each web page’s probability as a measure of the page’s importance.

I When someone searches for “matrix book”, which page to return? Among all
pages with those terms, return the one with highest probability.

Advantages:

I Computation of stationary distribution is independent of search terms: can be
done once and subsequently used for all searches.

I Potentially could use power method to compute stationary distribution.

Pitfalls: There might not be a stationary distribution, or maybe there are several, and
how would you compute one?



Stationary distributions

Stationary distribution: probability distribution after t iterations gets closer and closer
to stationary distribution as t increases.

No stationary distribution:

S1 S2

1

1

Several stationary distributions:

S1 S2

1

S3

1

S4

1

1/3

1/31/3

Let A be the transition matrix of a Markov
chain. Because column sums are 1,
[1, 1, . . . , 1] ∗ A = [1, 1, . . . , 1].

Thus 1 is an eigenvalue of AT . Therefore 1
is an eigenvalue of A.

Can show that there is no eigenvalue with
absolute value bigger than 1. However,
could be eigenvalues of equal absolute
value.

Solve the problem with a hack: In each
step, with probability 0.15, Randy just
teleports to a web page chosen uniformly
at random.



Mix of two distributions

654

321

Following random links:

A1 =

1 2 3 4 5 6

1 1 1
2

2 1 1
2

1
3

1
2

3 1
4 1

3
5 1

2
6 1

3

Uniform distribution: transition matrix of
the form

A2 =

1 2 3 4 5 6

1 1
6

1
6

1
6

1
6

1
6

1
6

2 1
6

1
6

1
6

1
6

1
6

1
6

3 1
6

1
6

1
6

1
6

1
6

1
6

4 1
6

1
6

1
6

1
6

1
6

1
6

5 1
6

1
6

1
6

1
6

1
6

1
6

6 1
6

1
6

1
6

1
6

1
6

1
6

Use a mix of the two: incidence matrix is

A = 0.85 ∗ A1 + 0.15 ∗ A2

To find the stationary distribution, find the
eigenvector v corresponding to
eigenvalue 1.

How? Use power method, which requires
repeated matrix-vector multiplications.

To multiply A v, use clever approach:



Clever approach to matrix-vector multiplication

A = 0.85 ∗ A1 + 0.15 ∗ A2

A v = (0.85 ∗ A1 + 0.15 ∗ A2)v

= 0.85 ∗ (A1 v) + 0.15 ∗ (A2 v)

I Multiplying by A1: use sparse matrix-vector multiplication you implemented in Mat

I Multiplying by A2: Use the fact that

A2 =


1
1
...
1

 [ 1
n

1
n · · · 1

n

]


