
Introduction
to

Programming in Java
An Interdisciplinary Approach

Robert Sedgewick
and

Kevin Wayne

Princeton University

O N L I N E P R E V I E W

!"#$%&'(')!"*+,,,- ./01/23,,,0425,67

Publisher Greg Tobin
Executive Editor Michael Hirsch
Associate Editor Lindsey Triebel
Associate Managing Editor Jeffrey Holcomb
Senior Designer Joyce Cosentino Wells
Digital Assets Manager Marianne Groth
Senior Media Producer Bethany Tidd
Senior Marketing Manager Michelle Brown
Marketing Assistant Sarah Milmore
Senior Author Support/
 Technology Specialist Joe Vetere
Senior Manufacturing Buyer Carol Melville
Copyeditor Genevieve d’Entremont
Composition and Illustrations Robert Sedgewick and Kevin Wayne

Cover Image: © Robert Sedgewick and Kevin Wayne

Page 353 © 2006 C. Herscovici, Brussels / Artists Rights Society (ARS), New York Banque d’ Images, ADAGP / Art
Resource, NY

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

The interior of this book was composed in Adobe InDesign.

Library of Congress Cataloging-in-Publication Data

Sedgewick, Robert, 1946-
 Introduction to programming in Java : an interdisciplinary approach / by Robert Sedgewick and Kevin Wayne.
 p. cm.
 Includes index.
 ISBN 978-0-321-49805-2 (alk. paper)
 1. Java (Computer program language) 2. Computer programming. I. Wayne, Kevin Daniel, 1971- II. Title.
 QA76.73.J38S413 2007
 005.13’3--dc22
 2007020235

Copyright © 2008 Pearson Education, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of
America. For information on obtaining permission for use of material in this work, please submit a written request
to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116,
fax (617) 671-3447, or online at http://www.pearsoned.com/legal/permissions.htm.

ISBN-13: 978-0-321-49805-2
ISBN-10: 0-321-49805-4

1 2 3 4 5 6 7 8 9 10—CRW—11 10 09 08 07

!"#$%&'(')!"*+,,,0 ./01/23,,,0425,67

v

Preface

THE BASIS FOR EDUCATION IN THE last millennium was “reading, writing, and arith-
metic;” now it is reading, writing, and computing. Learning to program is an

essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that writing a program is a natural, satisfying, and creative experience (not
an onerous task reserved for experts). We progressively introduce essential con-
cepts, embrace classic applications from applied mathematics and the sciences to
illustrate the concepts, and provide opportunities for students to write programs
to solve engaging problems.

We use the Java programming language for all of the programs in this book—
we refer to Java after programming in the title to emphasize the idea that the book
is about fundamental concepts in programming, not Java per se. This book teaches
basic skills for computational problem-solving that are applicable in many modern
computing environments, and is a self-contained treatment intended for people
with no previous experience in programming.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
where we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach emphasizes
for students the essential idea that mathematics, science, engineering, and com-
puting are intertwined in the modern world. While it is a CS1 textbook designed
for any first-year college student interested in mathematics, science, or engineer-
ing (including computer science), the book also can be used for self-study or as a
supplement in a course that integrates programming with another field.

!"#$%&'(')!"*+,,,5 ./01/23,,,0425,67

vi

Coverage The book is organized around four stages of learning to program: ba-
sic elements, functions, object-oriented programming, and algorithms (with data
structures). We provide the basic information readers need to build confidence in
writing programs at each level before moving to the next level. An essential feature
of our approach is to use example programs that solve intriguing problems, sup-
ported with exercises ranging from self-study drills to challenging problems that
call for creative solutions.

Basic elements include variables, assignment statements, built-in types of
data, flow of control (conditionals and loops), arrays, and input/output, including
graphics and sound.

Functions and modules are the student’s first exposure to modular program-
ming. We build upon familiarity with mathematical functions to introduce Java
static methods, and then consider the implications of programming with func-
tions, including libraries of functions and recursion. We stress the fundamental
idea of dividing a program into components that can be independently debugged,
maintained, and reused.

Object-oriented programming is our introduction to data abstraction. We em-
phasize the concepts of a data type (a set of values and a set of operations on them)
and an object (an entity that holds a data-type value) and their implementation
using Java’s class mechanism. We teach students how to use, create, and design data
types. Modularity, encapsulation, and other modern programming paradigms are
the central concepts of this stage.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effec-
tive for modern applications. We provide an introduction to classical algorithms
for sorting and searching as well as fundamental data structures (including stacks,
queues, and symbol tables) and their application, emphasizing the use of the scien-
tific method to understand performance characteristics of implementations.

Applications in science and engineering are a key feature of the text. We moti-
vate each programming concept that we address by examining its impact on spe-
cific applications. We draw examples from applied mathematics, the physical and
biological sciences, and computer science itself, and include simulation of physical
systems, numerical methods, data visualization, sound synthesis, image process-
ing, financial simulation, and information technology. Specific examples include a
treatment in the first chapter of Markov chains for web page ranks and case stud-
ies that address the percolation problem, N-body simulation, and the small-world

!"#$%&'(')!"*+,,,8 ./01/23,,,0425,67

vii

phenomenon. These applications are an integral part of the text. They engage stu-
dents in the material, illustrate the importance of the programming concepts, and
provide persuasive evidence of the critical role played by computation in modern
science and engineering.

Our primary goal is to teach the specific mechanisms and skills that are need-
ed to develop effective solutions to any programming problem. We work with com-
plete Java programs and encourage readers to use them. We focus on programming
by individuals, not library programming or programming in the large (which we
treat briefly in an appendix).

Use in the Curriculum This book is intended for a first-year college course
aimed at teaching novices to program in the context of scientific applications.
Taught from this book, prospective majors in any area of science and engineering
will learn to program in a familiar context. Students completing a course based on
this book will be well-prepared to apply their skills in later courses in science and
engineering and to recognize when further education in computer science might
be beneficial.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
of science and engineering in the same course. We cover the material prescribed by
CS1, but our focus on applications brings life to the concepts and motivates stu-
dents to learn them. Our interdisciplinary approach exposes students to problems
in many different disciplines, helping them to more wisely choose a major.

Whatever the specific mechanism, the use of this book is best positioned early
in the curriculum. First, this positioning allows us to leverage familiar material
in high school mathematics and science. Second, students who learn to program
early in their college curriculum will then be able to use computers more effectively
when moving on to courses in their specialty. Like reading and writing, program-
ming is certain to be an essential skill for any scientist or engineer. Students who
have grasped the concepts in this book will continually develop that skill through a
lifetime, reaping the benefits of exploiting computation to solve or to better under-
stand the problems and projects that arise in their chosen field.

!"#$%&'(')!"*+,,,1 ./01/23,,,0425,67

viii

Prerequisites This book is meant to be suitable for typical science and engi-
neering students in their first year of college. That is, we do not expect preparation
beyond what is typically required for other entry-level science and mathematics
courses.

Mathematical maturity is important. While we do not dwell on mathematical ma-
terial, we do refer to the mathematics curriculum that students have taken in high
school, including algebra, geometry, and trigonometry. Most students in our target
audience (those intending to major in the sciences and engineering) automatically
meet these requirements. Indeed, we take advantage of their familiarity with the
basic curriculum to introduce basic programming concepts.

Scientific curiosity is also an essential ingredient. Science and engineering students
bring with them a sense of fascination in the ability of scientific inquiry to help ex-
plain what goes on in nature. We leverage this predilection with examples of simple
programs that speak volumes about the natural world. We do not assume any spe-
cific knowledge beyond that provided by typical high school courses in mathemat-
ics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching pro-
gramming is our primary goal, so we assume no prior programming experience.
But writing a program to solve a new problem is a challenging intellectual task, so
students who have written numerous programs in high school can benefit from
taking an introductory programming course based on this book (just as students
who have written numerous essays in high school can benefit from an introductory
writing course in college). The book can support teaching students with varying
backgrounds because the applications appeal to both novices and experts alike.

Experience using a computer is also not necessary, but also is not at all a problem.
College students use computers regularly, to communicate with friends and rela-
tives, listen to music, process photos, and many other activities. The realization that
they can harness the power of their own computer in interesting and important
ways is an exciting and lasting lesson.

In summary, virtually all students in science and engineering are prepared to take a
course based on this book as a part of their first-semester curriculum.

!"#$%&'(')!"*+,,,9 ./01/23,,,0425,67

ix

Goals What can instructors of upper-level courses in science and engineering
expect of students who have completed a course based on this book?

We cover the CS1 curriculum, but anyone who has taught an introductory
programming course knows that expectations of instructors in later courses are
typically high: each instructor expects all students to be familiar with the computing
environment and approach that he or she wants to use. A physics professor might
expect some students to design a program over the weekend to run a simulation; an
engineering professor might expect other students to be using a particular package
to numerically solve differential equations; or a computer science professor might
expect knowledge of the details of a particular programming environment. Is it
realistic to meet such diverse expectations? Should there be a different introductory
course for each set of students? Colleges and universities have been wrestling with
such questions since computers came into widespread use in the latter part of the
20th century. Our answer to them is found in this common introductory treatment
of programming, which is analogous to commonly accepted introductory courses
in mathematics, physics, biology, and chemistry. An Introduction to Programming
strives to provide the basic preparation needed by all students in science and en-
gineering, while sending the clear message that there is much more to understand
about computer science than programming. Instructors teaching students who
have studied from this book can expect that they have the knowledge and experi-
ence necessary to enable them to adapt to new computational environments and to
effectively exploit computers in diverse applications.

What can students who have completed a course based on this book expect to ac-
complish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might
appear later in their careers. They learn that modern programming environments,
such as the one provided by Java, help open the door to any computational prob-
lem they might encounter later, and they gain the confidence to learn, evaluate,
and use other computational tools. Students interested in computer science will be
well-prepared to pursue that interest; students in science and engineering will be
ready to integrate computation into their studies.

!"#$%&'(')!"*+,,,3 ./01/23,,,0425,67

x

Booksite An extensive amount of information that supplements this text may
be found on the web at

http://www.cs.princeton.edu/IntroProgramming

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With a
few exceptions to support testing, the material is all publicly available.

One of the most important implications of the booksite is that it empow-
ers instructors and students to use their own computers to teach and learn the
material. Anyone with a computer and a browser can begin learning to program
by following a few instructions on the booksite. The process is no more difficult
than downloading a media player or a song. As with any website, our booksite is
continually evolving. It is an essential resource for everyone who owns this book. In
particular, the supplemental materials are critical to our goal of making computer
science an integral component of the education of all scientists and engineers.

For instructors, the booksite contains information about teaching. This in-
formation is primarily organized around a teaching style that we have developed
over the past decade, where we offer two lectures per week to a large audience,
supplemented by two class sessions per week where students meet in small groups
with instructors or teaching assistants. The booksite has presentation slides for the
lectures, which set the tone.

For teaching assistants, the booksite contains detailed problem sets and pro-
gramming projects, which are based on exercises from the book but contain much
more detail. Each programming assignment is intended to teach a relevant concept
in the context of an interesting application while presenting an inviting and engag-
ing challenge to each student. The progression of assignments embodies our ap-
proach to teaching programming. The booksite fully specifies all the assignments
and provides detailed, structured information to help students complete them in
the allotted time, including descriptions of suggested approaches and outlines for
what should be taught in class sessions.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. There is a wealth of information associated with programming
assignments, including suggested approaches, checklists, FAQs, and test data.

!"#$%&'(')!"*+,,,:2 ./01/23,,,0425,67

xi

For casual readers (including instructors, teaching assistants, and students!),
the booksite is a resource for accessing all manner of extra information associated
with the book’s content. All of the booksite content provides web links and other
routes to pursue more information about the topic under consideration. There is
far more information accessible than any individual could fully digest, but our goal
is to provide enough to whet any reader’s appetite for more information about the
book’s content.

Acknowledgements This project has been under development since 1992, so
far too many people have contributed to its success for us to acknowledge them
all here. Special thanks are due to Anne Rogers for helping to start the ball rolling;
to Dave Hanson, Andrew Appel, and Chris van Wyk, for their patience in explain-
ing data abstraction; and to Lisa Worthington, for being the first to truly relish
the challenge of teaching this material to first-year students. We also gratefully ac-
knowledge the efforts of /dev/126 (the summer students who have contributed
so much of the content); the faculty, graduate students, and teaching staff who
have dedicated themselves to teaching this material over the past 15 years here at
Princeton; and the thousands of undergraduates who have dedicated themselves to
learning it.

 Robert Sedgewick
 Madeira, Portugal

 Kevin Wayne
 San Francisco, California

 July, 2007

!"#$%&'(')!"*+,,,:: ./01/23,,,0425,67

!"#$%&'(')!"*+,,,:0 ./01/23,,,0425,67

xiii

Contents

Preface . v

Elements of Programming 3
1.1 Your First Program 4
1.2 Built-in Types of Data 14
1.3 Conditionals and Loops 46
1.4 Arrays 86
1.5 Input and Output 120
1.6 Case Study: Random Web Surfer 162

Functions and Modules 183
2.1 Static Methods 184
2.2 Libraries and Clients 218
2.3 Recursion 254
2.4 Case Study: Percolation 286

Object-Oriented Programming 315
3.1 Data Types 316
3.2 Creating Data Types 370
3.3 Designing Data Types 416
3.4 Case Study: N-body Simulation 456

Algorithms and Data Structures 471
4.1 Performance 472
4.2 Sorting and Searching 510
4.3 Stacks and Queues 550
4.4 Symbol Tables 608
4.5 Case Study: Small World 650

Context. 695

Index 699

!"#$%&'(')!"*+,,,:. ./01/23,,,0425,67

Chapter One

!"#$%&'(')!"*+,,,0 ./01/23,,,0425,67

3

OUR GOAL IN THIS CHAPTER IS to convince you that writing a program is easier than
writing a piece of text, such as a paragraph or essay. Writing prose is difficult:

we spend many years in school to learn how to do it. By contrast, just a few building
blocks suffice to enable us to write programs that can help solve all sorts of fascinat-
ing, but otherwise unapproachable, problems. In this chapter, we take you through
these building blocks, get you started on programming in Java, and study a variety
of interesting programs. You will be able to express yourself (by writing programs)
within just a few weeks. Like the ability to write prose, the ability to program is a
lifetime skill that you can continually refine well into the future.

In this book, you will learn the Java programming language. This task will be
much easier for you than, for example, learning a foreign language. Indeed, pro-
gramming languages are characterized by no more than a few dozen vocabulary
words and rules of grammar. Much of the material that we cover in this book could
be expressed in the C or C++ languages, or any of several other modern program-
ming languages. But we describe everything specifically in Java so that you can get
started creating and running programs right away. On the one hand, we will focus
on learning to program, as opposed to learning details about Java. On the other
hand, part of the challenge of programming is knowing which details are relevant
in a given situation. Java is widely used, so learning to program in this language will
enable you to write programs on many computers (your own, for example). Also,
learning to program in Java will make it easy for you learn other languages, includ-
ing lower-level languages such as C and specialized languages such as MATLAB.

1.1 Your First Program 4
1.2 Built-in Types of Data 14
1.3 Conditionals and Loops. 46
1.4 Arrays 86
1.5 Input and Output 120
1.6 Case Study: Random Web Surfer. . . 162

Elements of Programming

!"#$%&'(')!"*+,,,. ./01/23,,,0425,67

Elements of Programming

1.1 Your First Program

IN THIS SECTION, OUR PLAN IS to lead you into the world of Java programming by tak-
ing you through the basic steps required to get a simple program running. The Java
system is a collection of applications, not unlike many of the other applications
that you are accustomed to using (such
as your word processor, email program,
and internet browser). As with any ap-
plication, you need to be sure that Java
is properly installed on your computer. It
comes preloaded on many computers, or
you can download it easily. You also need a text editor and a terminal application.
Your first task is to find the instructions for installing such a Java programming
environment on your computer by visiting

http://www.cs.princeton.edu/IntroProgramming

We refer to this site as the booksite. It contains an extensive amount of supplemen-
tary information about the material in this book for your reference and use. You
will find it useful to have your browser open to this site while programming.

Programming in Java To introduce you to developing Java programs, we
break the process down into three steps. To program in Java, you need to:

Create a program by typing it into a file named, say, MyCode.java.
Compile it by typing javac MyCode.java in a terminal window.
Run (or execute) it by typing java MyCode in the terminal window.

In the first step, you start with a blank screen and end with a sequence of typed
characters on the screen, just as when you write an email message or a paper. Pro-
grammers use the term code to refer to program text and the term coding to refer
to the act of creating and editing the code. In the second step, you use a system ap-
plication that compiles your program (translates it into a form more suitable for the
computer) and puts the result in a file named MyCode.class. In the third step, you
transfer control of the computer from the system to your program (which returns
control back to the system when finished). Many systems have several different
ways to create, compile, and execute programs. We choose the sequence described
here because it is the simplest to describe and use for simple programs.

1.1.1 Hello, World 6
1.1.2 Using a command-line argument . . 8

Programs in this section

!"#$%&'(')!"*+,,,- ./01/23,,,0425,67

51.1 Your First Program

Creating a program. A Java program is nothing more than a sequence of charac-
ters, like a paragraph or a poem, stored in a file with a .java extension. To create
one, therefore, you need only define that sequence of characters, in the same way
as you do for email or any other computer application. You can use any text editor
for this task, or you can use one of the more sophisticated program development
environments described on the booksite. Such environments are overkill for the
sorts of programs we consider in this book, but they are not difficult to use, have
many useful features, and are widely used by professionals.

Compiling a program. At first, it might seem that Java is designed to be best un-
derstood by the computer. To the contrary, the language is designed to be best un-
derstood by the programmer (that’s you). The computer’s language is far more
primitive than Java. A compiler is an application that translates a program from the
Java language to a language more suitable for executing on the computer. The com-
piler takes a file with a .java extension as input (your program) and produces a
file with the same name but with a .class extension (the computer-language ver-
sion). To use your Java compiler, type in a terminal window the javac command
followed by the file name of the program you want to compile.

Executing a program. Once you compile the program, you can run it. This is the
exciting part, where your program takes control of your computer (within the con-
straints of what the Java system allows). It is perhaps more accurate to say that your
computer follows your instructions. It is even more accurate to say that a part of
the Java system known as the Java Virtual Machine (the JVM, for short) directs your
computer to follow your instructions. To use the JVM to execute your program,
type the java command followed by the program name in a terminal window.

your program
(a text file)

computer-language
version of your program

type javac HelloWorld.java
to compile your program

use any text editor to
create your program

type java HelloWorld
to execute your program

output

Developing a Java program

editor compiler JVMHelloWorld.java HelloWorld.class "Hello, World"

!"#$%&'(')!"*+,,,5 ./01/23,,,0425,67

6 Elements of Programming

% javac HelloWorld.java
% java HelloWorld
Hello, World

PROGRAM 1.1.1 IS AN EXAMPLE OF a complete Java program. Its name is HelloWorld,
which means that its code resides in a file named HelloWorld.java (by convention
in Java). The program’s sole action is to print a message back to the terminal win-
dow. For continuity, we will use some standard Java terms to describe the program,
but we will not define them until later in the book: PROGRAM 1.1.1 consists of a single
class named HelloWorld that has a single method named main(). This method uses
two other methods named System.out.print() and System.out.println() to
do the job. (When referring to a method in the text, we use () after the name to
distinguish it from other kinds of names.) Until SECTION 2.1, where we learn about
classes that define multiple methods, all of our classes will have this same structure.
For the time being, you can think of “class” as meaning “program.”

The first line of a method specifies its name and other information; the rest is
a sequence of statements enclosed in braces and each followed by a semicolon. For
the time being, you can think of “programming” as meaning “specifying a class

Program 1.1.1 Hello, World

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.print("Hello, World");
 System.out.println();
 }
}

This code is a Java program that accomplishes a simple task. It is traditionally a beginner’s first
program. The box below shows what happens when you compile and execute the program. The
terminal application gives a command prompt (% in this book) and executes the commands
that you type (javac and then java in the example below). The result in this case is that the
program prints a message in the terminal window (the third line).

!"#$%&'(')!"*+,,,8 ./01/23,,,0425,67

71.1 Your First Program

name and a sequence of statements for its main() method.” In the next two sec-
tions, you will learn many different kinds of statements that you can use to make
programs. For the moment, we will just use statements for printing to the terminal
like the ones in HelloWorld.

When you type java followed by a
class name in your terminal application, the
system calls the main() method that you
defined in that class, and executes its state-
ments in order, one by one. Thus, typing
java HelloWorld causes the system to call
on the main() method in PROGRAM 1.1.1 and
execute its two statements. The first state-
ment calls on System.out.print() to print
in the terminal window the message be-
tween the quotation marks, and the second
statement calls on System.out.println()
to terminate the line.

Since the 1970s, it has been a tradition that a beginning programmer’s first
program should print "Hello, World". So, you should type the code in PROGRAM
1.1.1 into a file, compile it, and execute it. By doing so, you will be following in the
footsteps of countless others who have learned how to program. Also, you will be
checking that you have a usable editor and terminal application. At first, accom-
plishing the task of printing something out in a terminal window might not seem
very interesting; upon reflection, however, you will see that one of the most basic
functions that we need from a program is its ability to tell us what it is doing.

For the time being, all our program code will be just like PROGRAM 1.1.1, ex-
cept with a different sequence of statements in main(). Thus, you do not need to
start with a blank page to write a program. Instead, you can

Copy HelloWorld.java into a new file having a new program name of
your choice, followed by .java.
Replace HelloWorld on the first line with the new program name.
Replace the System.out.print() and System.out.println() statements
with a different sequence of statements (each ending with a semicolon).

Your program is characterized by its sequence of statements and its name. Each
Java program must reside in a file whose name matches the one after the word
class on the first line, and it also must have a .java extension.

main() method

body

name

statements

Anatomy of a program

 text file named HelloWorld.java

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.print("Hello, World");
 System.out.println();
 }
}

!"#$%&'(')!"*+,,,1 ./01/23,,,0425,67

8 Elements of Programming

% javac UseArgument.java
% java UseArgument Alice
Hi, Alice. How are you?
% java UseArgument Bob
Hi, Bob. How are you?

Errors. It is easy to blur the distinction among editing, compiling, and executing
programs. You should keep them separate in your mind when you are learning to
program, to better understand the effects of the errors that inevitably arise. You
can find several examples of errors in the Q&A at the end of this section. You can
fix or avoid most errors by carefully examining the program as you create it, the
same way you fix spelling and grammatical errors when you compose an email
message. Some errors, known as compile-time errors, are caught when you compile
the program, because they prevent the compiler from doing the translation. Other
errors, known as run-time errors, do not show up until you execute the program.
In general, errors in programs, also commonly known as bugs, are the bane of a
programmer’s existence: the error messages can be confusing or misleading, and
the source of the error can be very hard to find. One of the first skills that you will
learn is to identify errors; you will also learn to be sufficiently careful when coding,
to avoid making many of them in the first place.

Program 1.1.2 Using a command-line argument

public class UseArgument
{
 public static void main(String[] args)
 {
 System.out.print("Hi, ");
 System.out.print(args[0]);
 System.out.println(". How are you?");
 }
}

This program shows the way in which we can control the actions of our programs: by providing
an argument on the command line. Doing so allows us to tailor the behavior of our programs.

!"#$%&'(')!"*+,,,9 ./01/23,,,0425,67

91.1 Your First Program

Input and Output Typically, we want to provide input to our programs: data
that they can process to produce a result. The simplest way to provide input data is
illustrated in UseArgument (PROGRAM 1.1.2). Whenever UseArgument is executed,
it reads the command-line argument that you type after the program name and
prints it back out to the terminal as part of the message. The result of executing
this program depends on what we type after the program name. After compiling
the program once, we can run it for different command-line arguments and get
different printed results. We will discuss in more detail the mechanism that we use
to pass arguments to our programs later, in SECTION 2.1. In the meantime, you can
use args[0] within your program’s body to represent the string that you type on
the command line when it is executed, just as in UseArgu-
ment.

Again, accomplishing the task of getting a program
to write back out what we type in to it may not seem in-
teresting at first, but upon reflection you will realize that
another basic function of a program is its ability to re-
spond to basic information from the user to control what
the program does. The simple model that UseArgument
represents will suffice to allow us to consider Java’s basic
programming mechanism and to address all sorts of inter-
esting computational problems.

Stepping back, we can see that UseArgument does neither more nor less than
implement a function that maps a string of characters (the argument) into another
string of characters (the message printed back to the terminal). When using it, we
might think of our Java program as a black box that converts our input string to
some output string. This model is attractive because it is not only simple but also
sufficiently general to allow completion, in principle, of any computational task.
For example, the Java compiler itself is nothing more than a program that takes
one string of characters as input (a .java file) and produces another string of
characters as output (the corresponding .class file). Later, we will be able to write
programs that accomplish a variety of interesting tasks (though we stop short of
programs as complicated as a compiler). For the moment, we live with various lim-
itations on the size and type of the input and output to our programs; in SECTION
1.5, we will see how to incorporate more sophisticated mechanisms for program
input and output. In particular, we can work with arbitrarily long input and output
strings and other types of data such as sound and pictures.

input stringAlice

Hi, Alice. How are you?

black box

output string

A bird’s-eye view of a Java program

!"#$%&'(')!"*+,,,3 ./01/23,,,0425,67

10 Elements of Programming

Q&A

Q. Why Java?

A. The programs that we are writing are very similar to their counterparts in sev-
eral other languages, so our choice of language is not crucial. We use Java because
it is widely available, embraces a full set of modern abstractions, and has a variety
of automatic checks for mistakes in programs, so it is suitable for learning to pro-
gram. There is no perfect language, and you certainly will be programming in other
languages in the future.

Q. Do I really have to type in the programs in the book to try them out? I believe
that you ran them and that they produce the indicated output.

A. Everyone should type in and run HelloWorld. Your understanding will be
greatly magnified if you also run UseArgument, try it on various inputs, and modify
it to test different ideas of your own. To save some typing, you can find all of the
code in this book (and much more) on the booksite. This site also has information
about installing and running Java on your computer, answers to selected exercises,
web links, and other extra information that you may find useful or interesting.

Q. What is the meaning of the words public, static and void?

A. These keywords specify certain properties of main() that you will learn about
later in the book. For the moment, we just include these keywords in the code (be-
cause they are required) but do not refer to them in the text.

Q. What is the meaning of the //, /*, and */ character sequences in the code?

A. They denote comments, which are ignored by the compiler. A comment is either
text in between /* and */ or at the end of a line after //. As with most online code,
the code on the booksite is liberally annotated with comments that explain what it
does; we use fewer comments in code in this book because the accompanying text
and figures provide the explanation.

Q. What are Java’s rules regarding tabs, spaces, and newline characters?

A. Such characters are known as whitespace characters. Java compilers consider
all whitespace in program text to be equivalent. For example, we could write Hel-

!"#$%&'(')!"*+,,,:2 ./01/23,,,0425,67

111.1 Your First Program

loWorld as follows:

public class HelloWorld { public static void main (String []
args) { System.out.print("Hello, World") ; System.out.
println() ;} }

But we do normally adhere to spacing and indenting conventions when we write
Java programs, just as we always indent paragraphs and lines consistently when we
write prose or poetry.

Q. What are the rules regarding quotation marks?

A. Material inside quotation marks is an exception to the rule defined in the pre-
vious question: things within quotes are taken literally so that you can precisely
specify what gets printed. If you put any number of successive spaces within the
quotes, you get that number of spaces in the output. If you accidentally omit a
quotation mark, the compiler may get very confused, because it needs that mark to
distinguish between characters in the string and other parts of the program.

Q. What happens when you omit a brace or misspell one of the words, like public
or static or void or main?

A. It depends upon precisely what you do. Such errors are called syntax errors and
are usually caught by the compiler. For example, if you make a program Bad that is
exactly the same as HelloWorld except that you omit the line containing the first
left brace (and change the program name from HelloWorld to Bad), you get the
following helpful message:

% javac Bad.java
Bad.java:2: '{' expected
 public static void main(String[] args)
 ^
1 error

From this message, you might correctly surmise that you need to insert a left brace.
But the compiler may not be able to tell you exactly what mistake you made, so the
error message may be hard to understand. For example, if you omit the second left
brace instead of the first one, you get the following messages:

!"#$%&'(')!"*+,,,:: ./01/23,,,0425,67

12 Elements of Programming

% javac Bad.java
Bad.java:4: ';' expected
 System.out.print("Hello, World");
 ^
Bad.java:7: 'class' or 'interface' expected
}
^
Bad.java:8: 'class' or 'interface' expected
^
3 errors

One way to get used to such messages is to intentionally introduce mistakes into a
simple program and then see what happens. Whatever the error message says, you
should treat the compiler as a friend, for it is just trying to tell you that something
is wrong with your program.

Q. Can a program use more than one command-line argument?

A. Yes, you can use many arguments, though we normally use just a few. Note that
the count starts at 0, so you refer to the first argument as args[0], the second one
as args[1], the third one as args[2], and so forth.

Q. What Java methods are available for me to use?

A. There are literally thousands of them. We introduce them to you in a deliberate

fashion (starting in the next section) to avoid overwhelming you with choices.

Q. When I ran UseArgument, I got a strange error message. What’s the problem?

A. Most likely, you forgot to include a command-line argument:

% java UseArgument
Hi, Exception in thread “main”
java.lang.ArrayIndexOutOfBoundsException: 0
 at UseArgument.main(UseArgument.java:6)

The JVM is complaining that you ran the program but did not type an argument as
promised. You will learn more details about array indices in SECTION 1.4. Remember
this error message: you are likely to see it again. Even experienced programmers
forget to type arguments on occasion.

!"#$%&'(')!"*+,,,:0 ./01/23,,,0425,67

131.1 Your First Program

Exercises

1.1.1 Write a program that prints the Hello, World message 10 times.

1.1.2 Describe what happens if you omit the following in HelloWorld.java:
a. public
b. static
c. void
d. args

1.1.3 Describe what happens if you misspell (by, say, omitting the second letter)
the following in HelloWorld.java:

a. public
b. static
c. void
d. args

1.1.4 Describe what happens if you try to execute UseArgument with each of the
following command lines:

a. java UseArgument java
b. java UseArgument @!&^%
c. java UseArgument 1234
d. java UseArgument.java Bob
e. java UseArgument Alice Bob

1.1.5 Modify UseArgument.java to make a program UseThree.java that takes
three names and prints out a proper sentence with the names in the reverse of the
order given, so that, for example, java UseThree Alice Bob Carol gives Hi
Carol, Bob, and Alice.

!"#$%&'(')!"*+,,,:. ./01/23,,,0425,67

Elements of Programming

1.2 Built-in Types of Data

WHEN PROGRAMMING IN JAVA, YOU MUST always be aware of the type of data that your
program is processing. The programs in SECTION 1.1 process strings of characters,
many of the programs in this section process numbers, and we consider numer-
ous other types later in the book. Under-
standing the distinctions among them is
so important that we formally define the
idea: a data type is a set of values and a set
of operations defined on those values. You
are familiar with various types of num-
bers, such as integers and real numbers,
and with operations defined on them,
such as addition and multiplication. In mathematics, we are accustomed to think-
ing of sets of numbers as being infinite; in computer programs we have to work
with a finite number of possibilities. Each operation that we perform is well-de-
fined only for the finite set of values in an associated data type.

There are eight primitive types of data in Java, mostly for different kinds of
numbers. Of the eight primitive types, we most often use these: int for integers;
double for real numbers; and boolean for true-false values. There are other types
of data available in Java libraries: for example, the programs in SECTION 1.1 use the
type String for strings of characters. Java treats the String type differently from
other types because its usage for input and output is essential. Accordingly, it shares
some characteristics of the primitive types: for example, some of its operations are
built in to the Java language. For clarity, we refer to primitive types and String
collectively as built-in types. For the time being, we concentrate on programs that
are based on computing with built-in types. Later, you will learn about Java library
data types and building your own data types. Indeed, programming in Java is often
centered on building data types, as you shall see in CHAPTER 3.

After defining basic terms, we consider several sample programs and code
fragments that illustrate the use of different types of data. These code fragments
do not do much real computing, but you will soon see similar code in longer pro-
grams. Understanding data types (values and operations on them) is an essential
step in beginning to program. It sets the stage for us to begin working with more
intricate programs in the next section. Every program that you write will use code
like the tiny fragments shown in this section.

1.2.1 String concatenation example . . . 20
1.2.2 Integer multiplication and division 22
1.2.3 Quadratic formula 24
1.2.4 Leap year 27
1.2.5 Casting to get a random integer . . 33

Programs in this section

!"#$%&'(')!"*+,,,:- ./01/23,,,0425,67

151.2 Built-in Types of Data

type set of values common operators sample literal values

int integers + - * / % 99 -12 2147483647

double floating-point numbers + - * / 3.14 -2.5 6.022e23

boolean boolean values && || ! true false

char characters 'A' '1' '%' '\n'

String sequences of characters + "AB" Hello" "2.5"

Basic built-in data types

Definitions To talk about data types, we need to introduce some terminology.
To do so, we start with the following code fragment:

int a, b, c;
a = 1234;
b = 99;
c = a + b;

The first line is a declaration that declares the names of three variables to be the
identifiers a, b, and c and their type to be int. The next three lines are assignment
statements that change the values of the variables, using the literals 1234 and 99,
and the expression a + b, with the end result that c has the value 1333.

Identifiers. We use identifiers to name variables (and many other things) in Java.
An identifier is a sequence of letters, digits, _, and $, the first of which is not a digit.
The sequences of characters abc, Ab$, abc123, and a_b are all legal Java identifiers,
but Ab*, 1abc, and a+b are not. Identifiers are case-sensitive, so Ab, ab, and AB are all
different names. You cannot use certain reserved words—such as public, static,
int, double, and so forth—to name variables.

Literals. A literal is a source-code representation of a data-type value. We use
strings of digits like 1234 or 99 to define int literal values, and add a decimal point
as in 3.14159 or 2.71828 to define double literal values. To specify a boolean val-
ue, we use the keywords true or false, and to specify a String, we use a sequence
of characters enclosed in quotes, such as "Hello, World". We will consider other
kinds of literals as we consider each data type in more detail.

Variables. A variable is a name that we use to refer to a data-type value. We use
variables to keep track of changing values as a computation unfolds. For example,

!"#$%&'(')!"*+,,,:5 ./01/23,,,0425,67

16 Elements of Programming

we use the variable n in many programs to count things. We create a variable in a
declaration that specifies its type and gives it a name. We compute with it by using
the name in an expression that uses operations defined for its type. Each variable
always stores one of the permissible data-type values.

Declaration statements. A declaration statement associates a variable name with
a type at compile time. Java requires us to use declarations to specify the names
and types of variables. By doing so, we are being explicit about any computation
that we are specifying. Java is said to be a strongly-typed language, because the Java
compiler can check for consistency at compile time (for example, it does not permit
us to add a String to a double). This situation is precisely analogous to making
sure that quantities have the proper units in a sci-
entific application (for example, it does not make
sense to add a quantity measured in inches to an-
other measured in pounds). Declarations can ap-
pear anywhere before a variable is first used—most
often, we put them at the point of first use.

Assignment statements. An assignment statement
associates a data-type value with a variable. When
we write c = a + b in Java, we are not expressing
mathematical equality, but are instead expressing an action: set the value of the
variable c to be the value of a plus the value of b. It is true that c is mathematically
equal to a + b immediately after the assignment statement has been executed, but
the point of the statement is to change the value of c (if necessary). The left-hand
side of an assignment statement must be a single variable; the right-hand side can
be an arbitrary expression that produces values of the type. For example, we can say
discriminant = b*b - 4*a*c in Java, but we cannot say a + b = b + a or 1 = a.
In short, the meaning of = is decidedly not the same as in mathematical equations. For
example, a = b is certainly not the same as b = a, and while the value of c is the
value of a plus the value of b after c = a + b has been executed, that may cease to
be the case if subsequent statements change the values of any of the variables.

Initialization. In a simple declaration, the initial value of the variable is unde-
fined. For economy, we can combine a declaration with an assignment statement to
provide an initial value for the variable.

declaration statement

Using a primitive data type

literalvariable name int a, b;
a = 1234 ;
b = 99;
int c = a + b;

combined declaration
and assignment statement

assignment
statement

!"#$%&'(')!"*+,,,:8 ./01/23,,,0425,67

171.2 Built-in Types of Data

Tracing changes in variable values. As a final check on your understanding of
the purpose of assignment statements, convince yourself that the following code
exchanges the values of a and b (assume that a and b are int variables):

int t = a;
a = b;
b = t;

To do so, use a time-honored method of examining pro-
gram behavior: study a table of the variable values after
each statement (such a table is known as a trace).

Expressions. An expression is a literal, a variable, or a
sequence of operations on literals and/or variables that
produces a value. For primitive types, expressions look just like mathematical for-
mulas, which are based on familiar symbols or operators that specify data-type
operations to be performed on one or more operands. Each operand can be any
expression. Most of the operators that we use are binary operators that take exactly
two operands, such as x + 1 or y / 2. An expression that is enclosed in parentheses
is another expression with the same value. For example, we can write 4 * (x - 3) or

4*x - 12 on the right-hand side of an assignment statement
and the compiler will understand what we mean.

Precedence. Such expressions are shorthand for specifying a
sequence of computations: in what order should they be per-
formed? Java has natural and well-defined precedence rules
(see the booksite) that fully specify this order. For arithmetic
operations, multiplication and division are performed before

addition and subtraction, so that a-b*c and a-(b*c) represent the same sequence
of operations. When arithmetic operators have the same precedence, the order is
determined by left-associativity, so that a-b-c and (a-b)-c represent the same se-
quence of operations. You can use parentheses to override the rules, so you should
not need to worry about the details of precedence for most of the programs that
you write. (Some of the programs that you read might depend subtly on prece-
dence rules, but we avoid such programs in this book.)

Converting strings to primitive values for command-line arguments. Java
provides the library methods that we need to convert the strings that we type as

Your first trace

int a, b;
a = 1234;
b = 99;
int t = a;
a = b;
b = t;

a
undefined

1234
1234
1234
99
99

b
undefined

undefined

99
99
99
1234

t

1234
1234
1234

Anatomy of an expression

operator

 4 * (x - 3)

operands
(and expressions)

!"#$%&'(')!"*+,,,:1 ./01/23,,,0425,67

18 Elements of Programming

command-line arguments into numeric values for primitive types. We use the
Java library methods Integer.parseInt() and Double.parseDouble() for
this purpose. For example, typing Integer.parseInt("123") in program text
yields the literal value 123 (typing 123 has the same effect) and the code Integer.
parseInt(args[0]) produces the same result as the literal value typed as a string
on the command line. You will see several examples of this usage in the programs
in this section.

Converting primitive type values to strings for output. As mentioned at the be-
ginning of this section, the Java built-in String type obeys special rules. One of
these special rules is that you can easily convert any type of data to a String: when-
ever we use the + operator with a String as one of its operands, Java automatically
converts the other to a String, producing as a result the String formed from the
characters of the first operand followed by the characters of the second operand.
For example, the result of these two code fragments

String a = "1234"; String a = "1234";
String b = "99"; int b = 99;
String c = a + b; String c = a + b;

are both the same: they assign to c the value "123499". We use this automatic
conversion liberally to form String values for System.out.print() and System.
out.println() for output. For example, we can write statements like this one:

System.out.println(a + " + " + b + " = " + c);

If a, b, and c are int variables with the values 1234, 99, and 1333, respectively, then
this statement prints out the string 1234 + 99 = 1333.

WITH THESE MECHANISMS, OUR VIEW OF each Java program as a black box that takes
string arguments and produces string results is still valid, but we can now interpret
those strings as numbers and use them as the basis for meaningful computation.
Next, we consider these details for the basic built-in types that you will use most
often (strings, integers, floating-point numbers, and true–false values), along with
sample code illustrating their use. To understand how to use a data type, you need
to know not just its defined set of values, but also which operations you can per-
form, the language mechanism for invoking the operations, and the conventions
for specifying literal values.

!"#$%&'(')!"*+,,,:9 ./01/23,,,0425,67

191.2 Built-in Types of Data

Characters and Strings A char is an alphanumeric character or symbol, like
the ones that you type. There are 216 different possible character values, but we
usually restrict attention to the ones that represent letters,
numbers, symbols, and whitespace characters such as tab
and newline. Literals for char are characters enclosed in
single quotes; for example, 'a' represents the letter a. For
tab, newline, backslash, single quote and double quote, we
use the special escape sequences '\t', '\n', '\\', '\'',
and '\"', respectively. The characters are encoded as
16-bit integers using an encoding scheme known as Uni-
code, and there are escape sequences for specifying special
characters not found on your keyboard (see the booksite).
We usually do not perform any operations directly on characters other than assign-
ing values to variables.

A String is a sequence of characters. A literal String is a sequence of charac-
ters within double quotes, such as "Hello, World". The String data type is not a
primitive type, but Java sometimes treats it like one. For example, the concatenation
operator (+) that we just considered is built in to the language as a binary operator
in the same way as familiar operations on numbers.

The concatenation operation (along with the ability to declare String vari-
ables and to use them in expressions and assignment statements) is sufficiently
powerful to allow us to attack some nontrivial computing tasks. As an example,

Ruler (PROGRAM 1.2.1) computes a table of
values of the ruler function that describes
the relative lengths of the marks on a ruler.
One noteworthy feature of this computa-
tion is that it illustrates how easy is is to craft
short programs that produce huge amounts
of output. If you extend this program in the
obvious way to print five lines, six lines, sev-
en lines, and so forth, you will see that each
time you add just two statements to this

program, you increase the size of its output by precisely one more than a factor of
two. Specifically, if the program prints n lines, the nth line contains 2n!1 numbers.
For example, if you were to add statements in this way so that the program prints
30 lines, it would attempt to print more than 1 billion numbers.

values sequences of characters

typical
literals

"Hello," "1 " " * "

operation concatenate

operator +

Java’s built-in String data type

expression value

"Hi, " + "Bob" "Hi, Bob"

"1" + " 2 " + "1" "1 2 1"

"1234" + " + " + "99" "1234 + 99"

"1234" + "99" "123499"

Typical String expressions

!"#$%&'(')!"*+,,,:3 ./01/23,,,0425,67

20 Elements of Programming

% javac Ruler.java
% java Ruler
1
1 2 1
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

As just discussed, our most frequent use (by far) of the concatenation operation is
to put together results of computation for output with System.out.print() and
System.out.println(). For example, we could simplify UseArgument (PROGRAM
1.1.2) by replacing its three statements with this single statement:

System.out.println("Hi, " + args[0] + ". How are you?");

We have considered the String type first precisely because we need it for output
(and command-line input) in programs that process other types of data.

Program 1.2.1 String concatenation example

public class Ruler
{
 public static void main(String[] args)
 {
 String ruler1 = "1";
 String ruler2 = ruler1 + " 2 " + ruler1;
 String ruler3 = ruler2 + " 3 " + ruler2;
 String ruler4 = ruler3 + " 4 " + ruler3;
 System.out.println(ruler1);
 System.out.println(ruler2);
 System.out.println(ruler3);
 System.out.println(ruler4);
 }
}

This program prints the relative lengths of the subdivisions on a ruler. The nth line of output
is the relative lengths of the marks on a ruler subdivided in intervals of 1/2 n of an inch. For
example, the fourth line of output gives the relative lengths of the marks that indicate intervals
of one-sixteenth of an inch on a ruler.

The ruler function for n = 4

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

!"#$%&'(')!"*+,,,02 ./01/23,,,0425,67

211.2 Built-in Types of Data

Integers An int is an integer (natural number) between –2147483648 (!2 31)
and 2147483647 (2 31!1). These bounds derive from the fact that integers are rep-
resented in binary with 32 binary digits: there are 232 possible values. (The term
binary digit is omnipresent in computer science, and we nearly always use the ab-
breviation bit : a bit is either 0 or 1.) The range of possible int values is asymmetric
because zero is included with the positive values. See the booksite for more details
about number representation, but in the present context it suffices to know that
an int is one of the finite set of values in the range
just given. Sequences of the characters 0 through 9,
possibly with a plus or minus sign at the beginning
(that, when interpreted as decimal numbers, fall
within the defined range), are integer literal values.
We use ints frequently because they naturally arise
when implementing programs.

Standard arithmetic operators for addition/
subtraction (+ and -), multiplication (*), division
(/), and remainder (%) for the int data type are
built in to Java. These operators take two int op-
erands and produce an int result, with one signifi-
cant exception—division or remainder by zero is
not allowed. These operations are defined just as in
grade school (keeping in mind that all results must
be integers): given two int values a and b, the value
of a / b is the number of times b goes into a with
the fractional part discarded, and the value of a % b is the remainder that you get
when you divide a by b. For example, the value of 17 / 3 is 5, and the value of 17 % 3
is 2. The int results that we get from arithmetic operations are just what we expect,
except that if the result is too large to fit into int’s 32-bit representation, then it
will be truncated in a well-defined manner. This situation is known as overflow. In

values integers between !2 31 and "2 31!1

typical literals 1234 99 -99 0 1000000

operations add subtract multiply divide remainder

operators + - * / %

Java’s built-in int data type

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 3 1 no fractional part

5 % 3 2 remainder

1 / 0 run-time error

3 * 5 - 2 13 * has precedence

3 + 5 / 2 5 / has precedence

3 - 5 - 2 -4 left associative

(3 - 5) - 2 -4 better style

3 - (5 - 2) 0 unambiguous

Typical int expressions

!"#$%&'(')!"*+,,,0: ./01/23,,,0425,67

22 Elements of Programming

% javac IntOps.java
% java IntOps 1234 99
1234 * 99 = 122166
1234 / 99 = 12
1234 % 99 = 46
1234 = 12 * 99 + 46

Program 1.2.2 Integer multiplication and division

public class IntOps
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int p = a * b;
 int q = a / b;
 int r = a % b;
 System.out.println(a + " * " + b + " = " + p);
 System.out.println(a + " / " + b + " = " + q);
 System.out.println(a + " % " + b + " = " + r);
 System.out.println(a + " = " + q + " * " + b + " + " + r);
 }
}

Arithmetic for integers is built in to Java. Most of this code is devoted to the task of getting the
values in and out; the actual arithmetic is in the simple statements in the middle of the program
that assign values to p, q, and r.

general, we have to take care that such a result is not misinterpreted by our code.
For the moment, we will be computing with small numbers, so you do not have to
worry about these boundary conditions.

 PROGRAM 1.2.2 illustrates basic operations for manipulating integers, such as
the use of expressions involving arithmetic operators. It also demonstrates the use
of Integer.parseInt() to convert String values on the command line to int
values, as well as the use of automatic type conversion to convert int values to
String values for output.

!"#$%&'(')!"*+,,,00 ./01/23,,,0425,67

231.2 Built-in Types of Data

Three other built-in types are different representations of integers in Java.
The long, short, and byte types are the same as int except that they use 64, 16,
and 8 bits respectively, so the range of allowed values is accordingly different. Pro-
grammers use long when working with huge integers, and the other types to save
space. You can find a table with the maximum and minimum values for each type
on the booksite, or you can figure them out for yourself from the numbers of bits.

Floating-point numbers The double type is for representing floating-point
numbers, for use in scientific and commercial applications. The internal represen-
tation is like scientific notation, so that we can compute with numbers in a huge
range. We use floating-point numbers to repre-
sent real numbers, but they are decidedly not the
same as real numbers! There are infinitely many
real numbers, but we can only represent a finite
number of floating-points in any digital com-
puter representation. Floating-point numbers
do approximate real numbers sufficiently well
that we can use them in applications, but we of-
ten need to cope with the fact that we cannot
always do exact computations.

We can use a sequence of digits with a
decimal point to type floating-point numbers.
For example, 3.14159 represents a six-digit ap-
proximation to #. Alternatively, we can use a notation like scientific notation: the
literal 6.022e23 represents the number 6.022 $ 1023. As with integers, you can use
these conventions to write floating-point literals in your programs or to provide
floating-point numbers as string parameters on the command line.

The arithmetic operators +, -, *, and / are defined for double. Beyond the
built-in operators, the Java Math library defines the square root, trigonometric

values real numbers (specified by IEEE 754 standard)

typical literals 3.14159 6.022e23 -3.0 2.0 1.4142135623730951

operations add subtract multiply divide

operators + - * /

Java’s built-in double data type

expression value

3.141 + .03 3.171

3.141 - .03 3.111

6.02e23 / 2.0 3.01e23

5.0 / 3.0 1.6666666666666667

10.0 % 3.141 0.577

1.0 / 0.0 Infinity

Math.sqrt(2.0) 1.4142135623730951

Math.sqrt(-1.0) NaN

Typical double expressions

!"#$%&'(')!"*+,,,0. ./01/23,,,0425,67

24 Elements of Programming

functions, logarithm/exponential functions, and other common functions for
floating-point numbers. To use one of these values in an expression, we write the
name of the function followed by its argument in parentheses. For example, you
can use the code Math.sqrt(2.0) when you want to use the square root of 2 in an
expression. We discuss in more detail the mechanism behind this arrangement in
SECTION 2.1 and more details about the Math library at the end of this section.

When working with floating point numbers, one of the first things that
you will encounter is the issue of precision: 5.0/2.0 is 2.5 but 5.0/3.0 is
1.6666666666666667. In SECTION 1.5, you will learn Java’s mechanism for control-

% javac Quadratic.java
% java Quadratic -3.0 2.0
2.0
1.0

% java Quadratic -1.0 -1.0
1.618033988749895
-0.6180339887498949

% java Quadratic 1.0 1.0
NaN
NaN

Program 1.2.3 Quadratic formula

public class Quadratic
{
 public static void main(String[] args)
 {
 double b = Double.parseDouble(args[0]);
 double c = Double.parseDouble(args[1]);
 double discriminant = b*b - 4.0*c;
 double d = Math.sqrt(discriminant);
 System.out.println((-b + d) / 2.0);
 System.out.println((-b - d) / 2.0);
 }
}

This program prints out the roots of the polynomial x2 + bx + c, using the quadratic formula.
For example, the roots of x2 - 3x + 2 are 1 and 2 since we can factor the equation as (x - 1)
(x - 2); the roots of x2 - x - 1 are % and 1 - %, where % is the golden ratio, and the roots of x2 +
x + 1 are not real numbers.

!"#$%&'(')!"*+,,,0- ./01/23,,,0425,67

251.2 Built-in Types of Data

ling the number of significant digits that you see in output. Until then, we will work
with the Java default output format.

The result of a calculation can be one of the special values Infinity (if the
number is too large to be represented) or NaN (if the result of the calculation is
undefined). Though there are myriad details to consider when calculations involve
these values, you can use double in a natural way and begin to write Java programs
instead of using a calculator for all kinds of calculations. For example, PROGRAM
1.2.3 shows the use of double values in computing the roots of a quadratic equa-
tion using the quadratic formula. Several of the exercises at the end of this section
further illustrate this point.

As with long, short, and byte for integers, there is another representation
for real numbers called float. Programmers sometimes use float to save space
when precision is a secondary consideration. The double type is useful for about
15 significant digits; the float type is good for only about 7 digits. We do not use
float in this book.

Booleans The boolean type has just two values: true
and false. These are the two possible boolean literals. Ev-
ery boolean variable has one of these two values, and every
boolean operation has operands and a result that takes on
just one of these two values. This simplicity is deceiving—
boolean values lie at the foundation of computer science.

The most important operations defined for booleans are and (&&), or (||),
and not (!), which have familiar definitions:

a && b is true if both operands are true, and false if either is false.
a || b is false if both operands are false, and true if either is true.
!a is true if a is false, and false if a is true.

Despite the intuitive nature of these definitions, it is worthwhile to fully specify
each possibility for each operation in tables known as truth tables. The not function

values true or false

literals true false

operations and or not

operators && || !

Java’s built-in boolean data type

a !a a b a && b a || b

true false false false false false

false true false true false true

true false false true

true true true true

Truth-table definitions of boolean operations

!"#$%&'(')!"*+,,,05 ./01/23,,,0425,67

26 Elements of Programming

has only one operand: its value for each of the two possible values of the operand is
specified in the second column. The and and or functions each have two operands:
there are four different possibilities for operand input values, and the values of the
functions for each possibility are specified in the right two columns.

We can use these operators with parentheses to develop arbitrarily complex
expressions, each of which specifies a well-defined boolean function. Often the
same function appears in different guises. For example, the expressions (a && b)
and !(!a || !b) are equivalent.

The study of manipulating expressions of this kind is known as Boolean logic.
This field of mathematics is fundamental to computing: it plays an essential role
in the design and operation of computer hardware itself, and it is also a starting
point for the theoretical foundations of computation. In the present context, we are
interested in boolean expressions because we use them to control the behavior of
our programs. Typically, a particular condition of interest is specified as a boolean
expression and a piece of program code is written to execute one set of statements
if the expression is true and a different set of statements if the expression is false.
The mechanics of doing so are the topic of SECTION 1.3.

Comparisons Some mixed-type operators take operands of one type and pro-
duce a result of another type. The most important operators of this kind are the
comparison operators ==, !=, <, <=, >, and >=, which all are defined for each primi-
tive numeric type and produce a boolean result. Since operations are defined only

a b a && b !a !b !a || !b !(!a || !b)

false false false true true true false

false true false true false true false

true false false false true true false

true true true false false false true

Truth-table proof that a && b and !(!a || !b) are identical

non-negative discriminant? (b*b - 4.0*a*c) >= 0.0

beginning of a century? (year % 100) == 0

legal month? (month >= 1) && (month <= 12)

Typical comparison expressions

!"#$%&'(')!"*+,,,08 ./01/23,,,0425,67

271.2 Built-in Types of Data

% javac LeapYear.java
% java LeapYear 2004
true
% java LeapYear 1900
false
% java LeapYear 2000
true

Program 1.2.4 Leap year

public class LeapYear
{
 public static void main(String[] args)
 {
 int year = Integer.parseInt(args[0]);
 boolean isLeapYear;
 isLeapYear = (year % 4 == 0);
 isLeapYear = isLeapYear && (year % 100 != 0);
 isLeapYear = isLeapYear || (year % 400 == 0);
 System.out.println(isLeapYear);
 }
}

This program tests whether an integer corresponds to a leap year in the Gregorian calendar. A
year is a leap year if it is divisible by 4 (2004), unless it is divisible by 100 in which case it is not
(1900), unless it is divisible by 400 in which case it is (2000).

with respect to data types, each of these symbols stands for many operations, one
for each data type. It is required that both operands be of the same type. The result
is always boolean.

Even without going into the details of number representation, it is clear that
the operations for the various types are really quite different: for example, it is one
thing to compare two ints to check that (2 <= 2) is true but quite another to
compare two doubles to check whether (2.0 <= 0.002e3) is true or false. Still,
these operations are well-defined and useful to write code that tests for conditions
such as (b*b - 4.0*a*c) >= 0.0, which is frequently needed, as you will see.

!"#$%&'(')!"*+,,,01 ./01/23,,,0425,67

28 Elements of Programming

The comparison operations have lower precedence than arithmetic operators
and higher precedence than boolean operators, so you do not need the parentheses
in an expression like (b*b - 4.0*a*c) >= 0.0, and you could write an expression
like month >= 1 && month <= 12 without parentheses to test whether the value of
the int variable month is between 1 and 12. (It is better style to use the parentheses,

however.)
Comparison operations, together

with boolean logic, provide the basis for
decision-making in Java programs. PRO-
GRAM 1.2.4 is an example of their use,
and you can find other examples in the
exercises at the end of this section. More
importantly, in SECTION 1.3 we will see
the role that boolean expressions play in
more sophisticated programs.

Library methods and APIs As we have seen, many programming tasks in-
volve using Java library methods in addition to the built-in operations on data-type
values. The number of available library methods is vast. As you learn to program,
you will learn to use more and more library methods, but it is best at the beginning
to restrict your attention to a relatively small set of methods. In this chapter, you
have already used some of Java’s methods for printing, for converting data from
one type to another, and for computing mathematical functions (the Java Math li-
brary). In later chapters, you will learn not just how to use other methods, but how
to create and use your own methods.

For convenience, we will consistently summarize the library methods that you
need to know how to use in tables like this one:

public class System.out

void print(String s) print s

void println(String s) print s, followed by a newline

void println() print a newline

Note: Any type of data can be used (and will be automatically converted to String).

Excerpts from Java’s library for standard output

op meaning true false

== equal 2 == 2 2 == 3

!= not equal 3 != 2 2 != 2

< less than 2 < 13 2 < 2

<= less than or equal 2 <= 2 3 <= 2

> greater than 13 > 2 2 > 13

>= greater than or equal 3 >= 2 2 >= 3

Comparisons with int operands and a boolean result

!"#$%&'(')!"*+,,,09 ./01/23,,,0425,67

291.2 Built-in Types of Data

Such a table is known as an application programming interface (API). It provides
the information that you need to write an application program that uses the meth-
ods. Here is an API for the most commonly used methods in Java’s Math library:

public class Math

double abs(double a) absolute value of a

double max(double a, double b) maximum of a and b

double min(double a, double b) minimum of a and b

Note 1: abs(), max(), and min() are defined also for int, long, and float.

double sin(double theta) sine function

double cos(double theta) cosine function

double tan(double theta) tangent function

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.
Note 3: Use asin(), acos(), and atan() for inverse functions.

double exp(double a) exponential (e a)

double log(double a) natural log (loge a, or ln a)

double pow(double a, double b) raise a to the bth power (ab)

long round(double a) round to the nearest integer

double random() random number in [0, 1)

double sqrt(double a) square root of a

double E value of e (constant)

double PI value of # (constant)

See booksite for other available functions.

Excerpts from Java’s mathematics library

With the exception of random(), these methods implement mathematical func-
tions—they use their arguments to compute a value of a specified type. Each meth-
od is described by a line in the API that specifies the information you need to know
in order to use the method. The code in the tables is not the code that you type to
use the method; it is known as the method’s signature. The signature specifies the
type of the arguments, the method name, and the type of the value that the method
computes (the return value). When your program is executed, we say that it calls the
system library code for the method, which returns the value for use in your code.

!"#$%&'(')!"*+,,,03 ./01/23,,,0425,67

30 Elements of Programming

Note that random() does not implement a mathematical
function because it does not take an argument. On the other
hand, System.out.print() and System.out.println()
do not implement mathematical functions because they do
not return values and therefore do not have a return type.
(This condition is specified in the signature by the keyword
void.)

In your code, you can use a library method by typ-
ing its name followed by arguments of the specified type,
enclosed in parentheses and separated by commas. You can

use this code in the same way as you use variables and literals in expressions. When
you do so, you can expect that method to
compute a value of the appropriate type, as
documented in the left column of the API.
For example, you can write expressions like
Math.sin(x) * Math.cos(y) and so on.
Method arguments may also be expressions,
as in Math.sqrt(b*b - 4.0*a*c).

The Math library also defines the precise constant values PI (for #) and E (for
e), so that you can use those names to refer to those constants in your programs.
For example, the value of Math.sin(Math.PI/2) is 1.0 and the value of Math.
log(Math.E) is 1.0 (because Math.sin() takes its argument in radians and Math.
log() implements the natural logarithm function).

To be complete, we also include here the following API for Java’s conversion
methods, which we use for command-line arguments:

int Integer.parseInt(String s) convert s to an int value
double Double.parseDouble(String s) convert s to a double value

long Long.parseLong(String s) convert s to a long value

Java library methods for converting strings to primitive types

You do not need to use methods like these to convert from int, double, and long
values to String values for output, because Java automatically converts any val-
ue used as an argument to System.out.print() or System.out.println() to
String for output.

argument

Using a library method

double d = Math.sqrt(b*b - 4.0*a*c);

library name method name

return type

public class Math
 . . .

 double sqrt(double a)

 . . .

Anatomy of a method signature

method namesignature

library name

argument typereturn type

!"#$%&'(')!"*+,,,.2 ./01/23,,,0425,67

311.2 Built-in Types of Data

These APIs are typical of the online documentation that is the standard in
modern programming. There is extensive online documentation of the Java APIs
that is used by professional programmers, and it is available to you (if you are in-
terested) directly from the Java website or through our booksite. You do not need
to go to the online documentation to understand the code in this book or to write
similar code, because we present and explain in the text all of the library methods
that we use in APIs like these and summarize them in the endpapers. More impor-
tant, in CHAPTERS 2 AND 3 you will learn in this book how to develop your own APIs
and to implement functions for your own use.

Type conversion One of the primary rules of modern programming is that you
should always be aware of the type of data that your program is processing. Only
by knowing the type can you know precisely which set of values each variable can
have, which literals you can use, and which operations you can perform. Typical
programming tasks involve processing multiple types of data, so we often need to
convert data from one type to another. There are several ways to do so in Java.

Explicit type conversion. You can use a method that takes an argument of one
type (the value to be converted) and produces a result of another type. We have
already used the Integer.parseInt() and Double.parseDouble() library meth-
ods to convert String values to int and double values, respectively. Many other
methods are available for conversion among other types. For example, the library
method Math.round() takes a double argument and returns a long result: the
nearest integer to the argument. Thus, for example, Math.round(3.14159) and
Math.round(2.71828) are both of type long and have the same value (3).

Explicit cast. Java has some built-in type conversion conventions for primitive
types that you can take advantage of when you are aware that you might lose infor-

expression library type value

Integer.parseInt("123") Integer int 123

Math.sqrt(5.0*5.0 - 4.0*4.0) Math double 3.0

Math.random() Math double random in [0, 1)

Math.round(3.14159) Math long 3

Typical expressions that use Java library methods

!"#$%&'(')!"*+,,,.: ./01/23,,,0425,67

32 Elements of Programming

mation. You have to make your intention to do so explicit by using a device called a
cast. You cast an expression from one primitive type to another by prepending the
desired type name within parentheses. For example, the expression (int) 2.71828
is a cast from double to int that produces an int with value 2. The conversion
methods defined for casts throw away information in a reasonable way (for a full
list, see the booksite). For example, casting a floating-point number to an integer
discards the fractional part by rounding towards zero. If you want a different result,
such as rounding to the nearest integer, you must use the explicit conversion meth-
od Math.round(), as just discussed (but you then need to use an explicit cast to
int, since that method returns a long). RandomInt (PROGRAM 1.2.5) is an example
that uses a cast for a practical computation.

Automatic promotion for numbers. You can use data of any primitive numeric
type where a value whose type has a larger range of values is expected, because Java
automatically converts to the type with the larger range. This kind of conversion is
called promotion. For example, we
used numbers all of type double
in PROGRAM 1.2.3, so there is no
conversion. If we had chosen to
make b and c of type int (using
Integer.parseInt() to convert
the command-line arguments),
automatic promotion would be
used to evaluate the expression
b*b - 4.0*c. First, c is promot-
ed to double to multiply by the
double literal 4.0, with a double
result. Then, the int value b*b is
promoted to double for the sub-
traction, leaving a double result.
Or, we might have written b*b -
4*c. In that case, the expression b*b - 4*c would be evaluated as an int and then
the result promoted to double, because that is what Math.sqrt() expects. Promo-
tion is appropriate because your intent is clear and it can be done with no loss of in-
formation. On the other hand, a conversion that might involve loss of information
(for example, assigning a double to an int) leads to a compile-time error.

expression expression
type

expression
value

"1234" + 99 String "123499"

Integer.parseInt("123") int 123

(int) 2.71828 int 2

Math.round(2.71828) long 3

(int) Math.round(2.71828) int 3

(int) Math.round(3.14159) int 3

11 * 0.3 double 3.3

(int) 11 * 0.3 double 3.3

11 * (int) 0.3 int 0

(int) (11 * 0.3) int 3

Typical type conversions

!"#$%&'(')!"*+,,,.0 ./01/23,,,0425,67

331.2 Built-in Types of Data

Casting has higher precedence than arithmetic operations—any cast is applied to
the value that immediately follows it. For example, if we write int n = (int) 11
* 0.3, the cast is no help: the literal 11 is already an integer, so the cast (int) has
no effect. In this example, the compiler produces a possible loss of precision
error message because there would be a loss of precision in converting the resulting
value (3.3) to an int for assignment to n. The error is helpful because the intended
computation for this code is likely (int) (11 * 0.3), which has the value 3, not
3.3.

% javac RandomInt.java

% java RandomInt 1000
548

% java RandomInt 1000
141

% java RandomInt 1000000
135032

Program 1.2.5 Casting to get a random integer

public class RandomInt
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 double r = Math.random(); // uniform between 0 and 1
 int n = (int) (r * N); // uniform between 0 and N-1
 System.out.println(n);
 }
}

This program uses the Java method Math.random() to generate a random number r in the
interval [0, 1), then multiplies r by the command-line argument N to get a random number
greater than or equal to 0 and less than N, then uses a cast to truncate the result to be an integer
n between 0 and N-1.

!"#$%&'(')!"*+,,,.. ./01/23,,,0425,67

34 Elements of Programming

BEGINNING PROGRAMMERS TEND TO FIND TYPE conversion to be an annoyance, but expe-
rienced programmers know that paying careful attention to data types is a key to
success in programming. It is well worth your while to take the time to understand
what type conversion is all about. After you have written just a few programs, you
will understand that these rules help you to make your intentions explicit and to
avoid subtle bugs in your programs.

Summary A data type is a set of values and a set of operations on those values.
Java has eight primitive data types: boolean, char, byte, short, int, long, float,
and double. In Java code, we use operators and expressions like those in familiar
mathematical expressions to invoke the operations associated with each type. The
boolean type is for computing with the logical values true and false; the char
type is the set of character values that we type; and the other six are numeric types,
for computing with numbers. In this book, we most often use boolean, int, and
double; we do not use short or float. Another data type that we use frequently,
String, is not primitive, but Java has some built-in facilities for Strings that are
like those for primitive types.

When programming in Java, we have to be aware that every operation is de-
fined only in the context of its data type (so we may need type conversions) and
that all types can have only a finite number of values (so we may need to live with
imprecise results).

The boolean type and its operations— &&, ||, and ! —are the basis for logi-
cal decision-making in Java programs, when used in conjunction with the mixed-
type comparison operators ==, !=, <, >, <=, and >=. Specifically, we use boolean
expressions to control Java’s conditional (if) and loop (for and while) constructs,
which we will study in detail in the next section.

The numeric types and Java’s libraries give us the ability to use Java as an ex-
tensive mathematical calculator. We write arithmetic expressions using the built-in
operators +, -, *, /, and % along with Java methods from the Math library. Although
the programs in this section are quite rudimentary by the standards of what we will
be able to do after the next section, this class of programs is quite useful in its own
right. You will use primitive types and basic mathematical functions extensively
in Java programming, so the effort that you spend now understanding them will
certainly be worthwhile.

!"#$%&'(')!"*+,,,.- ./01/23,,,0425,67

351.2 Built-in Types of Data

Q&A

Q. What happens if I forget to declare a variable?

A. The compiler complains, as shown below for a program IntOpsBad, which is
the same as PROGRAM 1.2.2 except that the int variable p is omitted from the decla-
ration statement.

% javac IntOpsBad.java
IntOpsBad.java:7: cannot resolve symbol
symbol : variable p
location: class IntOpsBad
p = a * b;
 ^
IntOpsBad.java:10: cannot resolve symbol
symbol : variable p
location: class IntOpsBad
System.out.println(a + " * " + b + " = " + p);
 ^
2 errors

The compiler says that there are two errors, but there is really just one: the declara-
tion of p is missing. If you forget to declare a variable that you use often, you will
get quite a few error messages. A good strategy is to correct the first error and check
that correction before addressing later ones.

Q. What happens if I forget to initialize a variable?

A. The compiler checks for this condition and will give you a variable might
not have been initialized error message if you try to use the variable in an
expression.

Q. Is there a difference between = and == ?

A. Yes, they are quite different! The first is an assignment operator that changes
the value of a variable, and the second is a comparison operator that produces a
boolean result. Your ability to understand this answer is a sure test of whether you
understood the material in this section. Think about how you might explain the
difference to a friend.

!"#$%&'(')!"*+,,,.5 ./01/23,,,0425,67

36 Elements of Programming

Q. Why do int values sometime become negative when they get large?

A. If you have not experienced this phenomenon, see EXERCISE 1.2.10. The problem
has to do with the way integers are represented in the computer. You can learn the
details on the booksite. In the meantime, a safe strategy is using the int type when
you know the values to be less than ten digits and the long type when you think the
values might get to be ten digits or more.

Q. It seems wrong that Java should just let ints overflow and give bad values.
Shouldn’t Java automatically check for overflow?

A. Yes, this issue is a contentious one among programmers. The short answer for
now is that the lack of such checking is one reason such types are called primitive
data types. A little knowledge can go a long way in avoiding such problems. Again,
it is fine to use the int type for small numbers, but when values run into the bil-
lions, you cannot.

Q. What is the value of Math.abs(-2147483648)?

A. -2147483648. This strange (but true) result is a typical example of the effects of
integer overflow.

Q. It is annoying to see all those digits when printing a float or a double. Can we
get System.out.println() to print out just two or three digits after the decimal
point?

A. That sort of task involves a closer look at the method used to convert from
double to String. The Java library function System.out.printf() is one way
to do the job, and it is similar to the basic printing method in the C programming
language and many modern languages, as discussed in SECTION 1.5. Until then, we
will live with the extra digits (which is not all bad, since doing so helps us to get
used to the different primitive types of numbers).

Q. How can I initialize a double variable to infinity?

A. Java has built-in constants available for this purpose: Double.POSITIVE_IN-

FINITY and Double.NEGATIVE_INFINITY.

!"#$%&'(')!"*+,,,.8 ./01/23,,,0425,67

371.2 Built-in Types of Data

Q. What is the value of Math.round(6.022e23)?

A. You should get in the habit of typing in a tiny Java program to answer such
questions yourself (and trying to understand why your program produces the re-
sult that it does).

Q. Can you compare a double to an int?

A. Not without doing a type conversion, but remember that Java usually does the
requisite type conversion automatically. For example, if x is an int with the value
3, then the expression (x < 3.1) is true—Java converts x to double (because 3.1
is a double literal) before performing the comparison.

Q. Are expressions like 1/0 and 1.0/0.0 legal in Java?

A. No and yes. The first generates a run-time exception for division by zero (which
stops your program because the value is undefined); the second is legal and has the
value Infinity.

Q. Are there functions in Java’s Math library for other trigonometric functions, like
cosecant, secant, and cotangent?

A. No, because you could use Math.sin(), Math.cos(), and Math.tan() to com-
pute them. Choosing which functions to include in an API is a tradeoff between the
convenience of having every function that you need and the annoyance of having
to find one of the few that you need in a long list. No choice will satisfy all users,
and the Java designers have many users to satisfy. Note that there are plenty of re-
dundancies even in the APIs that we have listed. For example, you could use Math.
sin(x)/Math.cos(x) instead of Math.tan(x).

Q. Can you use < and > to compare String variables?

A. No. Those operators are defined only for primitive types.

Q. How about == and != ?

A. Yes, but the result may not be what you expect, because of the meanings these
operators have for non-primitive types. For example, there is a distinction between

!"#$%&'(')!"*+,,,.1 ./01/23,,,0425,67

38 Elements of Programming

a String and its value. The expression "abc" == "ab" + x is false when x is a
String with value "c" because the two operands are stored in different places in
memory (even though they have the same value). This distinction is essential, as
you will learn when we discuss it in more detail in SECTION 3.1.

Q. What is the result of division and remainder for negative integers?

A. The quotient a / b rounds toward 0; the remainder a % b is defined such that
(a / b) * b + a % b is always equal to a. For example, -14/3 and 14/-3 are both
-4, but -14 % 3 is -2 and 14 % -3 is 2.

Q. Will (a < b < c) test whether three numbers are in order?

A. No, that will not compile. You need to say (a < b && b < c).

Q. Fifteen digits for floating-point numbers certainly seems enough to me. Do I
really need to worry much about precision?

A. Yes, because you are used to mathematics based on real numbers with infinite
precision, whereas the computer always deals with approximations. For example,
(0.1 + 0.1 == 0.2) is true but (0.1 + 0.1 + 0.1 == 0.3) is false! Pitfalls like this
are not at all unusual in scientific computing. Novice programmers should avoid
comparing two floating-point numbers for equality.

Q. Why do we say (a && b) and not (a & b)?

A. Java also has a & operator that we do not use in this book but which you may

encounter if you pursue advanced programming courses.

Q. Why is the value of 10^6 not 1000000 but 12?

A. The ^ operator is not an exponentiation operator, which you must have been
thinking. Instead, it is an operator like & that we do not use in this book. You want
the literal 1e6. You could also use Math.pow(10, 6) but doing so is wasteful if you
are raising 10 to a known power.

!"#$%&'(')!"*+,,,.9 ./01/23,,,0425,67

391.2 Built-in Types of Data

Exercises

1.2.1 Suppose that a and b are int values. What does the following sequence of
statements do?

int t = a; b = t; a = b;

1.2.2 Write a program that uses Math.sin() and Math.cos() to check that the
value of cos2 & + sin2 & is approximately 1 for any & entered as a command-line argu-
ment. Just print the value. Why are the values not always exactly 1?

1.2.3 Suppose that a and b are int values. Show that the expression

(!(a && b) && (a || b)) || ((a && b) || !(a || b))

is equivalent to true.

1.2.4 Suppose that a and b are int values. Simplify the following expression:
(!(a < b) && !(a > b)).

1.2.5 The exclusive or operator ^ for boolean operands is defined to be true if
they are different, false if they are the same. Give a truth table for this function.

1.2.6 Why does 10/3 give 3 and not 3.333333333?

Solution. Since both 10 and 3 are integer literals, Java sees no need for type conver-
sion and uses integer division. You should write 10.0/3.0 if you mean the numbers
to be double literals. If you write 10/3.0 or 10.0/3, Java does implicit conversion
to get the same result.

1.2.7 What do each of the following print?
a. System.out.println(2 + "bc");

b. System.out.println(2 + 3 + "bc");

c. System.out.println((2+3) + "bc");

d. System.out.println("bc" + (2+3));

e. System.out.println("bc" + 2 + 3);

Explain each outcome.

!"#$%&'(')!"*+,,,.3 ./01/23,,,0425,67

40 Elements of Programming

1.2.8 Explain how to use PROGRAM 1.2.3 to find the square root of a number.

1.2.9 What do each of the following print?
a. System.out.println('b');

b. System.out.println('b' + 'c');

c. System.out.println((char) ('a' + 4));

Explain each outcome.

1.2.10 Suppose that a variable a is declared as int a = 2147483647 (or equiva-
lently, Integer.MAX_VALUE). What do each of the following print?

a. System.out.println(a);

b. System.out.println(a+1);

c. System.out.println(2-a);

d. System.out.println(-2-a);

e. System.out.println(2*a);

f. System.out.println(4*a);

Explain each outcome.

1.2.11 Suppose that a variable a is declared as double a = 3.14159. What do each
of the following print?

a. System.out.println(a);

b. System.out.println(a+1);

c. System.out.println(8/(int) a);

d. System.out.println(8/a);

e. System.out.println((int) (8/a));

Explain each outcome.

1.2.12 Describe what happens if you write sqrt instead of Math.sqrt in PROGRAM
1.2.3.

1.2.13 What is the value of (Math.sqrt(2) * Math.sqrt(2) == 2) ?

!"#$%&'(')!"*+,,,-2 ./01/23,,,0425,67

411.2 Built-in Types of Data

1.2.14 Write a program that takes two positive integers as command-line argu-
ments and prints true if either evenly divides the other.

1.2.15 Write a program that takes three positive integers as command-line argu-
ments and prints true if any one of them is greater than or equal to the sum of the
other two and false otherwise. (Note : This computation tests whether the three
numbers could be the lengths of the sides of some triangle.)

1.2.16 A physics student gets unexpected results when using the code

 F = G * mass1 * mass2 / r * r;

to compute values according to the formula F = Gm1m2 ' r 2. Explain the problem
and correct the code.

1.2.17 Give the value of a after the execution of each of the following sequences:

int a = 1; boolean a = true; int a = 2;
a = a + a; a = !a; a = a * a;
a = a + a; a = !a; a = a * a;
a = a + a; a = !a; a = a * a;

1.2.18 Suppose that x and y are double values that represent the Cartesian coor-
dinates of a point (x, y) in the plane. Give an expression whose value is the distance
of the point from the origin.

1.2.19 Write a program that takes two int values a and b from the command line
and prints a random integer between a and b.

1.2.20 Write a program that prints the sum of two random integers between 1 and
6 (such as you might get when rolling dice).

1.2.21 Write a program that takes a double value t from the command line and
prints the value of sin(2t) " sin(3t).

1.2.22 Write a program that takes three double values x0, v0, and t from the com-
mand line and prints the value of x0 " v0t " g t 2 ' 2, where g is the constant 9.78033.
(Note : This value the displacement in meters after t seconds when an object is
thrown straight up from initial position x0 at velocity v0 meters per second.)

1.2.23 Write a program that takes two int values m and d from the command line
and prints true if day d of month m is between 3/20 and 6/20, false otherwise.

!"#$%&'(')!"*+,,,-: ./01/23,,,0425,67

42 Elements of Programming

Creative Exercises

1.2.24 Loan payments. Write a program that calculates the monthly payments
you would have to make over a given number of years to pay off a loan at a given
interest rate compounded continuously, taking the number of years t, the principal
P, and the annual interest rate r as command-line arguments. The desired value is
given by the formula Pe rt. Use Math.exp().

1.2.25 Wind chill. Given the temperature t (in Fahrenheit) and the wind speed v
(in miles per hour), the National Weather Service defines the effective temperature
(the wind chill) to be:

w = 35.74 " 0.6215 t " (0.4275 t ! 35.75) v 0.16

Write a program that takes two double command-line arguments t and v and
prints out the wind chill. Use Math.pow(a, b) to compute ab. Note : The formula is
not valid if t is larger than 50 in absolute value or if v is larger than 120 or less than
3 (you may assume that the values you get are in that range).

1.2.26 Polar coordinates. Write a program that converts from Car-
tesian to polar coordinates. Your program should take two real num-
bers x and y on the command line and print the polar coordinates r
and &. Use the Java method Math.atan2(y, x) which computes the
arctangent value of y/x that is in the range from !# to #.

1.2.27 Gaussian random numbers. One way to generate a random
number taken from the Gaussian distribution is to use the Box-Muller formula

w = sin(2 # v) (!2 ln u)1/2

where u and v are real numbers between 0 and 1 generated by the Math.random()
method. Write a program StdGaussian that prints out a standard Gaussian ran-
dom variable.

1.2.28 Order check. Write a program that takes three double values x, y, and z
as command-line arguments and prints true if the values are strictly ascending or
descending (x < y < z or x > y > z), and false otherwise.

1.2.29 Day of the week. Write a program that takes a date as input and prints the
day of the week that date falls on. Your program should take three command line

x

yr

Polar coordinates

!"#$%&'(')!"*+,,,-0 ./01/23,,,0425,67

431.2 Built-in Types of Data

parameters: m (month), d (day), and y (year). For m, use 1 for January, 2 for Febru-
ary, and so forth. For output, print 0 for Sunday, 1 for Monday, 2 for Tuesday, and
so forth. Use the following formulas, for the Gregorian calendar:

y0 = y ! (14 ! m) / 12
x = y0 " y0 /4 ! y0 /100 " y0 /400
m0 = m " 12 $ ((14 ! m) / 12) ! 2
d0 = (d " x " (31$m0)/12) % 7

Example: On what day of the week was February 14, 2000?

y0 = 2000 ! 1 = 1999
x = 1999 " 1999/4 ! 1999/100 " 1999/400 = 2483
m0 = 2 " 12$1 ! 2 = 12
d0 = (14 " 2483 " (31$12) / 12) % 7 = 2500 % 7 = 1

Answer : Monday.

1.2.30 Uniform random numbers. Write a program that prints five uniform ran-
dom values between 0 and 1, their average value, and their minimum and maxi-
mum value. Use Math.random(), Math.min(), and Math.max().

1.2.31 Mercator projection. The Mercator projection is a conformal (angle preserv-
ing) projection that maps latitude (and longitude) to rectangular coordinates
(x, y). It is widely used—for example, in nautical charts and in the maps that you
print from the web. The projection is defined by the equations x *) !)0 and
y * 1/2 ln ((1 " sin () ' (1 ! sin ()), where)0 is the longitude of the point in the
center of the map. Write a program that takes)0 and the latitude and longitude of
a point from the command line and prints its projection.

1.2.32 Color conversion. Several different formats are used to represent color. For
example, the primary format for LCD displays, digital cameras, and web pages,
known as the RGB format, specifies the level of red (R), green (G), and blue (B)
on an integer scale from 0 to 255. The primary format for publishing books and
magazines, known as the CMYK format, specifies the level of cyan (C), magenta
(M), yellow (Y), and black (K) on a real scale from 0.0 to 1.0. Write a program RG-
BtoCMYK that converts RGB to CMYK. Take three integers—r, g, and b—from the

!"#$%&'(')!"*+,,,-. ./01/23,,,0425,67

44 Elements of Programming

command line and print the equivalent CMYK values. If the RGB values are all 0,
then the CMY values are all 0 and the K value is 1; otherwise, use these formulas:

w * max (r / 255, g / 255, b / 255)
 c * (w ! (r / 255)) ' w
m * (w ! (g / 255)) ' w
 y * (w ! (b / 255)) ' w
 k * 1 ! w

1.2.33 Great circle. Write a program GreatCircle that takes four command-line
arguments—x1, y1, x2, and y2—(the latitude and longitude, in degrees, of two
points on the earth) and prints out the great-circle distance between them. The
great-circle distance (in nautical miles) is given by the equation:

d = 60 arccos(sin(x1) sin(x2) " cos(x1) cos(x2) cos(y1 ! y2))

Note that this equation uses degrees, whereas Java’s trigonometric functions use
radians. Use Math.toRadians() and Math.toDegrees() to convert between the
two. Use your program to compute the great-circle distance between Paris (48.87°
N and !2.33° W) and San Francisco (37.8° N and 122.4° W).

1.2.34 Three-sort. Write a program that takes three int values from the command
line and prints them in ascending order. Use Math.min() and Math.max().

1.2.35 Dragon curves. Write a program to print
the instructions for drawing the dragon curves of
order 0 through 5. The instructions are strings of
F, L, and R characters, where F means “draw line
while moving 1 unit forward,” L means “turn left,”
and R means “turn right.” A dragon curve of order
N is formed when you fold a strip of paper in half N
times, then unfold to right angles. The key to solving
this problem is to note that a curve of order N is a
curve of order N!1 followed by an L followed by a
curve of order N!1 traversed in reverse order, and
then to figure out a similar description for the reverse curve .

F

Dragon curves of order 0, 1, 2, and 3

FLF

FLFLFRF

FLFLFRFLFLFRFRF

!"#$%&'(')!"*+,,,-- ./01/23,,,0425,67

451.2 Built-in Types of Data

!"#$%&'(')!"*+,,,-5 ./01/23,,,0425,67

Elements of Programming

1.3 Conditionals and Loops

IN THE PROGRAMS THAT WE HAVE examined to this point, each of the statements in the
program is executed once, in the order given. Most programs are more complicated
because the sequence of statements and the number of times each is executed can
vary. We use the term control flow to refer to statement sequencing in a program. In
this section, we introduce statements that
allow us to change the control flow, using
logic about the values of program vari-
ables. This feature is an essential compo-
nent of programming.

Specifically, we consider Java state-
ments that implement conditionals, where
some other statements may or may not
be executed depending on certain condi-
tions, and loops, where some other state-
ments may be executed multiple times,
again depending on certain conditions. As you will see in numerous examples in
this section, conditionals and loops truly harness the power of the computer and
will equip you to write programs to accomplish a broad variety of tasks that you
could not contemplate attempting without a computer.

If statements Most computations require different actions for different inputs.
One way to express these differences in Java is the if statement:

if (<boolean expression>) { <statements> }

This description introduces a formal notation known as a template that we will
use to specify the format of Java constructs. We put within angle brackets (< >) a
construct that we have already defined, to indicate that we can use any instance of
that construct where specified. In this case, <boolean expression> represents an
expression that has a boolean value, such as one involving a comparison operation,
and <statements> represents a statement block (a sequence of Java statements,
each terminated by a semicolon). This latter construct is familiar to you: the body
of main() is such a sequence. If the sequence is a single statement, the curly braces
are optional. It is possible to make formal definitions of <boolean expression>
and <statements>, but we refrain from going into that level of detail. The meaning

1.3.1 Flipping a fair coin 49
1.3.2 Your first while loop 51
1.3.3 Computing powers of two 53
1.3.4 Your first nested loops 59
1.3.5 Harmonic numbers 61
1.3.6 Newton’s method 62
1.3.7 Converting to binary 64
1.3.8 Gambler’s ruin simulation 66
1.3.9 Factoring integers 69

Programs in this section

!"#$%&'(')!"*+,,,-8 ./01/23,,,0425,67

471.3 Conditionals and Loops

of an if statement is self-explanatory: the statement(s) in the sequence are to be
executed if and only if the expression is true.

As a simple example, suppose that you want to compute the absolute value of
an int value x. This statement does the job:

if (x < 0) x = -x;

As a second simple example, consider the following statement:

if (x > y)
{
 int t = x;
 x = y;
 y = t;
}

This code puts x and y in ascending order by exchanging them if
necessary.

You can also add an else clause to an if statement, to express the concept of
executing either one statement (or sequence of statements) or another, depending
on whether the boolean expression is true or false, as in the following template:

if (<boolean expression>) <statements T>
else <statements F>

As a simple example of the need for an else clause, consider the following code,
which assigns the maximum of two int values to the variable max:

if (x > y) max = x;
else max = y;

One way to understand control flow is to visualize it with a diagram called a flow-
chart. Paths through the flowchart correspond to flow-of-control paths in the pro-

x > y ?

max = x;

if (x > y) max = x;
else max = y;

Flowchart examples (if statements)

noyes

max = y;

x < 0 ?

if (x < 0) x = -x;

noyes

x = -x;

boolean
expression

Anatomy of an if statement

if (x > y)

sequence
of

statements

{
 int t = x;
 x = y;
 y = t;
}

!"#$%&'(')!"*+,,,-1 ./01/23,,,0425,67

48 Elements of Programming

gram. In the early days of computing, when programmers used low-level languages
and difficult-to-understand flows of control, flowcharts were an essential part of
programming. With modern languages, we use flowcharts just to understand basic
building blocks like the if statement.

The accompanying table contains some examples of the use of if and if-
else statements. These examples are typical of simple calculations you might need
in programs that you write. Conditional statements are an essential part of pro-
gramming. Since the semantics (meaning) of statements like these is similar to their
meanings as natural-language phrases, you will quickly grow used to them.

PROGRAM 1.3.1 is another example of the use of the if-else statement, in
this case for the task of simulating a coin flip. The body of the program is a single
statement, like the ones in the table above, but it is worth special attention because
it introduces an interesting philosophical issue that is worth contemplating: can a
computer program produce random values? Certainly not, but a program can pro-
duce numbers that have many of the properties of random numbers.

absolute value if (x < 0) x = -x;

put x and y
into

sorted order

if (x > y)
{
 int t = x;
 y = x;
 x = t;
}

maximum of
x and y

if (x > y) max = x;
else max = y;

error check
for division
operation

if (den == 0) System.out.println("Division by zero");
else System.out.println("Quotient = " + num/den);

error check
for quadratic

formula

double discriminant = b*b - 4.0*c;
if (discriminant < 0.0)
{
 System.out.println("No real roots");
}
else
{
 System.out.println((-b + Math.sqrt(discriminant))/2.0);
 System.out.println((-b - Math.sqrt(discriminant))/2.0);
}

Typical examples of using if statements

!"#$%&'(')!"*+,,,-9 ./01/23,,,0425,67

491.3 Conditionals and Loops

% java Flip
Heads
% java Flip
Tails
% java Flip
Tails

While loops Many computations are inherently repetitive. The basic Java con-
struct for handling such computations has the following format:

while (<boolean expression>) { <statements> }

The while statement has the same form as the if statement (the only difference be-
ing the use of the keyword while instead of if), but the meaning is quite different.
It is an instruction to the computer to behave as follows: if the expression is false,
do nothing; if the expression is true, execute the sequence of statements (just as
with if) but then check the expression again, execute the sequence of statements
again if the expression is true, and continue as long as the expression is true. We
often refer to the statement block in a loop as the body of the loop. As with the if
statement, the braces are optional if a while loop body has just one statement.
The while statement is equivalent to a sequence of identical if statements:

Program 1.3.1 Flipping a fair coin

public class Flip
{
 public static void main(String[] args)
 { // Simulate a coin flip.
 if (Math.random() < 0.5) System.out.println("Heads");
 else System.out.println("Tails");
 }
}

This program uses Math.random() to simulate a coin flip. Each time you run it, it prints either
heads or tails. A sequence of flips will have many of the same properties as a sequence that you
would get by flipping a fair coin, but it is not a truly random sequence.

!"#$%&'(')!"*+,,,-3 ./01/23,,,0425,67

50 Elements of Programming

if (<boolean expression>) { <statements> }
if (<boolean expression>) { <statements> }
if (<boolean expression>) { <statements> }
...

At some point, the code in one of the statements must
change something (such as the value of some variable in
the boolean expression) to make the boolean expression
false, and then the sequence is broken.

A common programming paradigm involves main-
taining an integer value that keeps track of the number of
times a loop iterates. We start at some initial value, and then increment the value
by 1 each time through the loop, testing whether it exceeds a predetermined maxi-

mum before deciding to continue. TenHellos
(PROGRAM 1.3.2) is a simple example of this para-
digm that uses a while statement. The key to the
computation is the statement

i = i + 1;

As a mathematical equation, this statement is
nonsense, but as a Java assignment statement it
makes perfect sense: it says to compute the value
i + 1 and then assign the result to the variable i.
If the value of i was 4 before the statement, it be-
comes 5 afterwards; if it was 5 it becomes 6; and
so forth. With the initial condition in TenHellos
that the value of i starts at 4, the statement block
is executed five times until the sequence is bro-
ken, when the value of i becomes 11.

Using the while loop is barely worthwhile for this simple task, but you will
soon be addressing tasks where you will need to specify that statements be repeated
far too many times to contemplate doing it without loops. There is a profound
difference between programs with while statements and programs without them,
because while statements allow us to specify a potentially unlimited number of
statements to be executed in a program. In particular, the while statement allows
us to specify lengthy computations in short programs. This ability opens the door
to writing programs for tasks that we could not contemplate addressing without a

int i = 4;
while (i <= 10)
{
 System.out.println(i + "th Hello");
 i = i + 1;
}

Flowchart example (while statement)

i <= 10 ?

i = 4;

no

yes

System.out.println(i + "th Hello");

i = i + 1;

loop
continuation

condition

Anatomy of a while loop

initialization is a
separate statement

int v = 1;
while (v <= N/2)

braces are
optional

when body
is a single
statement

body

{
 v = 2*v;
}

!"#$%&'(')!"*+,,,52 ./01/23,,,0425,67

511.3 Conditionals and Loops

% java TenHellos
1st Hello
2nd Hello
3rd Hello
4th Hello
5th Hello
6th Hello
7th Hello
8th Hello
9th Hello
10th Hello

Program 1.3.2 Your first while loop

public class TenHellos
{
 public static void main(String[] args)
 { // Print 10 Hellos.
 System.out.println("1st Hello");
 System.out.println("2nd Hello");
 System.out.println("3rd Hello");
 int i = 4;
 while (i <= 10)
 { // Print the ith Hello.
 System.out.println(i + "th Hello");
 i = i + 1;
 }
 }
}

This program uses a while loop for the simple, repetitive task of printing the output shown
below. After the third line, the lines to be printed differ only in the value of the index counting
the line printed, so we define a variable i to contain that index. After initializing the value of
i to 4, we enter into a while loop where we use the value of i in the System.out.println()
statement and increment it each time through the loop. After printing 10th Hello, the value
of i becomes 11 and the loop terminates.

i i <= 10 output

4 true 4th Hello

5 true 5th Hello

6 true 6th Hello

7 true 7th Hello

8 true 8th Hello

9 true 9th Hello

10 true 10th Hello

11 false

Trace of java TenHellos

!"#$%&'(')!"*+,,,5: ./01/23,,,0425,67

52 Elements of Programming

computer. But there is also a price to pay: as your pro-
grams become more sophisticated, they become more
difficult to understand.

PowersOfTwo (PROGRAM 1.3.3) uses a while loop
to print out a table of the powers of 2. Beyond the loop
control counter i, it maintains a variable v that holds
the powers of two as it computes them. The loop body
contains three statements: one to print the current
power of 2, one to compute the next (multiply the cur-
rent one by 2), and one to increment the loop control
counter.

There are many situations in computer science
where it is useful to be familiar with powers of 2. You
should know at least the first 10 values in this table
and you should note that 210 is about 1 thousand, 220 is
about 1 million, and 230 is about 1 billion.

PowersOfTwo is the prototype for many use-
ful computations. By varying the computations that
change the accumulated value and the way that the
loop control variable is incremented, we can print out
tables of a variety of functions (see EXERCISE 1.3.11).

It is worthwhile to carefully examine the behav-
ior of programs that use loops by studying a trace of
the program. For example, a trace of the operation of
PowersOfTwo should show the value of each variable
before each iteration of the loop and the value of the
conditional expression that controls the loop. Trac-
ing the operation of a loop can be very tedious, but it
is nearly always worthwhile to run a trace because it
clearly exposes what a program is doing.

PowersOfTwo is nearly a self-tracing program,
because it prints the values of its variables each time
through the loop. Clearly, you can make any program
produce a trace of itself by adding appropriate System.
out.println() statements. Modern programming en-
vironments provide sophisticated tools for tracing, but

i v i <= N

0 1 true

1 2 true

2 4 true

3 8 true

4 16 true

5 32 true

6 64 true

7 128 true

8 256 true

9 512 true

10 1024 true

11 2048 true

12 4096 true

13 8192 true

14 16384 true

15 32768 true

16 65536 true

17 131072 true

18 262144 true

19 524288 true

20 1048576 true

21 2097152 true

22 4194304 true

23 8388608 true

24 16777216 true

25 33554432 true

26 67108864 true

27 134217728 true

28 268435456 true

29 536870912 true

30 1073741824 false

Trace of java PowersOfTwo 29

!"#$%&'(')!"*+,,,50 ./01/23,,,0425,67

531.3 Conditionals and Loops

this tried-and-true method is simple and effective. You certainly should add print
statements to the first few loops that you write, to be sure that they are doing pre-
cisely what you expect.

There is a hidden trap in PowersOfTwo, because the largest integer in Java’s
int data type is 231 - 1 and the program does not test for that possibility. If you

% java PowersOfTwo 29
0 1
1 2
2 4
...
27 134217728
28 268435456
29 536870912

% java PowersOfTwo 5
0 1
1 2
2 4
3 8
4 16
5 32

Program 1.3.3 Computing powers of two

public class PowersOfTwo
{
 public static void main(String[] args)
 { // Print the first N powers of 2.
 int N = Integer.parseInt(args[0]);
 int v = 1;
 int i = 0;
 while (i <= N)
 { // Print ith power of 2.
 System.out.println(i + " " + v);
 v = 2 * v;
 i = i + 1;
 }
 }
}

This program takes a command-line argument N and prints a table of the powers of 2 that are
less than or equal to 2N. Each time through the loop, we increment the value of i and double
the value of v. We show only the first three and the last three lines of the table; the program
prints N+1 lines.

N loop termination value

i loop control counter

v current power of 2

!"#$%&'(')!"*+,,,5. ./01/23,,,0425,67

54 Elements of Programming

invoke it with java PowersOfTwo 31, you may be surprised by the last line of
output:

...
1073741824
-2147483648

The variable v becomes too large and takes on a negative value because of the way
Java represents integers. The maximum value of an int is available for us to use as
Integer.MAX_VALUE. A better version of PROGRAM 1.3.3 would use this value to test
for overflow and print an error message if the user types too large a value, though
getting such a program to work properly for all inputs is trickier than you might
think. (For a similar challenge, see EXERCISE 1.3.14.)

As a more complicated example, suppose that we
want to compute the largest power of two that is less
than or equal to a given positive integer N. If N is 13 we
want the result 8; if N is 1000, we want the result 512; if N
is 64, we want the result 64; and so forth. This computa-
tion is simple to perform with a while loop:

int v = 1;
while (v <= N/2)
 v = 2*v;

It takes some thought to convince yourself that this sim-
ple piece of code produces the desired result. You can do
so by making these observations:

v is always a power of 2.
v is never greater than N.
v increases each time through the loop, so the loop
must terminate.
After the loop terminates, 2*v is greater than N.

Reasoning of this sort is often important in understanding how while loops work.
Even though many of the loops you will write are much simpler than this one, you
should be sure to convince yourself that each loop you write is going to behave as
you expect.

The logic behind such arguments is the same whether the loop iterates just
a few times, as in TenHellos, dozens of times, as in PowersOfTwo, or millions of
times, as in several examples that we will soon consider. That leap from a few tiny
cases to a huge computation is profound. When writing loops, understanding how

v <= N/2 ?

int v = 1;

int v = 1;
while (v <= N/2)
 v = 2*v;

Flowchart for the statements

no

yes

v = 2*v;

!"#$%&'(')!"*+,,,5- ./01/23,,,0425,67

551.3 Conditionals and Loops

the values of the variables change each time through the loop (and checking that
understanding by adding statements to trace their values and running for a small
number of iterations) is essential. Having done so, you can confidently remove
those training wheels and truly unleash the power of the computer.

For loops As you will see, the while loop allows us to write programs for all
manner of applications. Before considering more examples, we will look at an al-
ternate Java construct that allows us even more flexibility when writing programs
with loops. This alternate notation is not fundamentally different from the basic
while loop, but it is widely used because it often allows us to write more compact
and more readable programs than if we used only while statements.

For notation. Many loops follow this scheme: initialize an index variable to some
value and then use a while loop to test a loop continuation condition involving
the index variable, where the last statement in the while loop increments the index
variable. You can express such loops directly with Java’s for notation:

for (<initialize>; <boolean expression>; <increment>)
{
 <statements>
}

This code is, with only a few exceptions, equivalent to

<initialize>;
while (<boolean expression>)
{
 <statements>
 <increment>;
}

Your Java compiler might even produce identical results for the two loops. In truth,
<initialize> and <increment> can be any statements at all, but we nearly always
use for loops to support this typical initialize-and-increment programming idiom.
For example, the following two lines of code are equivalent to the corresponding
lines of code in TenHellos (PROGRAM 1.3.2):

for (int i = 4; i <= 10; i = i + 1)
 System.out.println(i + "th Hello");

!"#$%&'(')!"*+,,,55 ./01/23,,,0425,67

56 Elements of Programming

Typically, we work with a slightly more compact version of this code, using the
shorthand notation discussed next.

Compound assignment idioms. Modifying the value of a variable is something
that we do so often in programming that Java provides a variety of different short-
hand notations for the purpose. For example, the following four statements all in-
crement the value of i by 1 in Java:

i = i + 1; i++; ++i; i += 1;

You can also say i-- or --i or i -= 1 or i = i-1 to decrement that value of i by 1.
Most programmers use i++ or i-- in for loops, though any of the others would do.
The ++ and -- constructs are normally used for integers, but the compound assign-
ment constructs are useful operations for any arithmetic operator in any primitive
numeric type. For example, you can say v *= 2 or v += v instead of v = 2*v. All
of these idioms are for notational convenience, nothing more. This combination of
shortcuts came into widespread use with the C programming language in the 1970s
and have become standard. They have survived the test of time because they lead to
compact, elegant, and easily understood programs. When you learn to write (and
to read) programs that use them, you will be able to transfer that skill to program-
ming in numerous modern languages, not just Java.

Scope. The scope of a variable is the part of the program where it is defined. Gen-
erally the scope of a variable is comprised of the statements that follow the decla-
ration in the same block as the declaration. For this purpose, the code in the for
loop header is considered to be in the same block as the for loop body. Therefore,
the while and for formulations of loops are not quite equivalent: in a typical for
loop, the incrementing variable is not available for use in later statements; in the
corresponding while loop, it is. This distinction is often a reason to use a while
instead of a for loop.

CHOOSING AMONG DIFFERENT FORMULATIONS OF THE same computation is a matter of
each programmer’s taste, as when a writer picks from among synonyms or chooses
between using active and passive voice when composing a sentence. You will not
find good hard-and-fast rules on how to compose a program any more than you
will find such rules on how to compose a paragraph. Your goal should be to find a
style that suits you, gets the computation done, and can be appreciated by others.

!"#$%&'(')!"*+,,,58 ./01/23,,,0425,67

571.3 Conditionals and Loops

The accompanying table includes
several code fragments with typical
examples of loops used in Java code.
Some of these relate to code that you
have already seen; others are new code
for straightforward computations. To
cement your understanding of loops
in Java, put these code snippets into a
class’s code that takes an integer N from
the command line (like PowersOfTwo)
and compile and run them. Then, write
some loops of your own for similar computations of your own invention, or do
some of the early exercises at the end of this section. There is no substitute for the
experience gained by running code that you create yourself, and it is imperative
that you develop an understanding of how to write Java code that uses loops.

print largest power of two
less than or equal to N

int v = 1;
while (v <= N/2)
 v = 2*v;
System.out.println(v);

compute a finite sum
(1 + 2 + . . . + N)

int sum = 0;
for (int i = 1; i <= N; i++)
 sum += i;
System.out.println(sum);

compute a finite product
(N ! = 1 × 2 × . . . × N)

int product = 1;
for (int i = 1; i <= N; i++)
 product *= i;
System.out.println(product);

print a table of
function values

for (int i = 0; i <= N; i++)
 System.out.println(i + " " + 2*Math.PI*i/N);

print the ruler function
(see Program 1.2.1)

String ruler = " ";
for (int i = 1; i <= N; i++)
 ruler = ruler + i + ruler;
System.out.println(ruler);

Typical examples of using for and while statements

loop
continuation

condition

Anatomy of a for loop (that prints powers of 2)

initialize another
variable in a

separate
statement

declare and initialize
a loop control variable

increment
int v = 1;
for (int i = 0; i <= N; i++)

body

{
 System.out.println(i + " " + v);
 v = 2*v;
}

!"#$%&'(')!"*+,,,51 ./01/23,,,0425,67

58 Elements of Programming

Nesting The if, while, and for statements have the same status as assignment
statements or any other statements in Java. That is, we can use them whenever a
statement is called for. In particular, we can use one or more of them in the <body>
of another to make compound statements. As a first example, DivisorPattern
(PROGRAM 1.3.4) has a for loop whose statements are a for loop (whose statement
is an if statement) and a print statement. It prints a pattern of asterisks where the
i th row has an asterisk in each position corresponding to divisors of i (the same
holds true for the columns).

To emphasize the nesting, we use indentation in the program code. We refer
to the i loop as the outer loop and the j loop as the inner loop. The inner loop iter-
ates all the way through for each iteration of the outer loop. As usual, the best way
to understand a new programming construct like this is to study a trace.

DivisorPattern has a complicated control structure, as you can see from its
flowchart. A diagram like this illustrates the importance of using a limited num-
ber of simple control structures in programming. With nesting, you can compose
loops and conditionals to build programs that are easy to understand even though
they may have a complicated control structure. A great many useful computations
can be accomplished with just one or two levels of nesting. For example, many pro-
grams in this book have the same general structure as DivisorPattern.

i <= N ?

i = 1;

Flowchart for DivisorPattern

no

yes

j <= N ?

j = 1;

yes

j++;

no
i++;

(i % j == 0) || (j % i == 0) ?

System.out.print("* ");

noyes

System.out.print(" ");

System.out.println(i);

!"#$%&'(')!"*+,,,59 ./01/23,,,0425,67

591.3 Conditionals and Loops

% java DivisorPattern 3
* * * 1
* * 2
* * 3

% java DivisorPattern 16
* * * * * * * * * * * * * * * * 1
* * * * * * * * * 2
* * * * * * 3
* * * * * * 4
* * * * 5
* * * * * 6
* * * 7
* * * * * 8
* * * 9
* * * * 10
* * 11
* * * * * * 12
* * 13
* * * * 14
* * * * 15
* * * * * 16

Program 1.3.4 Your first nested loops

public class DivisorPattern
{
 public static void main(String[] args)
 { // Print a square that visualizes divisors.
 int N = Integer.parseInt(args[0]);
 for (int i = 1; i <= N; i++)
 { // Print the ith line
 for (int j = 1; j <= N; j++)
 { // Print the jth entry in the ith line.
 if ((i % j == 0) || (j % i == 0))
 System.out.print("* ");
 else
 System.out.print(" ");
 }
 System.out.println(i);
 }
 }
}

This program takes an integer N as the command-line argument and uses nested for loops to
print an N-by-N table with an asterisk in row i and column j if either i divides j or j divides
i. The loop control variables i and j control the computation.

N
number of rows
and columns

i row index

j column index

i j i % j j % i output

1 1 0 0 *

1 2 1 0 *

1 3 1 0 *

1

2 1 0 1 *

2 2 0 0 *

2 3 2 1

2

3 1 0 1 *

3 2 1 2

3 3 0 0 *

3

Trace of java DivisorPattern 3

!"#$%&'(')!"*+,,,53 ./01/23,,,0425,67

60 Elements of Programming

As a second example of nesting, consider the following program fragment,
which a tax preparation program might use to compute income tax rates:

if (income < 0) rate = 0.0;
else if (income < 47450) rate = .22;
else if (income < 114650) rate = .25;
else if (income < 174700) rate = .28;
else if (income < 311950) rate = .33;
else rate = .35;

In this case, a number of if statements are nested to test from among a number
of mutually exclusive possibilities. This construct is a special one that we use often.
Otherwise, it is best to use braces to resolve ambiguities when nesting if state-
ments. This issue and more examples are addressed in the Q&A and exercises.

Applications The ability to program with loops immediately opens up the full
world of computation. To emphasize this fact, we next consider a variety of exam-
ples. These examples all involve working with the types of data that we considered
in SECTION 1.2, but rest assured that the same mechanisms serve us well for any
computational application. The sample programs are carefully crafted, and by
studying and appreciating them, you will be prepared to write your own programs
containing loops, as requested in many of the exercises at the end of this section.

The examples that we consider here involve computing with numbers. Sev-
eral of our examples are tied to problems faced by mathematicians and scientists
throughout the past several centuries. While computers have existed for only 50
years or so, many of the computational methods that we use are based on a rich
mathematical tradition tracing back to antiquity.

Finite sum. The computational paradigm used by PowersOfT-
wo is one that you will use frequently. It uses two variables—one
as an index that controls a loop and the other to accumulate a
computational result. Harmonic (PROGRAM 1.3.5) uses the same
paradigm to evaluate the finite sum HN = 1 + 1/2 + 1/3 + ... +
1/N . These numbers, which are known as the Harmonic num-
bers, arise frequently in discrete mathematics. Harmonic numbers are the discrete
analog of the logarithm. They also approximate the area under the curve y = 1/x.
You can use PROGRAM 1.3.5 as a model for computing the values of other sums (see
EXERCISE 1.3.16).

1/2

1

1/3
1/4

1/5

!"#$%&'(')!"*+,,,82 ./01/23,,,0425,67

611.3 Conditionals and Loops

Computing the square root. How are functions in Java’s Math li-
brary, such as Math.sqrt(), implemented? Sqrt (PROGRAM 1.3.6)
illustrates one technique. To compute the square root function, it
uses an iterative computation that was known to the Babylonians
over 4,000 years ago. It is also a special case of a general com-
putational technique that was developed in the 17th century by
Isaac Newton and Joseph Raphson and is widely known as New-
ton’s method. Under generous conditions on a given function f (x),
Newton’s method is an effective way to find roots (values of x for
which the function is 0). Start with an initial estimate, t0. Given the

% java Harmonic 2
1.5
% java Harmonic 10
2.9289682539682538
% java Harmonic 10000
9.787606036044348

Program 1.3.5 Harmonic numbers

public class Harmonic
{
 public static void main(String[] args)
 { // Compute the Nth Harmonic number.
 int N = Integer.parseInt(args[0]);
 double sum = 0.0;
 for (int i = 1; i <= N; i++)
 { // Add the ith term to the sum
 sum += 1.0/i;
 }
 System.out.println(sum);
 }
}

This program computes the value of the Nth Harmonic number. The value is known from math-
ematical analysis to be about ln(N) + 0.57721 for large N. Note that ln(10000) ! 9.21034.

N number of terms in sum

i loop index

sum cumulated sum

y = f(x)

root

t
i+2

t
i+1

t
i

Newton’s method

!"#$%&'(')!"*+,,,8: ./01/23,,,0425,67

62 Elements of Programming

% java Sqrt 2.0
1.414213562373095
% java Sqrt 2544545
1595.1630010754388

estimate ti , compute
a new estimate by
drawing a line tan-
gent to the curve y
= f (x) at the point (ti , f (ti)) and set ti+1 to the x-coordinate of the point where that
line hits the x-axis. Iterating this process, we get closer to the root.

Computing the square root of a positive number c is equivalent to finding the
positive root of the function f (x) = x 2 - c. For this special case, Newton’s method
amounts to the process implemented in Sqrt (see EXERCISE 1.3.17). Start with the
estimate t = c. If t is equal to c /t, then t is equal to the square root of c, so the com-
putation is complete. If not, refine the estimate by replacing t with the average of t

Program 1.3.6 Newton’s method

public class Sqrt
{
 public static void main(String[] args)
 {
 double c = Double.parseDouble(args[0]);
 double epsilon = 1e-15;
 double t = c;
 while (Math.abs(t - c/t) > epsilon * t)
 { // Replace t by the average of t and c/t.
 t = (c/t + t) / 2.0;
 }
 System.out.println(t);
 }
}

This program computes the square root of its command-line argument to 15 decimal places of
accuracy, using Newton’s method (see text).

c argument
epsilon error tolerance

t estimate of c

iteration t c/t

2.0000000000000000 1.0

1 1.5000000000000000 1.3333333333333333

2 1.4166666666666665 1.4117647058823530

3 1.4142156862745097 1.4142114384748700

4 1.4142135623746899 1.4142135623715002

5 1.4142135623730950 1.4142135623730951

Trace of java Sqrt 2.0

!"#$%&'(')!"*+,,,80 ./01/23,,,0425,67

631.3 Conditionals and Loops

and c/t. With Newton’s method, we get the value of the
square root of 2 accurate to 15 places in just 5 iterations
of the loop.

Newton’s method is important in scientific com-
puting because the same iterative approach is effec-
tive for finding the roots of a broad class of functions,
including many for which analytic solutions are not
known (so the Java Math library would be no help).
Nowadays, we take for granted that we can find what-
ever values we need of mathematical functions; before
computers, scientists and engineers had to use tables or
computed values by hand. Computational techniques
that were developed to enable calculations by hand
needed to be very efficient, so it is not surprising that
many of those same techniques are effective when we
use computers. Newton’s method is a classic example of
this phenomenon. Another useful approach for evalu-
ating mathematical functions is to use Taylor series ex-
pansions (see EXERCISES 1.3.35–36).

Number conversion. Binary (PROGRAM 1.3.7) prints
the binary (base 2) representation of the decimal num-
ber typed as the command-line argument. It is based on
decomposing a number into a sum of powers of two.
For example, the binary representation of 19 is 10011,
which is the same as saying that 19 = 16 + 2 + 1. To
compute the binary representation of N, we consider the
powers of 2 less than or equal to N in decreasing order
to determine which belong in the binary decomposi-
tion (and therefore correspond to a 1 bit in the binary
representation). The process corresponds precisely to
using a balance scale to weigh an object, using weights
whose values are powers of two. First, we find largest
weight not heavier than the object. Then, considering
the weights in decreasing order, we add each weight to
test whether the object is lighter. If so, we remove the Scale analog to binary conversion

16
>16

<24

<20

>18

=19

16 8

16 4

16 2

16 21

10???

less than 16 + 8

1????

greater than 16

100??

less than 16 4

1001?

greater than 16 2

10011

 10000+10+1 = 10011

equal to 16 + 2 + 1

!"#$%&'(')!"*+,,,8. ./01/23,,,0425,67

64 Elements of Programming

% java Binary 19
10011
% java Binary 100000000
101111101011110000100000000

Program 1.3.7 Converting to binary

public class Binary
{
 public static void main(String[] args)
 { // Print binary representation of N.
 int N = Integer.parseInt(args[0]);
 int v = 1;
 while (v <= N/2)
 v = 2*v;
 // Now v is the largest power of 2 <= N.

 int n = N;
 while (v > 0)
 { // Cast out powers of 2 in decreasing order.
 if (n < v) { System.out.print(0); }
 else { System.out.print(1); n -= v; }
 v = v/2;
 }
 System.out.println();
 }
}

This program prints the binary representation of a positive integer given as the command-line
argument, by casting out powers of 2 in decreasing order (see text).

N integer to convert
v current power of 2

n current excess

weight; if not, we leave the weight and try the next one. Each weight corresponds to
a bit in the binary representation of the weight of the object: leaving a weight corre-
sponds to a 1 bit in the binary representation of the object’s weight, and removing a
weight corresponds to a 0 bit in the binary representation of the object’s weight.

In Binary, the variable v corresponds to the current weight being tested, and
the variable n accounts for the excess (unknown) part of the object’s weight (to

!"#$%&'(')!"*+,,,8- ./01/23,,,0425,67

651.3 Conditionals and Loops

simulate leaving a weight on the balance, we just subtract that weight from n). The
value of v decreases through the powers of two. When it is larger than n, Binary
prints 0; otherwise, it prints 1 and subtracts v from n. As usual, a trace (of the val-
ues of n, v, n < v, and the output bit for each loop iteration) can be very useful in
helping you to understand the program. Read from top to bottom in the rightmost
column of the trace, the output is 10011, the binary representation of 19.

Converting data from one representation to another is a frequent theme in
writing computer programs. Thinking about conversion emphasizes the distinc-
tion between an abstraction (an integer like the number of hours in a day) and a
representation of that abstraction (24 or 11000). The irony here is that the com-
puter’s representation of an integer is actually based on its binary representation.

Simulation. Our next example is different in char-
acter from the ones we have been considering, but
it is representative of a common situation where we
use computers to simulate what might happen in
the real world so that we can make informed deci-
sions. The specific example that we consider now is
from a thoroughly studied class of problems known
as gambler’s ruin. Suppose that a gambler makes a
series of fair $1 bets, starting with some given ini-
tial stake. The gambler always goes broke eventually,
but when we set other limits on the game, various
questions arise. For example, suppose that the gam- Gambler simulation sequences

goal

stake

0

goal
win

stake

0

n binary
representation

v v > 0 binary
representation

n < v output

19 10011 16 true 10000 false 1

3 0011 8 true 1000 true 0

3 011 4 true 100 true 0

3 01 2 true 10 false 1

1 1 1 true 1 false 1

0 0 false

Trace of casting-out-powers-of-two loop for java Binary 19

!"#$%&'(')!"*+,,,85 ./01/23,,,0425,67

66 Elements of Programming

% java Gambler 10 20 1000
50% wins
Avg # bets: 100
% java Gambler 50 250 100
19% wins
Avg # bets: 11050
% java Gambler 500 2500 100
21% wins
Avg # bets: 998071

Program 1.3.8 Gambler’s ruin simulation

public class Gambler
{
 public static void main(String[] args)
 { // Run T experiments that start with $stake
 // and terminate on $0 or $goal.
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int T = Integer.parseInt(args[2]);
 int bets = 0;
 int wins = 0;
 for (int t = 0; t < T; t++)
 { // Run one experiment.
 int cash = stake;
 while (cash > 0 && cash < goal)
 { // Simulate one bet.
 bets++;
 if (Math.random() < 0.5) cash++;
 else cash--;
 } // Cash is either 0 (ruin) or $goal (win).
 if (cash == goal) wins++;
 }
 System.out.println(100*wins/T + "% wins");
 System.out.println("Avg # bets: " + bets/T);
 }
}

The inner while loop in this program simulates a gambler with $stake who makes a series
of $1 bets, continuing until going broke or reaching $goal. The running time of this program
is proportional to T times the average number of bets. For example, the third command below
causes nearly 100 million random numbers to be generated.

stake initial stake
goal walkaway goal

T number of trials

bets bet count

wins win count

cash cash on hand

!"#$%&'(')!"*+,,,88 ./01/23,,,0425,67

671.3 Conditionals and Loops

bler decides ahead of time to walk away after reaching a certain goal. What are the
chances that the gambler will win? How many bets might be needed to win or lose
the game? What is the maximum amount of money that the gambler will have dur-
ing the course of the game?

Gambler (PROGRAM 1.3.8) is a simulation that can help answer these ques-
tions. It does a sequence of trials, using Math.random() to simulate the sequence
of bets, continuing until the gambler is broke or the goal is reached, and keeping
track of the number of wins and the number of bets. After running the experiment
for the specified number of trials, it averages and prints out the results. You might
wish to run this program for various values of the command-line arguments, not
necessarily just to plan your next trip to the casino, but to help you think about the
following questions: Is the simulation an accurate reflection of what would hap-
pen in real life? How many trials are needed to get an accurate answer? What are
the computational limits on performing such a simulation? Simulations are widely
used in applications in economics, science, and engineering, and questions of this
sort are important in any simulation.

In the case of Gambler, we are verifying classical results from probability the-
ory, which say the probability of success is the ratio of the stake to the goal and that the
expected number of bets is the product of the stake and the desired gain (the difference
between the goal and the stake). For example, if you want to go to Monte Carlo to
try to turn $500 into $2,500, you have a reasonable (20%) chance of success, but
you should expect to make a million $1 bets! If you try to turn $1 into $1,000, you
have a .1% chance and can expect to be done (ruin, most likely) in about 999 bets.

Simulation and analysis go hand-in-hand, each validating the other. In prac-
tice, the value of simulation is that it can suggest answers to questions that might
be too difficult to resolve with analysis. For example, suppose that our gambler,
recognizing that there will never be enough time to make a million bets, decides
ahead of time to set an upper limit on the number of bets. How much money can
the gambler expect to take home in that case? You can address this question with
an easy change to PROGRAM 1.3.8 (see EXERCISE 1.3.24), but addressing it with math-
ematical analysis is not so easy.

!"#$%&'(')!"*+,,,81 ./01/23,,,0425,67

68 Elements of Programming

Factoring. A prime is an integer greater than one whose only positive divisors are
one and itself. The prime factorization of an integer is the multiset of primes whose
product is the integer. For example, 3757208 = 2*2*2*7*13*13*397. Factors
(PROGRAM 1.3.9) computes the prime factorization of any given positive integer. In
contrast to many of the other programs that we have seen (which we could do in a

few minutes with a calculator or even a pencil and paper),
this computation would not be feasible without a comput-
er. How would you go about trying to find the factors of
a number like 287994837222311? You might find the fac-
tor 17 quickly, but even with a calculator it would take you
quite a while to find 1739347.

Although Factors is compact and straightforward,
it certainly will take some thought to for you to convince
yourself that it produces the desired result for any given in-
teger. As usual, following a trace that shows the values of the
variables at the beginning of each iteration of the outer for
loop is a good way to understand the computation. For the
case where the initial value of N is 3757208, the inner while
loop iterates three times when i is 2, to remove the three
factors of 2; then zero times when i is 3, 4, 5, and 6, since
none of those numbers divide 469651; and so forth. Trac-
ing the program for a few example inputs clearly reveals its
basic operation. To convince ourselves that the program will
behave as expected for all inputs, we reason about what we
expect each of the loops to do. The while loop clearly prints
and removes from n all factors of i, but the key to under-
standing the program is to see that the following fact holds
at the beginning of each iteration of the for loop: n has no
factors between 2 and i-1. Thus, if i is not prime, it will not
divide n; if i is prime, the while loop will do its job. Once

we know that n has no factors less than or equal to i, we also know that it has no
factors greater than n/i, so we need look no further when i is greater than n/i.

In a more naïve implementation, we might simply have used the condition (i
< n) to terminate the for loop. Even given the blinding speed of modern comput-
ers, such a decision would have a dramatic effect on the size of the numbers that
we could factor. EXERCISE 1.3.26 encourages you to experiment with the program to

i N output

2 3757208 2 2 2

3 469651

4 469651

5 469651

6 469651

7 469651 7

8 67093

9 67093

10 67093

11 67093

12 67093

13 67093 13 13

14 397

15 397

16 397

17 397

18 397

19 397

20 397

397

Trace of java Factors 3757208

!"#$%&'(')!"*+,,,89 ./01/23,,,0425,67

691.3 Conditionals and Loops

learn the effectiveness of this simple change. On a computer that can do billions
of operations per second, we could factor numbers on the order of 109 in a few
seconds; with the (i <= n/i) test we can factor numbers on the order of 1018 in a
comparable amount of time. Loops give us the ability to solve difficult problems,
but they also give us the ability to construct simple programs that run slowly, so we
must always be cognizant of performance.

In modern applications in cryptography, there are important situations where
we wish to factor truly huge numbers (with, say, hundreds or thousands of digits).
Such a computation is prohibitively difficult even with the use of a computer.

% java Factors 3757208
2 2 2 7 13 13 397

Program 1.3.9 Factoring integers

public class Factors
{
 public static void main(String[] args)
 { // Print the prime factors of N.
 long N = Long.parseLong(args[0]);
 long n = N;
 for (long i = 2; i <= n/i; i++)
 { // Test whether i is a factor.
 while (n % i == 0)
 { // Cast out and print i factors.
 n /= i;
 System.out.print(i + " ");
 } // Any factors of n are greater than i.
 }
 if (n > 1) System.out.print(n);
 System.out.println();
 }
}

This program prints the prime factorization of any positive integer in Java’s long data type. The
code is simple, but it takes some thought to convince oneself that it is correct (see text).

N integer to factor
n unfactored part

i potential factor

% java Factors 287994837222311
17 1739347 9739789

!"#$%&'(')!"*+,,,83 ./01/23,,,0425,67

70 Elements of Programming

Other conditional and loop constructs To more fully cover the Java lan-
guage, we consider here four more control-flow constructs. You need not think
about using these constructs for every program that you write, because you are
likely to encounter them much less frequently than the if, while, and for state-
ments. You certainly do not need to worry about using these constructs until you
are comfortable using if, while, and for. You might encounter one of them in a
program in a book or on the web, but many programmers do not use them at all
and we do not use any of them outside this section.

Break statement. In some situations, we want to immediately exit a loop without
letting it run to completion. Java provides the break statement for this purpose.
For example, the following code is an effective way to test whether a given integer
N>1 is prime:

int i;
for (i = 2; i <= N/i; i++)
 if (N % i == 0) break;
if (i > N/i) System.out.println(N + " is prime");

There are two different ways to leave this loop: either the break statement is ex-
ecuted (because i divides N, so N is not prime) or the for loop condition is not
satisfied (because no i with i <= N/i was found that divides N, which implies that
N is prime). Note that we have to declare i outside the for loop instead of in the
initialization statement so that its scope extends beyond the loop.

Continue statement. Java also provides a way to skip to the next iteration of a
loop: the continue statement. When a continue is executed within a loop body,
the flow of control transfers directly to the increment statement for the next itera-
tion of the loop.

Switch statement. The if and if-else statements allow one or two alternatives
in directing the flow of control. Sometimes, a computation naturally suggests more
than two mutually exclusive alternatives. We could use a sequence or a chain of
if-else statements, but the Java switch statement provides a direct solution. Let
us move right to a typical example. Rather than printing an int variable day in a
program that works with days of the weeks (such as a solution to EXERCISE 1.2.29),
it is easier to use a switch statement, as follows:

!"#$%&'(')!"*+,,,12 ./01/23,,,0425,67

711.3 Conditionals and Loops

switch (day)
{
 case 0: System.out.println("Sun"); break;
 case 1: System.out.println("Mon"); break;
 case 2: System.out.println("Tue"); break;
 case 3: System.out.println("Wed"); break;
 case 4: System.out.println("Thu"); break;
 case 5: System.out.println("Fri"); break;
 case 6: System.out.println("Sat"); break;
}

When you have a program that seems to have a long and regular sequence of if
statements, you might consider consulting the booksite and using a switch state-
ment, or using an alternate approach described in SECTION 1.4.

Do-while loop. Another way to write a loop is to use the template

do { <statements> } while (<boolean expression>);

The meaning of this statement is the same as

while (<boolean expression>) { <statements> }

except that the first test of the condition is omitted. If the condition initially holds,
there is no difference. For an example in which do-while is useful, consider the
problem of generating points that are randomly distributed in the unit disk. We
can use Math.random() to generate x and y coordinates independently to get points
that are randomly distributed in the 2-by-2 square centered on the origin. Most
points fall within the unit disk, so we just reject those that do not. We always want
to generate at least one point, so a do-while loop is ideal for this computation. The
following code sets x and y such that the point (x, y) is randomly distributed in the
unit disk:

do
{ // Scale x and y to be random in (-1, 1).
 x = 2.0*Math.random() - 1.0;
 y = 2.0*Math.random() - 1.0;
} while (Math.sqrt(x*x + y*y) > 1.0);

Since the area of the disk is # and the area of the square is 4, the
expected number of times the loop is iterated is 4/# (about 1.27).

x

y

in

(0, 0)

(1, 1)

out

!"#$%&'(')!"*+,,,1: ./01/23,,,0425,67

72 Elements of Programming

Infinite loops Before you write programs that use loops, you need to think
about the following issue: what if the loop-continuation condition in a while loop
is always satisfied? With the statements that you have learned so far, one of two bad
things could happen, both of which you need to learn to cope with.

First, suppose that such a loop calls System.out.println(). For example, if
the condition in TenHellos were (i > 3) instead of (i <= 10), it would always
be true. What happens? Nowadays, we use print as an abstraction to mean display
in a terminal window and the result of attempting to display an unlimited number
of lines in a terminal window is dependent on operating-system conventions. If

your system is set up to have print mean print characters on
a piece of paper, you might run out of paper or have to un-
plug the printer. In a terminal window, you need a stop printing
operation. Before running programs with loops on your own,
you make sure that you know what to do to “pull the plug” on
an infinite loop of System.out.println() calls and then test
out the strategy by making the change to TenHellos indicated
above and trying to stop it. On most systems, <ctrl-c> means
stop the current program, and should do the job.

Second, nothing might happen. If your program has an
infinite loop that does not produce any output, it will spin
through the loop and you will see no results at all. When you
find yourself in such a situation, you can inspect the loops to
make sure that the loop exit condition always happens, but the
problem may not be easy to identify. One way to locate such
a bug is to insert calls to System.out.println() to produce
a trace. If these calls fall within an infinite loop, this strategy
reduces the problem to the case discussed in the previous para-
graph, but the output might give you a clue about what to do.

You might not know (or it might not matter) whether a loop is infinite or just
very long. Even BadHellos eventually would terminate after printing over a billion
lines because of overflow. If you invoke PROGRAM 1.3.8 with arguments such as java
Gambler 100000 200000 100, you may not want to wait for the answer. You will
learn to be aware of and to estimate the running time of your programs.

Why not have Java detect infinite loops and warn us about them? You might
be surprised to know that it is not possible to do so, in general. This counterintui-
tive fact is one of the fundamental results of theoretical computer science.

public class BadHellos
...
int i = 4;
while (i > 3)
{
 System.out.println
 (i + "th Hello");
 i = i + 1;
}
...

% java BadHellos
1st Hello
2nd Hello
3rd Hello
5th Hello
6th Hello
7th Hello
...

An infinite loop

!"#$%&'(')!"*+,,,10 ./01/23,,,0425,67

731.3 Conditionals and Loops

Summary For reference, the accompanying table lists the programs that we
have considered in this section. They are representative of the kinds of tasks we can
address with short programs comprised of if, while, and for statements process-
ing built-in types of data. These types of
computations are an appropriate way to
become familiar with the basic Java flow-
of-control constructs. The time that you
spend now working with as many such
programs as you can will certainly pay
off for you in the future.

To learn how to use condition-
als and loops, you must practice writ-
ing and debugging programs with if,
while, and for statements. The exer-
cises at the end of this section provide
many opportunities for you to begin this
process. For each exercise, you will write
a Java program, then run and test it. All
programmers know that it is unusual to
have a program work as planned the first
time it is run, so you will want to have an understanding of your program and an
expectation of what it should do, step by step. At first, use explicit traces to check
your understanding and expectation. As you gain experience, you will find yourself
thinking in terms of what a trace might produce as you compose your loops. Ask
yourself the following kinds of questions: What will be the values of the variables
after the loop iterates the first time? The second time? The final time? Is there any
way this program could get stuck in an infinite loop?

Loops and conditionals are a giant step in our ability to compute: if, while,
and for statements take us from simple straight-line programs to arbitrarily com-
plicated flow of control. In the next several chapters, we will take more giant steps
that will allow us to process large amounts of input data and allow us to define
and process types of data other than simple numeric types. The if, while, and
for statements of this section will play an essential role in the programs that we
consider as we take these steps.

program description

Flip simulate a coin flip

TenHellos your first loop

PowersOfTwo compute and print a table of values

DivisorPattern your first nested loop

Harmonic compute finite sum

Sqrt classic iterative algorithm

Binary basic number conversion

Gambler simulation with nested loops

Factors while loop within a for loop

Summary of programs in this section

!"#$%&'(')!"*+,,,1. ./01/23,,,0425,67

74 Elements of Programming

Q&A

Q. What is the difference between = and ==?

A. We repeat this question here to remind you to be sure not to use = when you
mean == in a conditional expression. The expression (x = y) assigns the value of
y to x, whereas the expression (x == y) tests whether the two variables currently
have the same values. In some programming languages, this difference can wreak
havoc in a program and be difficult to detect, but Java’s type safety usually will
come to the rescue. For example, if we make the mistake of typing (t = goal)
instead of (t == goal) in PROGRAM 1.3.8, the compiler finds the bug for us:

javac Gambler.java
Gambler.java:18: incompatible types
found : int
required: boolean
if (t = goal) wins++;
 ^
1 error

Be careful about writing if (x = y) when x and y are boolean variables, since this
will be treated as an assignment statement, which assigns the value of y to x and
evaluates to the truth value of y. For example, instead of writing if (isPrime =
false), you should write if (!isPrime).

Q. So I need to pay attention to using == instead of = when writing loops and con-
ditionals. Is there something else in particular that I should watch out for?

A. Another common mistake is to forget the braces in a loop or conditional with a
multi-statement body. For example, consider this version of the code in Gambler:

for (int t = 0; t < T; t++)
 for (cash = stake; cash > 0 && cash < goal; bets++)
 if (Math.random() < 0.5) cash++;
 else cash--;
 if (cash == goal) wins++;

The code appears correct, but it is dysfunctional because the second if is outside
both for loops and gets executed just once. Our practice of using explicit braces for
long statements is precisely to avoid such insidious bugs.

!"#$%&'(')!"*+,,,1- ./01/23,,,0425,67

751.3 Conditionals and Loops

Q. Anything else?

A. The third classic pitfall is ambiguity in nested if statements:

if <expr1> if <expr2> <stmntA> else <stmntB>

In Java this is equivalent to

if <expr1> { if <expr2> <stmntA> else <stmntB> }

even if you might have been thinking

if <expr1> { if <expr2> <stmntA> } else <stmntB>

Again, using explicit braces is a good way to avoid this pitfall.

Q. Are there cases where I must use a for loop but not a while, or vice versa?

A. No. Generally, you should use a for loop when you have an initialization, an
increment, and a loop continuation test (if you do not need the loop control vari-
able outside the loop). But the equivalent while loop still might be fine.

Q. What are the rules on where we declare the loop-control variables?

A. Opinions differ. In older programming languages, it was required that all vari-
ables be declared at the beginning of a <body>, so many programmers are in this
habit and there is a lot of code out there that follows this convention. But it makes a
lot of sense to declare variables where they are first used, particularly in for loops,
when it is normally the case that the variable is not needed outside the loop. How-
ever, it is not uncommon to need to test (and therefore declare) the loop-control
variable outside the loop, as in the primality-testing code we considered as an ex-
ample of the break statement.

Q. What is the difference between ++i and i++?

A. As statements, there is no difference. In expressions, both increment i, but ++i
has the value after the increment and i++ the value before the increment. In this
book, we avoid statements like x = ++i that have the side effect of changing vari-
able values. So, it is safe to not worry much about this distinction and just use i++

!"#$%&'(')!"*+,,,15 ./01/23,,,0425,67

76 Elements of Programming

in for loops and as a statement. When we do use ++i in this book, we will call at-
tention to it and say why we are using it.

Q. So, <initialize> and <increment> can be any statements whatsoever in a for
loop. How can I take advantage of that?

A. Some experts take advantage of this ability to create compact code fragments,
but, as a beginner, it is best for you to use a while loop in such situations. In fact,
the situation is even more complicated because <initialize> and <increment>
can be sequences of statements, separated by commas. This notation allows for code
that initializes and modifies other variables besides the loop index. In some cases,
this ability leads to compact code. For example, the following two lines of code
could replace the last eight lines in the body of the main() method in PowersOfTwo
(PROGRAM 1.3.3):

for (int i = 0, v = 1; i <= n; i++, v *= 2)
 System.out.println(i + " " + v);

Such code is rarely necessary and better avoided, particularly by beginners.

Q Can I use a double value as an index in a for loop?

A It is legal, but generally bad practice to do so. Consider the following loop:

for (double x = 0.0; x <= 1.0; x += 0.1)
 System.out.println(x + “ “ + Math.sin(x));

How many times does it iterate? The number of iterations depends on an equality
test between double values, which may not always give the result that you expect.

Q. Anything else tricky about loops?

A. Not all parts of a for loop need to be filled
in with code. The initialization statement, the
boolean expression, the increment statement,
and the loop body can each be omitted. It is gen-
erally better style to use a while statement than
null statements in a for loop. In the code in this
book, we avoid null statements.

null increment
statement

Three equivalent loops

null loop body

int v = 1;
while (v <= N/2)
 v *= 2;

for (int v = 1; v <= N/2;)
 v *= 2;

for (int v = 1; v <= N/2; v *= 2)
 ;

!"#$%&'(')!"*+,,,18 ./01/23,,,0425,67

771.3 Conditionals and Loops

Exercises

1.3.1 Write a program that takes three integer command-line arguments and
prints equal if all three are equal, and not equal otherwise.

1.3.2 Write a more general and more robust version of Quadratic (PROGRAM
1.2.3) that prints the roots of the polynomial ax2 + bx + c, prints an appropriate
message if the discriminant is negative, and behaves appropriately (avoiding divi-
sion by zero) if a is zero.

1.3.3 What (if anything) is wrong with each of the following statements?
a. if (a > b) then c = 0;

b. if a > b { c = 0; }

c. if (a > b) c = 0;

d. if (a > b) c = 0 else b = 0;

1.3.4 Write a code fragment that prints true if the double variables x and y are
both strictly between 0 and 1 and false otherwise.

1.3.5 Improve your solution to EXERCISE 1.2.25 by adding code to check that the
values of the command-line arguments fall within the ranges of validity of the for-
mula, and also adding code to print out an error message if that is not the case.

1.3.6 Suppose that i and j are both of type int. What is the value of j after each
of the following statements is executed?

a. for (i = 0, j = 0; i < 10; i++) j += i;

b. for (i = 0, j = 1; i < 10; i++) j += j;

c. for (j = 0; j < 10; j++) j += j;

d. for (i = 0, j = 0; i < 10; i++) j += j++;

1.3.7 Rewrite TenHellos to make a program Hellos that takes the number of
lines to print as a command-line argument. You may assume that the argument is
less than 1000. Hint: Use i % 10 and i % 100 to determine when to use st, nd, rd, or
th for printing the ith Hello.

1.3.8 Write a program that, using one for loop and one if statement, prints the

!"#$%&'(')!"*+,,,11 ./01/23,,,0425,67

78 Elements of Programming

integers from 1,000 to 2,000 with five integers per line. Hint: Use the % operation.

1.3.9 Write a program that takes an integer N as a command-line argument,
uses Math.random() to print N uniform random values between 0 and 1, and then
prints their average value (see EXERCISE 1.2.30).

1.3.10 Describe what happens when you try to print a ruler function (see the table
on page 57) with a value of N that is too large, such as 100.

1.3.11 Write a program FunctionGrowth that prints a table of the values log N,
N, N log N, N 2, N 3, and 2 N for N = 16, 32, 64, ... , 2048. Use tabs (\t characters) to
line up columns.

1.3.12 What are the values of m and n after executing the following code?

int n = 123456789;
int m = 0;
while (n != 0)
{
 m = (10 * m) + (n % 10);
 n = n / 10;
}

1.3.13 What does the following program print ?

int f = 0, g = 1;
for (int i = 0; i <= 15; i++)
{
 System.out.println(f);
 f = f + g;
 g = f - g;
}

Solution. Even an expert programmer will tell you that the only way to under-
stand a program like this is to trace it. When you do, you will find that it prints the
values 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, 233, 377, and 610. These numbers are
the first sixteen of the famous Fibonacci sequence, which are defined by the follow-
ing formulas: F0 = 0, F1 = 1, and Fn = Fn-1 + Fn-2 for n > 1. The Fibonacci sequence
arises in a surprising variety of contexts, they have been studied for centuries, and

!"#$%&'(')!"*+,,,19 ./01/23,,,0425,67

791.3 Conditionals and Loops

many of their properties are well-known. For example, the ratio of successive num-
bers approaches the golden ratio % (about 1.618) as n approaches infinity.

1.3.14 Write a program that takes a command-line argument N and prints all the
positive powers of two less than or equal to N. Make sure that your program works
properly for all values of N. (Integer.parseInt() will generate an error if N is too
large, and your program should print nothing if N is negative.)

1.3.15 Expand your solution to EXERCISE 1.2.24 to print a table giving the total
amount paid and the remaining principal after each monthly payment.

1.3.16 Unlike the harmonic numbers, the sum 1/12 + 1/22 + ... + 1/N2 does con-
verge to a constant as N grows to infinity. (Indeed, the constant is #2/6, so this
formula can be used to estimate the value of #.) Which of the following for loops
computes this sum? Assume that N is an int initialized to 1000000 and sum is a
double initialized to 0.0.

a. for (int i = 1; i <= N; i++) sum += 1 / (i*i);

b. for (int i = 1; i <= N; i++) sum += 1.0 / i*i;

c. for (int i = 1; i <= N; i++) sum += 1.0 / (i*i);

d. for (int i = 1; i <= N; i++) sum += 1 / (1.0*i*i);

1.3.17 Show that PROGRAM 1.3.6 implements Newton’s method for finding the
square root of c. Hint : Use the fact that the slope of the tangent to a (differentiable)
function f(x) at x = t is f '(t) to find the equation of the tangent line and then use
that equation to find the point where the tangent line intersects the x-axis to show
that you can use Newton’s method to find a root of any function as follows: at each
iteration, replace the estimate t by t ! f(t) / f '(t).

1.3.18 Using Newton’s method, develop a program that takes integers N and k as
command-line arguments and prints the kth root of N (Hint : see EXERCISE 1.3.17).

1.3.19 Modify Binary to get a program Kary that takes i and k as command-line
arguments and converts i to base k. Assume that i is an integer in Java’s long data
type and that k is an integer between 2 and 16. For bases greater than 10, use the
letters A through F to represent the 11th through 16th digits, respectively.

!"#$%&'(')!"*+,,,13 ./01/23,,,0425,67

80 Elements of Programming

1.3.20 Write a code fragment that puts the binary representation of a positive
integer N into a String s.

Solution. Java has a built-in method Integer.toBinaryString(N) for this job,
but the point of the exercise is to see how such a method might be implemented.
Working from PROGRAM 1.3.7, we get the solution

String s = "";
int v = 1;
while (v <= n/2) v = 2*v;
while (v > 0)
{
 if (n < v) { s += 0; }
 else { s += 1; n -= v; }
 v = v/2;
}

A simpler option is to work from right to left:

String s = "";
for (int n = N; n > 0; n /= 2)
 s = (n % 2) + s;

Both of these methods are worthy of careful study.

1.3.21 Write a version of Gambler that uses two nested while loops or two nested
for loops instead of a while loop inside a for loop.

1.3.22 Write a program GamblerPlot that traces a gambler’s ruin simulation by
printing a line after each bet in which one asterisk corresponds to each dollar held
by the gambler.

1.3.23 Modify Gambler to take an extra command-line argument that specifies
the (fixed) probability that the gambler wins each bet. Use your program to try to
learn how this probability affects the chance of winning and the expected number
of bets. Try a value of p close to .5 (say, .48).

1.3.24 Modify Gambler to take an extra command-line argument that specifies
the number of bets the gambler is willing to make, so that there are three possible

!"#$%&'(')!"*+,,,92 ./01/23,,,0425,67

811.3 Conditionals and Loops

ways for the game to end: the gambler wins, loses, or runs out of time. Add to the
output to give the expected amount of money the gambler will have when the game
ends. Extra credit : Use your program to plan your next trip to Monte Carlo.

1.3.25 Modify Factors to print just one copy each of the prime divisors.

1.3.26 Run quick experiments to determine the impact of using the termination
condition (i <= N/i) instead of (i < N) in Factors in PROGRAM 1.3.9. For each
method, find the largest n such that when you type in an n digit number, the pro-
gram is sure to finish within 10 seconds.

1.3.27 Write a program Checkerboard that takes one command-line argument N
and uses a loop within a loop to print out a two-dimensional N-by-N checkerboard
pattern with alternating spaces and asterisks.

1.3.28 Write a program GCD that finds the greatest common divisor (gcd) of two
integers using Euclid’s algorithm, which is an iterative computation based on the
following observation: if x is greater than y, then if y divides x, the gcd of x and y is
y; otherwise, the gcd of x and y is the same as the gcd of x % y and y.

1.3.29 Write a program RelativelyPrime that takes one command-line argu-
ment N and prints out an N-by-N table such that there is an * in row i and column j
if the gcd of i and j is 1 (i and j are relatively prime) and a space in that position
otherwise.

1.3.30 Write a program PowersOfK that takes an integer k as command-line argu-
ment and prints all the positive powers of k in the Java long data type. Note : The
constant Long.MAX_VALUE is the value of the largest integer in long.

1.3.31 Generate a random point (x, y, z) on the surface of a sphere using Mar-
saglia’s method: Pick a random point (a, b) in the unit disk using the method de-
scribed at the end of this section. Then, set x = 2 a "1 -a2 - b2 . y = 2 b "1 -a2 - b2.
and z = 1 - 2 (a2 + b2).

!"#$%&'(')!"*+,,,9: ./01/23,,,0425,67

82 Elements of Programming

Creative Exercises

1.3.32 Ramanujan’s taxi. Srinivasa Ramanujan was an Indian mathematician
who became famous for his intuition for numbers. When the English mathemati-
cian G. H. Hardy came to visit him one day, Hardy remarked that the number of
his taxi was 1729, a rather dull number. To which Ramanujan replied, “No, Hardy!
No, Hardy! It is a very interesting number. It is the smallest number expressible as
the sum of two cubes in two different ways.” Verify this claim by writing a program
that takes a command-line argument N and prints out all integers less than or equal
to N that can be expressed as the sum of two cubes in two different ways. In other
words, find distinct positive integers a, b, c, and d such that a3 + b3 = c3 + d3. Use four
nested for loops.

1.3.33 Checksum. The International Standard Book Number (ISBN) is a 10-digit
code that uniquely specifies a book. The rightmost digit is a checksum digit that
can be uniquely determined from the other 9 digits, from the condition that d1 +
2d2 +3d3 + ... + 10d10 must be a multiple of 11 (here di denotes the ith digit from the
right). The checksum digit di can be any value from 0 to 10. The ISBN convention is
to use the character 'X' to denote 10. Example: the checksum digit corresponding
to 020131452 is 5 since 5 is the only value of x between 0 and 10 for which

10·0 + 9·2 + 8·0 + 7·1 + 6·3 + 5·1 +4·4 +3·5 + 2·2 + 1·x

is a multiple of 11. Write a program that takes a 9-digit integer as a command-line
argument, computes the checksum, and prints out the the ISBN number.

1.3.34 Counting primes. Write a program PrimeCounter that takes a command-
line argument N and finds the number of primes less than or equal to N. Use it to
print out the number of primes less than or equal to 10 million. Note : if you are not
careful, your program may not finish in a reasonable amount of time!

1.3.35 2D random walk. A two-dimensional random walk simulates the behavior
of a particle moving in a grid of points. At each step, the random walker moves
north, south, east, or west with probability equal to 1/4, independent of previous
moves. Write a program RandomWalker that takes a command-line argument N and
estimates how long it will take a random walker to hit the boundary of a 2N-by-2N
square centered at the starting point.

!"#$%&'(')!"*+,,,90 ./01/23,,,0425,67

831.3 Conditionals and Loops

1.3.36 Exponential function. Assume that x is a positive variable of type double.
Write a code fragment that uses the Taylor series expansion to set the value of sum
to e x = 1 + x + x2/2! + x3/3! +

Solution. The purpose of this exercise is to get you to think about how a library
function like Math.exp() might be implemented in terms of elementary operators.
Try solving it, then compare your solution with the one developed here.

We start by considering the problem of computing one term. Suppose that x
and term are variables of type double and n is a variable of type int. The following
code fragment sets term to x N / N ! using the direct method of having one loop for
the numerator and another loop for the denominator, then dividing the results:

double num = 1.0, dem = 1.0;
for (int i = 1; i <= n; i++) num *= x;
for (int i = 1; i <= n; i++) den *= i;
double term = num/den;

A better approach is to use just a single for loop:

double term = 1.0;
for (i = 1; i <= n; i++) term *= x/i;

Besides being more compact and elegant, the latter solution is preferable because
it avoids inaccuracies caused by computing with huge numbers. For example, the
two-loop approach breaks down for values like x = 10 and N = 100 because 100! is
too large to represent as a double.

To compute ex , we nest this for loop within another for loop:

double term = 1.0;
double sum = 0.0;
for (int n = 1; sum != sum + term; n++)
{
 sum += term;
 term = 1.0;
 for (int i = 1; i <= n; i++) term *= x/i;
}

The number of times the loop iterates depends on the relative values of the next
term and the accumulated sum. Once the value of the sum stops changing, we

!"#$%&'(')!"*+,,,9. ./01/23,,,0425,67

84 Elements of Programming

leave the loop. (This strategy is more efficient than using the termination condi-
tion (term > 0) because it avoids a significant number of iterations that do not
change the value of the sum.) This code is effective, but it is inefficient because the
inner for loop recomputes all the values it computed on the previous iteration of
the outer for loop. Instead, we can make use of the term that was added in on the
previous loop iteration and solve the problem with a single for loop:

double term = 1.0;
double sum = 0.0;
for (int n = 1; sum != sum + term; n++)
{
 sum += term;
 term *= x/n;
}

1.3.37 Trigonometric functions. Write two programs, Sin and Cos, that
compute the sine and cosine functions using their Taylor series expansions
sin x = x ! x 3/3! + x 5/5! ! ... and cos x = 1 ! x 2/2! + x 4/4! !

1.3.38 Experimental analysis. Run experiments to determine the relative costs of
Math.exp() and the methods from EXERCISE 1.3.36 for computing e x : the direct
method with nested for loops, the improvement with a single for loop, and the
latter with the termination condition (term > 0). Use trial-and-error with a com-
mand-line argument to determine how many times your computer can perform
each computation in 10 seconds.

1.3.39 Pepys problem. In 1693 Samuel Pepys asked Isaac Newton which is more
likely: getting 1 at least once when rolling a fair die six times or getting 1 at least
twice when rolling it 12 times. Write a program that could have provided Newton
with a quick answer.

1.3.40 Game simulation. In the 1970s game show Let’s Make a Deal, a contestant
is presented with three doors. Behind one of them is a valuable prize. After the con-
testant chooses a door, the host opens one of the other two doors (never revealing
the prize, of course). The contestant is then given the opportunity to switch to the
other unopened door. Should the contestant do so? Intuitively, it might seem that

!"#$%&'(')!"*+,,,9- ./01/23,,,0425,67

851.3 Conditionals and Loops

the contestant’s initial choice door and the other unopened door are equally likely
to contain the prize, so there would be no incentive to switch. Write a program Mon-
teHall to test this intuition by simulation. Your program should take a command-
line argument N, play the game N times using each of the two strategies (switch or
do not switch), and print the chance of success for each of the two strategies.

1.3.41 Median-of-5. Write a program that takes five distinct integers from the
command line and prints the median value (the value such that two of the others
are smaller and two are larger). Extra credit : Solve the problem with a program that
compares values fewer than seven times for any given input.

1.3.42 Sorting three numbers. Suppose that the variables a, b, c, and t are all of
the same numeric primitive type. Prove that the following code puts a, b, and c in
ascending order:

if (a > b) { t = a; a = b; b = t; }
if (a > c) { t = a; a = c; c = t; }
if (b > c) { t = b; b = c; c = t; }

1.3.43 Chaos. Write a program to study the following simple model for popula-
tion growth, which might be applied to study fish in a pond, bacteria in a test tube,
or any of a host of similar situations. We suppose that the population ranges from
0 (extinct) to 1 (maximum population that can be sustained). If the population at
time t is x, then we suppose the population at time t + 1 to be rx(1!x), where the
argument r, known as the fecundity parameter, controls the rate of growth. Start
with a small population—say, x = 0.01—and study the result of iterating the model,
for various values of r. For which values of r does the population stabilize at x = 1
! 1/r ? Can you say anything about the population when r is 3.5? 3.8? 5?

1.3.44 Euler’s sum-of-powers conjecture. In 1769 Leonhard Euler formulated a
generalized version of Fermat’s Last Theorem, conjecturing that at least n nth pow-
ers are needed to obtain a sum that is itself an nth power, for n > 2. Write a program
to disprove Euler’s conjecture (which stood until 1967), using a quintuply nested
loop to find four positive integers whose 5th power sums to the 5th power of an-
other positive integer. That is, find a, b, c, d, and e such that a 5 " b 5 " c 5 " d 5 * e 5.
Use the long data type.

!"#$%&'(')!"*+,,,95 ./01/23,,,0425,67

Elements of Programming

1.4 Arrays

IN THIS SECTION, WE CONSIDER A fundamental programming construct known as the
array. The primary purpose of an array is to facilitate storing and manipulating
large quantities of data. Arrays play an essential role in many data processing tasks.
They also correspond to vectors and matrices, which are widely used in science and
in scientific programming. We will con-
sider basic properties of array processing
in Java, with many examples illustrating
why they are useful.

An array stores a sequence of values
that are all of the same type. Processing
such a set of values is very common. We
might have exam scores, stock prices, nucleotides in a DNA strand, or characters in
a book. Each of these examples involve a large number of values that are all of the
same type.

We want not only to store values but also directly access each in-
dividual value. The method that we use to refer to individual values in
an array is numbering and then indexing them. If we have N values, we
think of them as being numbered from 0 to N!1. Then, we can unam-
biguously specify one of them by referring to the ith value for any value
of i from 0 to N!1. To refer to the ith value in an array a, we use the
notation a[i], pronounced a sub i. This Java construct is known as a
one-dimensional array.

The one-dimensional array is our first example in this book of a
data structure (a method for organizing data). We also consider in this
section a more complicated data structure known as a two-dimensional
array. Data structures play an essential role in modern programming—
CHAPTER 4 is largely devoted to the topic.

Typically, when we have a large amount of data to process, we first put all of
the data into one or more arrays. Then we use array indexing to refer to individual
values and to process the data. We consider such applications when we discuss data
input in SECTION 1.5 and in the case study that is the subject of SECTION 1.6. In this
section, we expose the basic properties of arrays by considering examples where
our programs first populate arrays with computed values from experimental stud-
ies and then process them.

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a

An array

1.4.1 Sampling without replacement . . . 94
1.4.2 Coupon collector simulation 98
1.4.3 Sieve of Eratosthenes 100
1.4.4 Self-avoiding random walks 109

Programs in this section

!"#$%&'(')!"*+,,,98 ./01/23,,,0425,67

871.4 Arrays

Arrays in Java Making an array in a Java program involves three distinct steps:
Declare the array name and type.
Create the array.
Initialize the array values.

To declare the array, you need to specify a name and the type of data it will contain.
To create it, you need to specify its size (the number of values). For example, the
following code makes an array of N numbers of type double, all initialized to 0.0:

double[] a;
a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = 0.0;

The first statement is the array declaration. It is just like a declaration of a variable
of the corresponding primitive type except for the square brackets following the
type name, which specify that we are declaring an array. The second statement cre-
ates the array. This action is unnecessary for variables of a primitive type (so we
have not seen a similar action before), but it is needed for all other types of data in
Java (see SECTION 3.1). In the code in this book, we normally keep the array length in
an integer variable N, but any integer-valued expression will do. The for statement
initializes the N array values. We refer to each value by putting its index in brackets
after the array name. This code sets all of the array entries to the value 0.0.

When you begin to write code that uses an array, you must be sure that your
code declares, creates, and initializes it. Omitting one of these steps is a common
programming mistake. For economy in code, we often take advantage of Java’s de-
fault array initialization convention and combine all three steps into a single state-
ment. For example, the following statement is equivalent to the code above:

double[] a = new double[N];

The code to the left of the equal sign constitutes the declaration; the code to the
right constitutes the creation. The for loop is unnecessary in this case because the
default initial value of variables of type double in a Java array is 0.0, but it would
be required if a nonzero value were desired. The default initial value is zero for all
numbers and false for type boolean. For String and other non-primitive types,
the default is the value null, which you will learn about in CHAPTER 3.

After declaring and creating an array, you can refer to any individual value
anywhere you would use a variable name in a program by enclosing an integer in-

!"#$%&'(')!"*+,,,91 ./01/23,,,0425,67

88 Elements of Programming

dex in braces after the array name. We refer to the ith item with the code a[i]. The
explicit initialization code shown earlier is an example of such a use. The obvious
advantage of using arrays is to avoid explicitly naming each variable individually.
Using an array index is virtually the same as appending the index to the array name:
for example, if we wanted to process eight variables of type double, we could de-
clare each of them individually with the declaration

double a0, a1, a2, a3, a4, a5, a6, a7;

and then refer to them as a0, a1 and so forth instead of declaring them with dou-
ble[] a = new double[8] and referring to them as a[0], a[1], and so forth. But
naming dozens of individual variables in this way would be cumbersome and nam-
ing millions is untenable.

As an example of code that uses arrays, consider using arrays to represent vec-
tors. We consider vectors in detail in SECTION 3.3; for the moment, think of a vector
as a sequence of real numbers. The dot product of two vectors (of the same length)
is the sum of the products of their corresponding components. The dot product
of two vectors that are represented as one-dimensional arrays x[] and y[] that are
each of length 3 is the expression x[0]*y[0] + x[1]*y[1] + x[2]*y[2]. If we
represent the two vectors as one-dimensional arrays x[] and y[] that are each of
length N and of type double, the dot product is
easy to compute:

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += x[i]*y[i];

The simplicity of coding such computations
makes the use of arrays the natural choice for all
kinds of applications. (Note that when we use the
notation x[], we are referring to the whole array,
as opposed to x[i], which is a reference to the ith
entry.)

The accompanying table has many examples of array-processing code, and we
will consider even more examples later in the book, because arrays play a central
role in processing data in many applications. Before considering more sophisticat-
ed examples, we describe a number of important characteristics of programming
with arrays.

i x[i] y[i] x[i]*y[i] sum

0

0 .30 .50 .15 .15

1 .60 .10 .06 .21

2 .10 .40 .04 .25

.25

Trace of dot product computation

!"#$%&'(')!"*+,,,99 ./01/23,,,0425,67

891.4 Arrays

Zero-based indexing. We always refer to the first element of an array as a[0], the
second as a[1], and so forth. It might seem more natural to you to refer to the first
element as a[1], the second value as a[2], and so forth, but starting the index-
ing with 0 has some advantages and has emerged as the convention used in most
modern programming languages. Misunderstanding this convention often leads to
off-by one-errors that are notoriously difficult to avoid and debug, so be careful!

Array length. Once we create an array, its size is fixed. The reason that we need to
explicitly create arrays at runtime is that the Java compiler cannot know how much
space to reserve for the array at compile time (as it can for primitive-type values).
Our convention is to keep the size of the array in a variable N whose value can be
set at runtime (usually it is the value of a command-line argument). Java’s stan-
dard mechanism is to allow a program to refer to the length of an array a[] with
the code a.length; we normally use N to create the array, or set the value of N to
a.length. Note that the last element of an array is always a[a.length-1].

create an array
with random values

double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = Math.random();

print the array values,
one per line

for (int i = 0; i < N; i++)
 System.out.println(a[i]);

find the maximum of
the array values

double max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < N; i++)
 if (a[i] > max) max = a[i];

compute the average of
 the array values

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

copy to another array
double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

reverse the elements
within an array

for (int i = 0; i < N/2; i++)
{
 double temp = b[i];
 b[i] = b[N-1-i];
 b[N-i-1] = temp;
}

Typical array-processing code (for arrays of N double values)

!"#$%&'(')!"*+,,,93 ./01/23,,,0425,67

90 Elements of Programming

Memory representation. Arrays are fundamental data structures in that they
have a direct correspondence with memory systems on virtually all computers.
The elements of an array are stored consecutively in memory, so that it is easy
to quickly access any array value. Indeed, we can view memory itself as a giant

array. On modern computers, memory is implemented in hardware as
a sequence of indexed memory locations that each can be quickly ac-
cessed with an appropriate index. When referring to computer memory,
we normally refer to a location’s index as its address. It is convenient to
think of the name of the array—say, a—as storing the memory address
of the first element of the array a[0]. For the purposes of illustration,
suppose that the computer’s memory is organized as 1,000 values, with
addresses from 000 to 999. (This simplified model ignores the fact that
array elements can occupy differing amounts of memory depending on
their type, but you can ignore such details for the moment.) Now, sup-
pose that an array of eight elements is stored in memory locations 523
through 530. In such a situation, Java would store the memory address
(index) of the first array value somewhere else in memory, along with
the array length. We refer to the address as a pointer and think of it as
pointing to the referenced memory location. When we specify a[i], the
compiler generates code that accesses the desired value by adding the
index i to the memory address of the array a[]. For example, the Java
code a[4] would generate machine code that finds the value at memory
location 523 + 4 = 527. Accessing element i of an array is an efficient
operation because it simply requires adding two integers and then refer-
encing memory—just two elementary operations. Extending the model
to handle different-sized array elements just involves multiplying the
index by the element size before adding to the array address.

Memory allocation. When you use new to create an array, Java reserves
space in memory for it. This process is called memory allocation. The
same process is required for all variables that you use in a program. We
call attention to it now because it is your responsibility to use new to al-

locate memory for an array before accessing any of its elements. If you fail to adhere
to this rule, you will get a compile-time uninitialized variable error. Java automati-
cally initializes all of the values in an array when it is created. You should remember
that the time required to create an array is proportional to its length.

523 a[0]
524 a[1]

123 523
124 8

000

a

a.length

525 a[2]
526 a[3]
527 a[4]
528 a[5]
529 a[6]
530 a[7]

999

Memory representation

!"#$%&'(')!"*+,,,32 ./01/23,,,0425,67

911.4 Arrays

Bounds checking. As already indicated, you must be careful when programming
with arrays. It is your responsibility to use legal indices when accessing an array
element. If you have created an array of size N and use an index whose value is less
than 0 or greater than N-1, your program will terminate with an ArrayIndex-
OutOfBounds run-time exception. (In many programming languages, such buffer
overflow conditions are not checked by the system. Such unchecked errors can and
do lead to debugging nightmares, but it is also not uncommon for such an error to
go unnoticed and remain in a finished program. You might be surprised to know
that such a mistake can be exploited by a hacker to take control of a system, even
your personal computer, to spread viruses, steal personal information, or wreak
other malicious havoc.) The error messages provided by Java may seem annoying
to you at first, but they are small price to pay to have a more secure program.

Setting array values at compile time. When we have a small number of literal
values that we want to keep in array, we can declare and initialize it by listing the
values between curly braces, separated by commas. For example, we might use the
following code in a program that processes playing cards.

String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };

String[] rank =
{
 "2", "3", "4", "5", "6", "7", "8", "9", "10",
 "Jack", "Queen", "King", "Ace"
};

After creating the two arrays, we can use them to print out a random card name,
such as Queen of Clubs, as follows:

int i = (int) (Math.random() * rank.length);
int j = (int) (Math.random() * suit.length);
System.out.println(rank[i] + " of " + suit[j]);

This code uses the idiom introduced in SECTION 1.2 to generate random indices and
then uses the indices to pick strings out of the arrays. Whenever the values of all
array entries are known at compile time (and the size of the array is not too large)
it makes sense to use this method of initializing the array—just put all the values in
braces on the right hand side of an assignment in the array declaration. Doing so
implies array creation, so the new keyword is not needed.

!"#$%&'(')!"*+,,,3: ./01/23,,,0425,67

92 Elements of Programming

Setting array values at runtime. A more typical situation is when we wish to
compute the values to be stored in an array. In this case, we can use array names
with indices in the same way we use variable names on the left side of assignment
statements. For example, we might use the following code to initialize an array of
size 52 that represents a deck of playing cards, using the two arrays just defined:

String[] deck = new String[suit.length * rank.length];
for (int i = 0; i < suit.length; i++)
 for (int j = 0; j < rank.length; j++)
 deck[rank.length*i + j] = rank[i] + " of " + suit[j];

After this code has been executed, if you were to print out the contents of deck in
order from deck[0] through deck[51] using System.out.println(), you would
get the sequence

2 of Clubs
2 of Diamonds
2 of Hearts
2 of Spades
3 of Clubs
3 of Diamonds
...
Ace of Hearts
Ace of Spades

Exchange. Frequently, we wish to exchange two values in an array. Continuing our
example with playing cards, the following code exchanges the cards at position i
and j using the same idiom that we traced as our first example of the use of assign-
ment statements in SECTION 1.2:

String t = deck[i];
deck[i] = deck[j];
deck[j] = t;

When we use this code, we are assured that we are perhaps changing the order of
the values in the array but not the set of values in the array. When i and j are equal,
the array is unchanged. When i and j are not equal, the values a[i] and a[j] are
found in different places in the array. For example, if we were to use this code with
i equal to 1 and j equal to 4 in the deck array of the previous example, it would
leave 3 of Clubs in deck[1] and 2 of Diamonds in deck[4].

!"#$%&'(')!"*+,,,30 ./01/23,,,0425,67

931.4 Arrays

Shuffle. The following code shuffles our deck of cards:

int N = deck.length;
for (int i = 0; i < N; i++)
{
 int r = i + (int) (Math.random() * (N-i));
 String t = deck[i];
 deck[i] = deck[r];
 deck[r] = t;
}

Proceeding from left to right, we pick a random card from deck[i] through
deck[N-1] (each card equally likely) and exchange it with deck[i]. This code is
more sophisticated than it might seem: First, we ensure that the cards in the deck
after the shuffle are the same as the cards in the deck before the shuffle by using
the exchange idiom. Second, we ensure that the shuffle is random by choosing uni-
formly from the cards not yet chosen.

Sampling without replacement. In many situations, we want to draw a random
sample from a set such that each member of the set appears at most once in the
sample. Drawing numbered ping-pong balls from a basket for a lottery is an ex-
ample of this kind of sample, as is dealing a hand from a deck of cards. Sample
(PROGRAM 1.4.1) illustrates how to sample, using the basic operation underlying
shuffling. It takes command-line arguments M and N and creates a permutation of
size N (a rearrangement of the integers from 0 to N-1) whose first M entries com-

i r
perm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 9 9 1 2 3 4 5 6 7 8 0 10 11 12 13 14 15

1 5 9 5 2 3 4 1 6 7 8 0 10 11 12 13 14 15

2 13 9 5 13 3 4 1 6 7 8 0 10 11 12 2 14 15

3 5 9 5 13 1 4 3 6 7 8 0 10 11 12 2 14 15

4 11 9 5 13 1 11 3 6 7 8 0 10 4 12 2 14 15

5 8 9 5 13 1 11 8 6 7 3 0 10 4 12 2 14 15

9 5 13 1 11 8 6 7 3 0 10 4 12 2 14 15

Trace of java Sample 6 16

!"#$%&'(')!"*+,,,3. ./01/23,,,0425,67

94 Elements of Programming

% java Sample 6 16
9 5 13 1 11 8

% java Sample 10 1000
656 488 298 534 811 97 813 156 424 109

% java Sample 20 20
6 12 9 8 13 19 0 2 4 5 18 1 14 16 17 3 7 11 10 15

Program 1.4.1 Sampling without replacement

public class Sample
{
 public static void main(String[] args)
 { // Print a random sample of M integers
 // from 0 ... N-1 (no duplicates).
 int M = Integer.parseInt(args[0]);
 int N = Integer.parseInt(args[1]);
 int[] perm = new int[N];

 // Initialize perm[].
 for (int j = 0; j < N; j++)
 perm[j] = j;

 // Take sample.
 for (int i = 0; i < M; i++)
 { // Exchange perm[i] with a random element to its right.
 int r = i + (int) (Math.random() * (N-i));
 int t = perm[r];
 perm[r] = perm[i];
 perm[i] = t;
 }

 // Print sample.
 for (int i = 0; i < M; i++)
 System.out.print(perm[i] + " ");
 System.out.println();
 }
}

This program takes two command-line arguments M and N and produces a sample of M of the
integers from 0 to N-1. This process is useful, not just in state and local lotteries, but in scien-
tific applications of all sorts. If the first argument is equal to the second, the result is a random
permutation of the integers from 0 to N-1. If the first argument is greater than the second, the
program will terminate with an ArrayOutOfBounds exception.

M sample size
N range

perm[] permutation of 0 to N-1

!"#$%&'(')!"*+,,,3- ./01/23,,,0425,67

951.4 Arrays

prise a random sample. The accompanying trace of the contents of the perm[]
array at the end of each iteration of the main loop (for a run where the values of M
and N are 6 and 16, respectively) illustrates the process.

If the values of r are chosen such that each value in the given range is equally
likely, then perm[0] through perm[M-1] are a random sample at the end of the
process (even though some elements might move multiple times) because each
element in the sample is chosen by taking each item not yet sampled, with equal
probability for each choice. One important reason to explicitly compute the per-
mutation is that we can use it to print out a random sample of any array by using
the elements of the permutation as indices into the array. Doing so is often an at-
tractive alternative to actually rearranging the array because it may need to be in
order for some other reason (for instance, a company might wish to draw a random
sample from a list of customers that is kept in alphabetical order). To see how this
trick works, suppose that we wish to draw a random poker hand from our deck[]
array, constructed as just described. We use the code in Sample with N = 52 and M
= 5 and replace perm[i] with deck[perm[i]] in the System.out.print() state-
ment (and change it to println()), resulting in output such as the following:

3 of Clubs
Jack of Hearts
6 of Spades
Ace of Clubs
10 of Diamonds

Sampling like this is widely used as the basis for statistical studies in polling, scien-
tific research, and many other applications, whenever we want to draw conclusions
about a large population by analyzing a small random sample.

Precomputed values. One simple application of arrays is to save values that you
have computed, for later use. As an example, suppose that you are writing a pro-
gram that performs calculations using small values of the harmonic numbers (see
PROGRAM 1.3.5). An efficient approach is to save the values in an array, as follows:

double[] H = new double[N];
for (int i = 1; i < N; i++)
 H[i] = H[i-1] + 1.0/i;

Then you can just use the code H[i] to refer to any of the values. Precomputing val-
ues in this way is an example of a space-time tradeoff: by investing in space (to save

!"#$%&'(')!"*+,,,35 ./01/23,,,0425,67

96 Elements of Programming

the values) we save time (since we do not need to recompute them). This method
is not effective if we need values for huge N, but it is very effective if we need values
for small N many different times.

Simplifying repetitive code. As an example of another simple application of ar-
rays, consider the following code fragment, which prints out the name of a month
given its number (1 for January, 2 for February, and so forth):

if (m == 1) System.out.println("Jan");
else if (m == 2) System.out.println("Feb");
else if (m == 3) System.out.println("Mar");
else if (m == 4) System.out.println("Apr");
else if (m == 5) System.out.println("May");
else if (m == 6) System.out.println("Jun");
else if (m == 7) System.out.println("Jul");
else if (m == 8) System.out.println("Aug");
else if (m == 9) System.out.println("Sep");
else if (m == 10) System.out.println("Oct");
else if (m == 11) System.out.println("Nov");
else if (m == 12) System.out.println("Dec");

We could also use a switch statement, but a much more compact alternative is to
use a String array consisting of the names of each month:

String[] months =
{
 "", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
System.out.println(months[m]);

This technique would be especially useful if you needed to access the name of a
month by its number in several different places in your program. Note that we in-
tentionally waste one slot in the array (element 0) to make months[1] correspond
to January, as required.

Assignments and equality tests. Suppose that you have created the two arrays a[]
and b[]. What does it mean to assign one to the other with the code a = b; ? Simi-
larly, what does it mean to test whether the two arrays are equal with the code (a
== b)? The answers to these questions may not be what you first assume, but if you
think about the array memory representation, you will see that Java’s interpretation

!"#$%&'(')!"*+,,,38 ./01/23,,,0425,67

971.4 Arrays

of these operations makes sense: An assignment makes the names a and b refer to
the same array. The alternative would be to have an implied loop that assigns each
value in b to the corresponding value in a. Similarly, an equality test checks whether
the two names refer to the same array. The alternative would be to have an implied
loop that tests whether each value in one array is equal to the corresponding value
in the other array. In both cases, the implementation in Java is very simple: it just
performs the standard operation as if the array name were a variable whose value
is the memory address of the array. Note that there are many other operations
that you might want to perform on arrays: for example, it would be nice in some
applications to say a = a + b and have it mean “add the corresponding element
in b[] to each element in a[],” but that statement is not legal in Java. Instead, we
write an explicit loop to perform all the additions. We will consider in detail Java’s
mechanism for satisfying such higher-level programming needs in SECTION 3.2. In
typical applications, we use this mechanism, so we rarely need to use Java’s assign-
ments and equality tests with arrays.

WITH THESE BASIC DEFINITIONS AND EXAMPLES out of the way, we can now consider two
applications that both address interesting classical problems and illustrate the fun-
damental importance of arrays in efficient computation. In both cases, the idea of
using data to index into an array plays a central role and enables a computation that
would not otherwise be feasible.

Coupon collector Suppose that you have a shuffled deck of cards and
you turn them face up, one by one. How many cards do you need to turn
up before you have seen one of each suit? How many cards do you need to
turn up before seeing one of each value? These are examples of the famous
coupon collector problem. In general, suppose that a trading card company
issues trading cards with N different possible cards: how many do you have
to collect before you have all N possibilities, assuming that each possibility is equal-
ly likely for each card that you collect?

Coupon collecting is no toy problem. For example, it is very often the case that
scientists want to know whether a sequence that arises in nature has the same char-
acteristics as a random sequence. If so, that fact might be of interest; if not, further
investigation may be warranted to look for patterns that might be of importance.
For example, such tests are used by scientists to decide which parts of genomes
are worth studying. One effective test for whether a sequence is truly random is

Coupon collection

! " ! # # ! " $

!"#$%&'(')!"*+,,,31 ./01/23,,,0425,67

98 Elements of Programming

% java CouponCollector 1000
6583
% java CouponCollector 1000
6477
% java CouponCollector 1000000
12782673

Program 1.4.2 Coupon collector simulation

public class CouponCollector
{
 public static void main(String[] args)
 { // Generate random values in (0..N] until finding each one.
 int N = Integer.parseInt(args[0]);
 boolean[] found = new boolean[N];
 int cardcnt = 0, valcnt = 0;
 while (valcnt < N)
 { // Generate another value.
 int val = (int) (Math.random() * N);
 cardcnt++;
 if (!found[val])
 {
 valcnt++;
 found[val] = true;
 }
 } // N different values found.
 System.out.println(cardcnt);
 }
}

This program simulates coupon collection by taking a command-line argument N and generat-
ing random numbers between 0 and N-1 until getting every possible value.

N range
cardcnt values generated

valcnt different values found

found[] table of found values

the coupon collector test : compare the number of elements that need to be exam-
ined before all values are found against the corresponding number for a uniformly
random sequence. CouponCollector (PROGRAM 1.4.2) is an example program that
simulates this process and illustrates the utility of arrays. It takes the value of N from
the command line and generates a sequence of random integer values between 0

!"#$%&'(')!"*+,,,39 ./01/23,,,0425,67

991.4 Arrays

and N!1 using the code (int) (Math.random() * N) (see PROGRAM 1.2.5). Each
value represents a card: for each card, we want to know if we have seen that value
before. To maintain that knowledge, we use an array found[], which uses the card
value as an index: found[i] is true if we have seen
a card with value i and false if we have not. When
we get a new card that is represented by the integer
val, we check whether we have seen its value before
simply by accessing found[val]. The computation
consists of keeping count of the number of distinct
values seen and the number of cards generated and
printing the latter when the former gets to N.

As usual, the best way to understand a program
is to consider a trace of the values of its variables for
a typical run. It is easy to add code to CouponCol-
lector that produces a trace that gives the values
of the variables at the end of the while loop for a
typical run. In the accompanying figure, we use F
for the value false and T for the value true to make
the trace easier to follow. Tracing programs that use
large arrays can be a challenge: when you have an
array of size N in your program, it represents N vari-
ables, so you have to list them all. Tracing programs
that use Math.random() also can be a challenge because you get a different trace
every time you run the program. Accordingly, we check relationships among vari-
ables carefully. Here, note that valcnt always is equal to the number of true values
in found[].

 Without arrays, we could not contemplate simulating the coupon collector
process for huge N; with arrays it is easy to do so. We will see many examples of
such processes throughout the book.

Sieve of Eratosthenes Prime numbers play an important role in mathematics
and computation, including cryptography. A prime number is an integer greater
than one whose only positive divisors are one and itself. The prime counting func-
tion #(N) is the number of primes less than or equal to N. For example, #(25) = 9
since the first nine primes are 2, 3, 5, 7, 11, 13, 17, 19, and 23. This function plays a
central role in number theory.

val
found

valcnt cardcnt
0 1 2 3 4 5

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10

Trace for a typical run of
 java CouponCollector 6

!"#$%&'(')!"*+,,,33 ./01/23,,,0425,67

100 Elements of Programming

Program 1.4.3 Sieve of Eratosthenes

public class PrimeSieve
{
 public static void main(String[] args)
 { // Print the number of primes <= N.
 int N = Integer.parseInt(args[0]);
 boolean[] isPrime = new boolean[N+1];
 for (int i = 2; i <= N; i++)
 isPrime[i] = true;

 for (int i = 2; i <= N/i; i++)
 { if (isPrime[i])
 { // Mark multiples of i as nonprime.
 for (int j = i; j <= N/i; j++)
 isPrime[i * j] = false;
 }
 }

 // Count the primes.
 int primes = 0;
 for (int i = 2; i <= N; i++)
 if (isPrime[i]) primes++;
 System.out.println(primes);
 }
}

This program takes a command-line argument N and computes the number of primes less than
or equal to N. To do so, it computes an array of boolean values with isPrime[i] set to true if
i is prime, and to false otherwise. First, it sets to true all array elements in order to indicate
that no numbers are initially known to be nonprime. Then it sets to false array elements cor-
responding to indices that are known to be nonprime (multiples of known primes). If a[i] is
still true after all multiples of smaller primes have been set to false, then we know i to be
prime. The termination test in the second for loop is i <= N/i instead of the naive i <= N be-
cause any number with no factor less than N/i has no factor greater than N/i, so we do not have
to look for such factors. This improvement makes it possible to run the program for large N.

N argument
isPrime[i] is i prime?

primes prime counter

% java PrimeSieve 25
9
% java PrimeSieve 100
25
% java PrimeSieve 1000000000
50847534

!"#$%&'(')!"*+,,,:22 ./01/23,,,0425,67

1011.4 Arrays

One approach to counting primes is to use a program like Factors (PROGRAM
1.3.9). Specifically, we could modify the code in Factors to set a boolean value to
be true if a given number is prime and false otherwise (instead of printing out
factors), then enclose that code in a loop that increments a counter for each prime
number. This approach is effective for small N, but becomes too slow as N grows.

PrimeSieve (PROGRAM 1.4.3) takes a command-line integer N and computes
the prime count using a technique known as the Sieve of Eratosthenes. The program
uses a boolean array isPrime[] to record which integers are prime. The goal is
to set isPrime[i] to true if i is prime, and to false otherwise. The sieve works
as follows: Initially, set all array elements to true, indicating that no factors of any
integer have yet been found. Then, repeat the following steps as long as i <= N/i:

Find the next smallest i for which no factors have been found.
Leave isPrime[i] as true since i has no smaller factors.
Set the isPrime[] entries for all multiples of i to be false.

When the nested for loop ends, we have set the isPrime[] entries for all nonprimes
to be false and have left the isPrime[] entries for all primes as true. With one
more pass through the array, we can count the number of primes less than or equal
to N. As usual, it is easy to add code to print a trace. For programs such as Prime-
Sieve, you have to be a bit careful—it contains a nested for-if-for, so you have
to pay attention to the braces in order to put the print code in the correct place.
Note that we stop when i > N/i, just as we did for Factors.

With PrimeSieve, we can compute #(N) for large N, limited primarily by
the maximum array size allowed by Java. This is another example of a space-time
tradeoff. Programs like PrimeSieve play an important role in helping mathemati-
cians to develop the theory of numbers, which has many important applications.

i isPrime

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T T

2 T T F T F T F T F T F T F T F T F T F T F T F T

3 T T F T F T F F F T F T F F F T F T F F F T F T

5 T T F T F T F F F T F T F F F T F T F F F T F F

T T F T F T F F F T F T F F F T F T F F F T F F

Trace of java PrimeSieve 25

!"#$%&'(')!"*+,,,:2: ./01/23,,,0425,67

102 Elements of Programming

Two-dimensional arrays In many applications, a convenient way to store in-
formation is to use a table of numbers organized in a rectangular table and refer
to rows and columns in the table. For example, a teacher might need to maintain
a table with a row corresponding to each student and a column corresponding to
each assignment, a scientist might need to maintain a table of experimental data
with rows corresponding to experiments and columns corre-
sponding to various outcomes, or a programmer might want
to prepare an image for display by setting a table of pixels to
various grayscale values or colors.

The mathematical abstraction corresponding to such
tables is a matrix; the corresponding Java construct is a two-
dimensional array. You are likely to have already encountered
many applications of matrices and two-dimensional arrays,
and you will certainly encounter many others in science, in
engineering, and in computing applications, as we will dem-
onstrate with examples throughout this book. As with vectors
and one-dimensional arrays, many of the most important ap-
plications involve processing large amounts of data, and we
defer considering those applications until we consider input
and output, in SECTION 1.5.

Extending Java array constructs to handle two-dimen-
sional arrays is straightforward. To refer to the element in row i and column j of
a two-dimensional array a[][], we use the notation a[i][j]; to declare a two-di-
mensional array, we add another pair of brackets; and to create the array, we specify
the number of rows followed by the number of columns after the type name (both
within brackets), as follows:

double[][] a = new double[M][N];

We refer to such an array as an M-by-N array. By convention, the first dimension
is the number of rows and the second is the number of columns. As with one-
dimensional arrays, Java initializes all entries in arrays of numbers to zero and in
arrays of boolean values to false.

Initialization. Default initialization of two-dimensional arrays is useful because
it masks more code than for one-dimensional arrays. The following code is equiva-
lent to the single-line create-and-initialize idiom that we just considered:

Anatomy of a
two-dimensional array

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

row 1

column 2

a[1][2]

!"#$%&'(')!"*+,,,:20 ./01/23,,,0425,67

1031.4 Arrays

double[][] a;
a = new double[M][N];
for (int i = 0; i < M; i++)
{ // Initialize the ith row.
 for (int j = 0; j < N; j++)
 a[i][j] = 0.0;
}

This code is superfluous when initializing to zero, but the nested for loops are
needed to initialize to some other value(s). As you will see, this code is a model for
the code that we use to access or modify each element of a two-dimensional array.

Output. We use nested for loops for many array-processing operations. For ex-
ample, to print an M-by-N array in the familiar tabular format, we would use the
following code

for (int i = 0; i < M; i++)
{ // Print the ith row.
 for (int j = 0; j < N; j++)
 System.out.print(a[i][j] + " ");
 System.out.println();
}

regardless of the array elements’ type. If desired, we
could add code to embellish the output with row and
column numbers (see EXERCISE 1.4.6), but Java pro-
grammers typically tabulate arrays with row numbers
running top to bottom from 0 and column number
running left to right from 0. Generally, we also do so
and do not bother to use labels.

Memory representation. Java represents a two-di-
mensional array as an array of arrays. A matrix with
M rows and N columns is actually an array of length
M, each entry of which is an array of length N. In a
two-dimensional Java array a[][], we can use the code
a[i] to refer to the ith row (which is a one-dimen-
sional array), but we have no corresponding way to
refer to a column.

a[][]

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[0][1]

a[1][1]

a[2][1]

a[3][1]

a[0][2]

a[1][2]

a[2][2]

a[3][2]

a[4][0] a[4][1] a[4][2]

a[5][0] a[5][1] a[5][2]

a[6][0]

a[7][0]

a[6][1]

a[7][1]

a[6][2]

a[7][2]

a[8][0] a[8][1] a[8][2]

a[9][0] a[9][1] a[9][2]

A 10-by-3 array

a[5]

!"#$%&'(')!"*+,,,:2. ./01/23,,,0425,67

104 Elements of Programming

Setting values at compile time. The Java method for initial-
izing an array of values at compile time follows immediately
from the representation. A two-dimensional array is an array
of rows, each row initialized as a one-dimensional array. To
initialize a two-dimensional array, we enclose in braces a list
of terms to initialize the rows, separated by commas. Each
term in the list is itself a list: the values for the array elements
in the row, enclosed in braces and separated by commas.

Spreadsheets. One familiar use of arrays is a spreadsheet for
maintaining a table of numbers. For example, a teacher with
M students and N test grades for each student might main-
tain an (M +1)-by-(N +1) array, reserving the last column for
each student’s average grade and the last row for the average
test grades. Even though we typically do such computations
within specialized applications, it is worthwhile to study the
underlying code as an introduction to array processing. To compute the average
grade for each student (average values for each row), sum the entries for each row
and divide by N. The row-by-row order in which this code processes the matrix

Typical spreadsheet calculations

99 85 98 94
98 57 78 77
92 77 76 81
94 32 11 45
99 34 22 51
90 46 54 63
76 59 88 74
92 66 89 82
97 71 24 64
89 29 38 52
92 55 57

row
averages

in column N
N = 3

M = 10

column
averages
in row M

92+77+76
3

85+57+...+29
10

for (int i = 0; i < M; i++)
{ // Compute average for row i
 double sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j];
 a[i][N] = (int) Math.round(sum/N);
}

for (int j = 0; j < N; j++)
{ // Compute average for column j
 double sum = 0.0;
 for (int i = 0; i < M; i++)
 sum += a[i][j];
 a[M][j] = (int) Math.round(sum/M);
}

Compute row averages

Compute column averages

Compile-time initialization
of a two-dimensional array

int[][] a =
{
 { 99, 85, 98, 0 },
 { 98, 57, 78, 0 },
 { 92, 77, 76, 0 },
 { 94, 32, 11, 0 },
 { 99, 34, 22, 0 },
 { 90, 46, 54, 0 },
 { 76, 59, 88, 0 },
 { 92, 66, 89, 0 },
 { 97, 71, 24, 0 },
 { 89, 29, 38, 0 },
 { 0, 0, 0, 0 }
};

!"#$%&'(')!"*+,,,:2- ./01/23,,,0425,67

1051.4 Arrays

entries is known as row-major order. Similarly, to compute the average test grade
(average values for each column), sum the entries for each column and divide by
M. The column-by-column order in which this code processes the matrix entries is
known as column-major order.

Matrix operations. Typical applications in science and
engineering involve representing matrices as two-di-
mensional arrays and then implementing various math-
ematical operations with matrix operands. Again, even
though such processing is often done within specialized
applications, it is worthwhile for you to understand the
underlying computation. For example, we can add two
N-by-N matrices as follows:

 double[][] c = new double[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 c[i][j] = a[i][j] + b[i][j];

Similarly, we can multiply two matrices. You may have
learned matrix multiplication, but if you do not recall or

are not familiar with it, the Java code below for square matrices is es-
sentially the same as the mathematical definition. Each entry c[i][j]
in the product of a[] and b[] is computed by taking the dot product
of row i of a[] with column j of b[].

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
 {
 // Compute dot product of row i and column j.
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
}

The definition extends to matrices that are not necessarily square (see
EXERCISE 1.4.17). Matrix multiplication

.70 .20 .10

.30 .60 .10

.50 .10 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42

row 1

c[1][2] = .3 *.5
 + .6 *.1
 + .1 *.4
 = .25

a[][]

c[][]

.80 .30 .50

.10 .40 .10

.10 .30 .40

column 2
b[][]

Matrix addition

.70 .20 .10

.30 .60 .10

.50 .10 .40

1.5 .50 .60
.40 1.0 .20
.60 .40 .80

c[1][2]

a[][]

c[][]

.80 .30 .50

.10 .40 .10

.10 .30 .40

b[][] b[1][2]

a[1][2]

!"#$%&'(')!"*+,,,:25 ./01/23,,,0425,67

106 Elements of Programming

Special cases of matrix multiplication. Two special cases of matrix multiplication
are important. These special cases occur when one of the dimensions of one of the
matrices is 1, so it may be viewed as a vector. We have matrix-vector multiplication,
where we multiply an M-by-N matrix by a column vector (an N-by-1 matrix) to get

an M-by-1 column vector result (each entry
in the result is the dot product of the corre-
sponding row in the matrix with the oper-
and vector). The second case is vector-matrix
multiplication, where we multiply a row vector
(a 1-by-M matrix) by an M-by-N matrix to
get a 1-by-N row vector result (each entry in
the result is the dot product of the operand
vector with the corresponding column in the
matrix). These operations provide a succinct
way to express numerous matrix calculations.
For example, the row-average computation
for such a spreadsheet with M rows and N
columns is equivalent to a matrix-vector
multiplication where the column vector has
M entries all equal to 1/M. Similarly, the col-
umn-average computation in such a spread-
sheet is equivalent to a vector-matrix multi-
plication where the row vector has N entries
all equal to 1/N. We return to vector-matrix
multiplication in the context of an important
application at the end of this chapter.

Ragged arrays. There is actually no require-
ment that all rows in a two-dimensional array
have the same length—an array with rows of
nonuniform length is known as a ragged array
(see EXERCISE 1.4.32 for an example applica-
tion). The possibility of ragged arrays creates
the need for more care in crafting array-pro-
cessing code. For example, this code prints
the contents of a ragged array:Matrix-vector and vector-matrix multiplication

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

94
77
81
45
51
63
74
82
64
52

row
averages

column
averages

for (int i = 0; i < M; i++)
{ // Dot product of row i and x[].
 for (int j = 0; j < N; j++)
 b[i] += a[i][j]*x[j];
}

for (int j = 0; j < N; j++)
{ // Dot product of y[] and column j.
 for (int i = 0; i < M; i++)
 c[j] += y[i]*a[i][j];
}

Matrix-vector multiplication a[][]*x[] = b[]

Vector-matrix multiplication y[]*a[][] = c[]

.33

.33

.33

a[][]

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

a[][]

y[]

x[]

b[]

c[] [92 55 57]

[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]

!"#$%&'(')!"*+,,,:28 ./01/23,,,0425,67

1071.4 Arrays

for (int i = 0; i < a.length; i++)
{
 for (int j = 0; j < a[i].length; j++)
 System.out.print(a[i][j] + " ");
 System.out.println();
}

This code tests your understanding of Java arrays, so you should take the time to
study it. In this book, we normally use square or rectangular arrays, whose dimen-
sion is given by a variable M or N. Code that uses a[i].length in this way is a clear
signal to you that an array is ragged.

Multidimensional arrays. The same notation extends to allow us to write code
using arrays that have any number of dimensions. For instance, we can declare and
initialize a three-dimensional array with the code

double[][][] a = new double[N][N][N];

and then refer to an entry with code like a[i][j][k], and so forth.

TWO-DIMENSIONAL ARRAYS PROVIDE A NATURAL REPRESENTATION for matrices, which are
omnipresent in science, mathematics, and engineering. They also provide a natural
way to organize large amounts of data, a key factor in spreadsheets and many other
computing applications. Through Cartesian coordinates, two- and three-dimen-
sional arrays also provide the basis for a models of the physical world. We consider
their use in all three arenas throughout this book.

Example: self-avoiding random walks Suppose that you leave
your dog in the middle of a large city whose streets form a familiar grid
pattern. We assume that there are N north-south streets and N east-west
streets all regularly spaced and fully intersecting in a pattern known as a
lattice. Trying to escape the city, the dog makes a random choice of which
way to go at each intersection, but knows by scent to avoid visiting any
place previously visited. But it is possible for the dog to get stuck in a
dead end where there is no choice but to revisit some intersection. What
is the chance that this will happen? This amusing problem is a simple
example of a famous model known as the self-avoiding random walk,
which has important scientific applications in the study of polymers and
in statistical mechanics, among many others. For example, you can see Self-avoiding walks

dead end

escape

!"#$%&'(')!"*+,,,:21 ./01/23,,,0425,67

108 Elements of Programming

that this process models a chain of material growing a bit at a time, until no growth
is possible. To better understand such processes, scientists seek to understand the
properties of self-avoiding walks.

The dog’s escape probability is certainly dependent on the size of the city. In
a tiny 5-by-5 city, it is easy to convince yourself that the dog is certain to escape.
But what are the chances of escape when the city is large? We are also interested in
other parameters. For example, how long is the dog’s path, on the average? How
often does the dog come within one block of a previous position other than the
one just left, on the average? How often does the dog come within one block of
escaping? These sorts of properties are important in the various applications just
mentioned.

SelfAvoidingWalk (PROGRAM 1.4.4) is a simulation of this situation that uses
a two-dimensional boolean array, where each entry represents an intersection. The
value true indicates that the dog has visited the intersection; false indicates that
the dog has not visited the intersection. The path starts in the center and takes ran-
dom steps to places not yet visited until getting stuck or escaping at a boundary. For
simplicity, the code is written so that if a random choice is made to go to a spot that
has already been visited, it takes no action, trusting that some subsequent random
choice will find a new place (which is assured because the code explicitly tests for a
dead end and leaves the loop in that case).

Note that the code depends on Java initializing all of the array entries to false
for each experiment. It also exhibits an important programming technique where
we code the loop exit test in the while statement as a guard against an illegal state-
ment in the body of the loop. In this case, the while loop continuation test serves
as a guard against an out-of-bounds array access within the loop. This corresponds
to checking whether the dog has escaped. Within the loop, a successful dead-end
test results in a break out of the loop.

As you can see from the sample runs, the unfortunate truth is that your dog
is nearly certain to get trapped in a dead end in a large city. If you are interested in
learning more about self-avoiding walks, you can find several suggestions in the ex-
ercises. For example, the dog is virtually certain to escape in the three-dimensional
version of the problem. While this is an intuitive result that is confirmed by our
tests, the development of a mathematical model that explains the behavior of self-
avoiding walks is a famous open problem: despite extensive research, no one knows
a succinct mathematical expression for the escape probability, the average length of
the path, or any other important parameter.

!"#$%&'(')!"*+,,,:29 ./01/23,,,0425,67

1091.4 Arrays

% java SelfAvoidingWalk 5 100
0% dead ends
% java SelfAvoidingWalk 20 100
36% dead ends
% java SelfAvoidingWalk 40 100
80% dead ends
% java SelfAvoidingWalk 80 100
98% dead ends
% java SelfAvoidingWalk 160 100
100% dead ends

Program 1.4.4 Self-avoiding random walks

public class SelfAvoidingWalk
{
 public static void main(String[] args)

 { // Do T random self-avoiding walks
 // in an N-by-N lattice
 int N = Integer.parseInt(args[0]);
 int T = Integer.parseInt(args[1]);
 int deadEnds = 0;
 for (int t = 0; t < T; t++)
 {
 boolean[][] a = new boolean[N][N];
 int x = N/2, y = N/2;
 while (x > 0 && x < N-1 && y > 0 && y < N-1)
 { // Check for dead end and make a random move.
 a[x][y] = true;
 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])
 { deadEnds++; break; }
 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }
 System.out.println(100*deadEnds/T + "% dead ends");
 }
}

This program takes command-line arguments N and T and computes T self-avoiding walks in
an N-by-N lattice. For each walk, it creates a boolean array, starts the walk in the center, and
continues until either a dead end or a boundary is reached. The result of the computation is the
percentage of dead ends. As usual, increasing the number of experiments increases the precision
of the results.

N lattice size
T number of trials

deadEnds trials resulting in a dead end

a[][] intersections visited

x, y current position

r random number in (0, 1)

% java SelfAvoidingWalk 5 1000
0% dead ends
% java SelfAvoidingWalk 20 1000
32% dead ends
% java SelfAvoidingWalk 40 1000
70% dead ends
% java SelfAvoidingWalk 80 1000
95% dead ends
% java SelfAvoidingWalk 160 1000
100% dead ends

!"#$%&'(')!"*+,,,:23 ./01/23,,,0425,67

110 Elements of Programming

Self-avoiding random walks in a 21-by-21 grid

!"#$%&'(')!"*+,,,::2 ./01/23,,,0425,67

1111.4 Arrays

Summary Arrays are the fourth basic element (after assignments, conditionals,
and loops) found in virtually every programming language, completing our cover-
age of basic Java constructs. As you have seen with the sample programs that we
have presented, you can write programs that can solve all sorts of problems using
just these constructs.

Arrays are prominent in many of the programs that we consider, and the basic
operations that we have discussed here will serve you well in addressing many pro-
gramming tasks. When you are not using arrays explicitly (and you are sure to be
doing so frequently), you will be using them implicitly, because all computers have
a memory that is conceptually equivalent to an indexed array.

The fundamental ingredient that arrays add to our programs is a potentially
huge increase in the size of a program’s state. The state of a program can be defined
as the information you need to know to understand what a program is doing. In a
program without arrays, if you know the values of the variables and which state-
ment is the next to be executed, you can normally determine what the program
will do next. When we trace a program, we are essentially tracking its state. When
a program uses arrays, however, there can be too huge a number of values (each of
which might be changed in each statement) for us to effectively track them all. This
difference makes writing programs with arrays more of a challenge than writing
programs without them.

Arrays directly represent vectors and matrices, so they are of direct use in
computations associated with many basic problems in science and engineering. Ar-
rays also provide a succinct notation for manipulating a potentially huge amount
of data in a uniform way, so they play a critical role in any application that involves
processing large amounts of data, as you will see throughout this book.

!"#$%&'(')!"*+,,,::: ./01/23,,,0425,67

112 Elements of Programming

Q&A

Q. Some Java programmers use int a[] instead of int[] a to declare arrays. What’s
the difference?

A. In Java, both are legal and equivalent. The former is how arrays are declared in
C. The latter is the preferred style in Java since the type of the variable int[] more
clearly indicates that it is an array of integers.

Q. Why do array indices start at 0 instead of 1?

A. This convention originated with machine-language programming, where the
address of an array element would be computed by adding the index to the address
of the beginning of an array. Starting indices at 1 would entail either a waste of
space at the beginning of the array or a waste of time to subtract the 1.

Q. What happens if I use a negative number to index an array?

A. The same thing as when you use an index that is too big. Whenever a program
attempts to index an array with an index that is not between zero and the array
length minus one, Java will issue an ArrayIndexOutOfBoundsException and ter-
minate the program.

Q. What happens when I compare two arrays with (a == b)?

A. The expression evaluates to true only if a[] and b[] refer to the same array, not
if they have the same sequence of elements. Unfortunately, this is rarely what you
want.

Q. If a[] is an array, why does System.out.println(a) print out a hexadecimal
integer, like @f62373 , instead of the elements of the array?

A. Good question. It is printing out the memory address of the array, which, un-
fortunately, is rarely what you want.

Q. What other pitfalls should I watch out for when using arrays?

A. It is very important to remember that Java always initializes arrays when you
create them, so that creating an array takes time proportional to the size of the array.

!"#$%&'(')!"*+,,,::0 ./01/23,,,0425,67

1131.4 Arrays

Exercises

1.4.1 Write a program that declares and initializes an array a[] of size 1000 and
accesses a[1000]. Does your program compile? What happens when you run it?

1.4.2 Describe and explain what happens when you try to compile a program
with the following statement:

int N = 1000;
int[] a = new int[N*N*N*N];

1.4.3 Given two vectors of length N that are represented with one-dimensional
arrays, write a code fragment that computes the Euclidean distance between them
(the square root of the sums of the squares of the differences between correspond-
ing entries).

1.4.4 Write a code fragment that reverses the order of a one-dimensional array
a[] of String values. Do not create another array to hold the result. Hint : Use the
code in the text for exchanging two elements.

1.4.5 What is wrong with the following code fragment?

int[] a;
for (int i = 0; i < 10; i++)
 a[i] = i * i;

Solution. It does not allocate memory for a[] with new. This code results in a
variable a might not have been initialized compile-time error.

1.4.6 Write a code fragment that prints the contents of a two-dimensional bool-
ean array, using * to represent true and a space to represent false. Include row and
column numbers.

1.4.7 What does the following code fragment print?

int[] a = new int[10];
for (int i = 0; i < 10; i++)
 a[i] = 9 - i;
for (int i = 0; i < 10; i++)
 a[i] = a[a[i]];
for (int i = 0; i < 10; i++)
 System.out.println(a[i]);

!"#$%&'(')!"*+,,,::. ./01/23,,,0425,67

114 Elements of Programming

1.4.8 What values does the following code put in the array a[]?

int N = 10;
int[] a = new int[N];
a[0] = 1;
a[1] = 1;
for (int i = 2; i < N; i++)
 a[i] = a[i-1] + a[i-2];

1.4.9 What does the following code fragment print?

int[] a = { 1, 2, 3 };
int[] b = { 1, 2, 3 };
System.out.println(a == b);

1.4.10 Write a program Deal that takes an command-line argument N and prints
N poker hands (five cards each) from a shuffled deck, separated by blank lines.

1.4.11 Write code fragments to create a two-dimensional array b[][] that is a
copy of an existing two-dimensional array a[][], under each of the following as-
sumptions:

a. a[][] is square

b. a[][] is rectangular

c. a[][] may be ragged
Your solution to b should work for a, and your solution to c should work for both
b and a, but your code should get progressively more complicated.

1.4.12 Write a code fragment to print the transposition (rows and columns
changed) of a square two-dimensional array. For the example spreadsheet array in
the text, you code would print the following:

99 98 92 94 99 90 76 92 97 89
85 57 77 32 34 46 59 66 71 29
98 78 76 11 22 54 88 89 24 38

1.4.13 Write a code fragment to transpose a square two-dimensional array in place
without creating a second array.

!"#$%&'(')!"*+,,,::- ./01/23,,,0425,67

1151.4 Arrays

1.4.14 Write a program that takes an integer N from the command line and cre-
ates an N-by-N boolean array a[][] such that a[i][j] is true if i and j are rela-
tively prime (have no common factors), and false otherwise. Use your solution to
EXERCISE 1.4.6 to print the array. Hint: Use sieving.

1.4.15 Write a program that computes the product of two square matrices of
boolean values, using the or operation instead of + and the and operation instead
of *.

1.4.16 Modify the spreadsheet code fragment in the text to compute a weighted
average of the rows, where the weights of each test score are in a one-dimensional
array weights[]. For example, to assign the last of the three tests in our example to
be twice the weight of the others, you would use

double[] weights = { .25, .25, .50 };

Note that the weights should sum to 1.

1.4.17 Write a code fragment to multiply two rectangular matrices that are not
necessarily square. Note: For the dot product to be well-defined, the number of col-
umns in the first matrix must be equal to the number of rows in the second matrix.
Print an error message if the dimensions do not satisfy this condition.

1.4.18 Modify SelfAvoidingWalk (PROGRAM 1.4.4) to calculate and print the av-
erage length of the paths as well as the dead-end probability. Keep separate the
average lengths of escape paths and dead-end paths.

1.4.19 Modify SelfAvoidingWalk to calculate and print the average area of the
smallest axis-oriented rectangle that encloses the path. Keep separate statistics for
escape paths and dead-end paths.

!"#$%&'(')!"*+,,,::5 ./01/23,,,0425,67

116 Elements of Programming

Creative Exercises

1.4.20 Dice simulation. The following code computes the exact probability distri-
bution for the sum of two dice:

double[] dist = new double[13];
for (int i = 1; i <= 6; i++)
 for (int j = 1; j <= 6; j++)
 dist[i+j] += 1.0;

for (int k = 1; k <= 12; k++)
 dist[k] /= 36.0;

The value dist[k] is the probability that the dice sum to k. Run experiments to
validate this calculation simulating N dice throws, keeping track of the frequencies
of occurrence of each value when you compute the sum of two random integers
between 1 and 6. How large does N have to be before your empirical results match
the exact results to three decimal places?

1.4.21 Longest plateau. Given an array of integers, find the length and location of
the longest contiguous sequence of equal values where the values of the elements
just before and just after this sequence are smaller.

1.4.22 Empirical shuffle check. Run computational experiments to check that our
shuffling code works as advertised. Write a program ShuffleTest that takes com-
mand-line arguments M and N, does N shuffles of an array of size M that is initial-
ized with a[i] = i before each shuffle, and prints an M-by-M table such that row
i gives the number of times i wound up in position j for all j. All entries in the
array should be close to N/M.

1.4.23 Bad shuffling. Suppose that you choose a random integer between 0 and
N-1 in our shuffling code instead of one between i and N-1. Show that the resulting
order is not equally likely to be one of the N! possibilities. Run the test of the previ-
ous exercise for this version.

1.4.24 Music shuffling. You set your music player to shuffle mode. It plays each of
the N songs before repeating any. Write a program to estimate the likelihood that
you will not hear any sequential pair of songs (that is, song 3 does not follow song
2, song 10 does not follow song 9, and so on).

!"#$%&'(')!"*+,,,::8 ./01/23,,,0425,67

1171.4 Arrays

1.4.24 Minima in permutations. Write a program that takes an integer N from
the command line, generates a random permutation, prints the permutation, and
prints the number of left-to-right minima in the permutation (the number of times
an element is the smallest seen so far). Then write a program that takes integers M
and N from the command line, generates M random permutations of size N, and
prints the average number of left-to-right minima in the permutations generated.
Extra credit : Formulate a hypothesis about the number of left-to-right minima in
a permutation of size N, as a function of N.

1.4.25 Inverse permutation. Write a program that reads in a permutation of the
integers 0 to N-1 from N command-line arguments and prints the inverse permu-
tation. (If the permutation is in an array a[], its inverse is the array b[] such that
a[b[i]] = b[a[i]] = i.) Be sure to check that the input is a valid permutation.

1.4.26 Hadamard matrix. The N-by-N Hadamard matrix H(N) is a boolean ma-
trix with the remarkable property that any two rows differ in exactly N/2 entries.
(This property makes it useful for designing error-correcting codes.) H(1) is a
1-by-1 matrix with the single entry true, and for N>1, H(2N) is obtained by align-
ing four copies of H(N) in a large square, and then inverting all of the entries in the
lower right N-by-N copy, as shown in the following examples (with T representing
true and F representing false, as usual).

H(1) H(2) H(4)
T T T T T T T

T F T F T F

T T F F

T F F T

Write a program that takes one command-line argument N and prints H(N). As-
sume that N is a power of 2.

1.4.27 Rumors. Alice is throwing a party with N other guests, including Bob. Bob
starts a rumor about Alice by telling it to one of the other guests. A person hearing
this rumor for the first time will immediately tell it to one other guest, chosen at
random from all the people at the party except Alice and the person from whom

!"#$%&'(')!"*+,,,::1 ./01/23,,,0425,67

118 Elements of Programming

they heard it. If a person (including Bob) hears the rumor for a second time, he or
she will not propagate it further. Write a program to estimate the probability that
everyone at the party (except Alice) will hear the rumor before it stops propagating.
Also calculate an estimate of the expected number of people to hear the rumor.

1.4.28 Find a duplicate. Given an array of N elements with each element between
1 and N, write an algorithm to determine whether there are any duplicates. You do
not need to preserve the contents of the given array, but do not use an extra array.

1.4.29 Counting primes. Compare PrimeSieve with the method that we used to
demonstrate the break statement, at the end of SECTION 1.3. This is a classic example
of a time-space tradeoff: PrimeSieve is fast, but requires a boolean array of size
N; the other approach uses only two integer variables, but is substantially slower.
Estimate the magnitude of this difference by finding the value of N for which this
second approach can complete the computation in about the same time as java
PrimeSeive 1000000.

1.4.30 Minesweeper. Write a program that takes 3 command-line arguments M,
N, and p and produces an M-by-N boolean array where each entry is occupied with
probability p. In the minesweeper game, occupied cells represent bombs and empty
cells represent safe cells. Print out the array using an asterisk for bombs and a period
for safe cells. Then, replace each safe square with the number of neighboring bombs
(above, below, left, right, or diagonal) and print out the solution.

* * . . . * * 1 0 0
. 3 3 2 0 0
. * . . . 1 * 1 0 0

Try to write your code so that you have as few special cases as possible to deal with,
by using an (M"2)-by-(N"2) boolean array.

1.4.31 Self-avoiding walk length. Suppose that there is no limit on the size of the
grid. Run experiments to estimate the average walk length.

1.4.32 Three-dimensional self-avoiding walks. Run experiments to verify that the
dead-end probability is 0 for a three-dimensional self-avoiding walk and to com-
pute the average walk length for various values of N.

!"#$%&'(')!"*+,,,::9 ./01/23,,,0425,67

1191.4 Arrays

1.4.33 Random walkers. Suppose that N random walkers, starting in the center
of an N-by-N grid, move one step at a time, choosing to go left, right, up, or down
with equal probability at each step. Write a program to help formulate and test a
hypothesis about the number of steps taken before all cells are touched.

1.4.34 Bridge hands. In the game of bridge, four players are dealt hands of 13
cards each. An important statistic is the distribution of the number of cards in each
suit in a hand. Which is the most likely, 5-3-3-2, 4-4-3-2, or 4-3-3-3?

1.4.35 Birthday problem. Suppose that people enter an empty room until a pair
of people share a birthday. On average, how many people will have to enter before
there is a match? Run experiments to estimate the value of this quantity. Assume
birthdays to be uniform random integers between 0 and 364.

1.4.36 Coupon collector. Run experiments to validate the classical mathematical
result that the expected number of coupons needed to collect N values is about
NHN. For example, if you are observing the cards carefully at the blackjack table
(and the dealer has enough decks randomly shuffled together), you will wait until
about 235 cards are dealt, on average, before seeing every card value.

1.4.37 Binomial coefficients. Write a program that builds and prints a two-dimen-
sional ragged array a such that a[N][k] contains the probability that you get exactly
k heads when you toss a coin N times. Take a command-line argument to specify the
maximum value of N. These numbers are known as the binomial distribution: if you
multiply each entry in row i by 2 N, you get the binomial coefficients (the coefficients
of x k in (x+1)N) arranged in Pascal’s triangle. To compute them, start with a[N][0]
= 0 for all N and a[1][1] = 1, then compute values in successive rows, left to right,
with a[N][k] = (a[N-1][k] + a[N-1][k-1])/2.

Pascal’s triangle binomial distribution
1 1

1 1 1/2 1/2

1 2 1 1/4 1/2 1/4

1 3 3 1 1/8 3/8 3/8 1/8

1 4 6 4 1 1/16 1/4 3/8 1/4 1/16

!"#$%&'(')!"*+,,,::3 ./01/23,,,0425,67

Elements of Programming

1.5 Input and Output

IN THIS SECTION WE EXTEND THE set of simple abstractions (command-line input and
standard output) that we have been using as the interface between our Java pro-
grams and the outside world to include
standard input, standard drawing, and
standard audio. Standard input makes it
convenient for us to write programs that
process arbitrary amounts of input and
to interact with our programs; standard
drawing makes it possible for us to work
with graphical representations of images,
freeing us from having to encode every-
thing as text; and standard audio adds
sound. These extensions are easy to use, and you will find that they bring you to yet
another new world of programming.

The abbreviation I/O is universally understood to mean input/output, a col-
lective term that refers to the mechanisms by which programs communicate with
the outside world. Your computer’s operating system controls the physical devices
that are connected to your computer. To implement the standard I/O abstractions,
we use libraries of methods that interface to the operating system.

You have already been accepting argument values from the command line
and printing strings in a terminal window; the purpose of this section is to provide
you with a much richer set of tools for processing and presenting data. Like the
System.out.print() and System.out.println() methods that you have been
using, these methods do not implement mathematical functions—their purpose is
to cause some side effect, either on an input device or an output device. Our prime
concern is using such devices to get information into and out of our programs.

An essential feature of standard I/O mechanisms is that there is no limit on
the amount of input or output data, from the point of view of the program. Your
programs can consume input or produce output indefinitely.

One use of standard I/O mechanisms is to connect your programs to files on
your computer’s disk. It is easy to connect standard input, standard output, stan-
dard drawing, and standard audio to files. Such connections make it easy to have
your Java programs save or load results to files for archival purposes or for later
reference by other programs or other applications.

1.5.1 Generating a random sequence . . . 122
1.5.2 Interactive user input 129
1.5.3 Averaging a stream of numbers . . . 130
1.5.4 A simple filter 134
1.5.5 Input-to-drawing filter 139
1.5.6 Bouncing ball 145
1.5.7 Digital signal processing 150

 Programs in this section

!"#$%&'(')!"*+,,,:02 ./01/23,,,0425,67

1211.5 Input and Output

Bird’s-eye view The conventional model that we have been using for Java pro-
gramming has served us since SECTION 1.1. To build context, we begin by briefly
reviewing the model.

A Java program takes input values from the command line and prints a string
of characters as output. By default, both command-line input and standard output
are associated with the application that takes commands (the one in which you
have been typing the java and javac commands). We use the generic term termi-
nal window to refer to this application. This model has proven to be a convenient
and direct way for us to interact with our programs and data.

Command-line input. This mechanism, which we have been using to provide
input values to our programs, is a standard part of Java programming. All classes
have a main() method that takes a String array args[] as its argument. That ar-
ray is the sequence of command-line arguments that we type, provided to Java by
the operating system. By convention, both Java and the operating system process
the arguments as strings, so if we intend for an argument to be a number, we use
a method such as Integer.parseInt() or Double.parseDouble() to convert it
from String to the appropriate type.

Standard output. To print output values in our programs, we have been using
the system methods System.out.println() and System.out.print(). Java puts
the results of a program’s sequence of calls on these methods into the form of an
abstract stream of characters known as standard output. By default, the operating
system connects standard output to the terminal window. All of the output in our
programs so far has been appearing in the terminal window.

For reference, and as a starting point, RandomSeq (PROGRAM 1.5.1) is a program
that uses this model. It takes a command-line argument N and produces an output
sequence of N random numbers between 0 and 1.

NOW WE ARE GOING TO COMPLEMENT command-line input and standard output with
three additional mechanisms that address their limitations and provide us with a
far more useful programming model. These mechanisms give us a new bird’s-eye
view of a Java program in which the program converts a standard input stream and
a sequence of command-line arguments into a standard output stream, a standard
drawing, and a standard audio stream.

!"#$%&'(')!"*+,,,:0: ./01/23,,,0425,67

122 Elements of Programming

Standard input. Our class StdIn is a library that implements a standard input
abstraction to complement the standard output abstraction. Just as you can print
a value to standard output at any time during the execution of your program, you
can read a value from a standard input stream at any time.

Standard drawing. Our class StdDraw allows you to create drawings with your
programs. It uses a simple graphics model that allows you to create drawings con-
sisting of points and lines in a window on your computer. StdDraw also includes
facilities for text, color, and animation.

Standard audio. Our class StdAudio allows you to create sound with your pro-
grams. It uses a standard format to convert arrays of numbers into sound.

% java RandomSeq 1000000
0.2498362534343327
0.5578468691774513
0.5702167639727175
0.32191774192688727
0.6865902823177537
...

Program 1.5.1 Generating a random sequence

public class RandomSeq
{
 public static void main(String[] args)
 { // Print a random sequence of N real values in [0, 1)
 int N = Integer.parseInt(args[0]);
 for (int i = 0; i < N; i++)
 System.out.println(Math.random());
 }
}

This program illustrates the conventional model that we have been using so far for Java pro-
gramming. It takes a command-line argument N and prints N random numbers between 0 and
1. From the program’s point of view, there is no limit on the length of the output sequence.

!"#$%&'(')!"*+,,,:00 ./01/23,,,0425,67

1231.5 Input and Output

To use both command-line input and standard output, you have been using built-in
Java facilities. Java also has built-in facilities that support abstractions like standard
input, standard draw, and standard audio, but they are somewhat more complicated
to use, so we have developed a simpler interface
to them in our StdIn, StdDraw, and StdAudio li-
braries. To logically complete our programming
model, we also include a StdOut library. To use
these libraries, download StdIn.java, StdOut.
java, StdDraw.java, and StdAudio.java and
place them in the same directory as your pro-
gram (or use one of the other mechanisms for
sharing libraries described on the booksite).

The standard input and standard output
abstractions date back to the development of
the UNIX operating system in the 1970s and are
found in some form on all modern systems. Al-
though they are primitive by comparison to vari-
ous mechanisms developed since, modern programmers still depend on them as a
reliable way to connect data to programs. We have developed for this book standard
draw and standard audio in the same spirit as these earlier abstractions to provide
you with an easy way to produce visual and aural output.

Standard output Java’s System.out.print() and System.out.println()
methods implement the basic standard output abstraction that we need. Never-
theless, to treat standard input and standard output in a uniform manner (and
to provide a few technical improvements), starting in this section and continuing
through the rest of the book, we use similar methods that are defined in our StdOut
library. StdOut.print() and StdOut.println() are nearly the same as the Java
methods that you have been using (see the booksite for a discussion of the differ-
ences, which need not concern you now). The StdOut.printf() method is a main
topic of this section and will be of interest to you now because it gives you more
control over the appearance of the output. It was a feature of the C language of the
early 1970s that still survives in modern languages because it is so useful.

Since the first time that we printed double values, we have been distracted by
excessive precision in the printed output. For example, when we use System.out.
print(Math.PI) we get the output 3.141592653589793, even though we might

standard input command-line
arguments

standard output

standard drawing

standard audio

A bird’s-eye view of a Java program (revisited)

!"#$%&'(')!"*+,,,:0. ./01/23,,,0425,67

124 Elements of Programming

prefer to see 3.14 or 3.14159. The print() and println() methods present each
number to 15 decimal places even when we would be happy with just a few digits
of precision. The printf() method is more flexible: it allows us to specify the
number of digits and the precision when converting data type values to strings for
output. With printf(), we can write StdOut.printf("%7.5f", Math.PI) to get
3.14159, and we can replace System.out.print(t) with

StdOut.printf("The square root of %.1f is %.6f", c, t);

in Newton (PROGRAM 1.3.6) to get output like

The square root of 2.0 is 1.414214

Next, we describe the meaning and operation of these statements, along with ex-
tensions to handle the other built-in types of data.

Formatted printing basics. In its simplest form, printf() takes two arguments.
The first argument is a format string that describes how to convert the second ar-
gument into a string for output. The simplest type of format string begins with %
and ends with a one-letter conversion code. The conversion codes that we use most
frequently are d (for decimal values from Java’s integer types), f (for floating-point

values), and s (for String values). Between the %
and the conversion code is an integer that specifies
the field width of the converted value (the number
of characters in the converted output string). By
default, blanks are added on the left to make the
length of the converted output equal to the field
width; if we want the blanks on the right, we can
insert a minus sign before the field width. (If the

format
string

Anatomy of a formatted print statement

StdOut.printf(" % 7 . 5 f " , Math.PI)

number to print

conversion codefield width
precision

public class StdOut

void print(String s) print s

void println(String s) print s, followed by newline

void println() print a new line

void printf(String f, ...) formatted print

API for our library of static methods for standard output

!"#$%&'(')!"*+,,,:0- ./01/23,,,0425,67

1251.5 Input and Output

converted output string is larger than the field width, the field width is ignored.)
Following the width, we have the option of including a period followed by the
number of digits to put after the decimal point (the precision) for a double value
or the number of characters to take from the beginning of the string for a String
value. The most important thing to remember about using printf() is that the
conversion code in the format and the type of the corresponding argument must match.
That is, Java must be able to convert from the type of the argument to the type re-
quired by the conversion code. Every type of data can be converted to String, but
if you write StdOut.printf("%12d", Math.PI) or StdOut.printf("%4.2f",
512), you will get an IllegalFormatConversionException run-time error.

Format string. The first argument of printf() is a String that may contain
characters other than a format string. Any part of the argument that is not part of a
format string passes through to the output, with the format string replaced by the
argument value (converted to a string as specified). For example, the statement

StdOut.printf("PI is approximately %.2f\n", Math.PI);

prints the line

PI is approximately 3.14

Note that we need to explicitly include the newline character \n in the argument in
order to print a new line with printf().

type code typical
literal

sample
format strings

converted string
values for output

int d 512 "%14d"
"%-14d"

" 512"
"512 "

double
f

1595.1680010754388
"%14.2f"
"%.7f"
"%14.4e"

" 1595.17"
"1595.1680011"
" 1.5952e+03"e

String s "Hello, World"
"%14s"
"%-14s"
"%-14.5s"

" Hello, World"
"Hello, World "
"Hello "

Format conventions for printf() (see the booksite for many other options)

!"#$%&'(')!"*+,,,:05 ./01/23,,,0425,67

126 Elements of Programming

Multiple arguments. The printf() function can take more than two arguments.
In this case, the format string will have a format specifier for each additional argu-
ment, perhaps separated by other characters to pass through to the output. For
example, if you were making payments on a loan, you might use code whose inner
loop contains the statements

String formats = "%3s $%6.2f $%7.2f $%5.2f\n";
StdOut.printf(formats, month[i], pay, balance, interest);

to print the second and subsequent lines in a table like this (see EXERCISE 1.5.14):

 payment balance interest
Jan $299.00 $9742.67 $41.67
Feb $299.00 $9484.26 $40.59
Mar $299.00 $9224.78 $39.52
...

Formatted printing is convenient because this sort of code is much more compact
than the string-concatenation code that we have been using.

Standard input Our StdIn library takes data from a standard input stream that
may be empty or may contain a sequence of values separated by whitespace (spaces,
tabs, newline characters, and the like). Each value is a String or a value from one of
Java’s primitive types. One of the key features of the standard input stream is that
your program consumes values when it reads them. Once your program has read
a value, it cannot back up and read it again. This assumption is restrictive, but it
reflects physical characteristics of some input devices and simplifies implementing
the abstraction. The library consists of the nine methods: isEmpty(), readInt(),
readDouble(), readLong(), readBoolean(), readChar(), readString(), read-
Line(), and readAll(). Within the input stream model, these methods are large-
ly self-documenting (the names describe their effect), but their precise operation is
worthy of careful consideration, so we will consider several examples in detail.

Typing input. When you use the java command to invoke a Java program from
the command line, you actually are doing three things: issuing a command to start
executing your program, specifying the values of the command line arguments,
and beginning to define the standard input stream. The string of characters that
you type in the terminal window after the command line is the standard input
stream. When you type characters, you are interacting with your program. The

!"#$%&'(')!"*+,,,:08 ./01/23,,,0425,67

1271.5 Input and Output

program waits for you to create the standard input stream. For example, consider
the following program, which takes a command-line argument N, then reads N
numbers from standard input and adds them:

public class AddInts
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int sum = 0;
 for (int i = 0; i < N; i++)
 {
 int value = StdIn.readInt();
 sum += value;
 }
 StdOut.println("Sum is " + sum);
 }
}

When you type java AddInts 4, after the program takes the command-line argu-
ment, it calls the method StdIn.readInt() and waits for you to type an integer.
Suppose that you want 144 to be the first value. As you type 1, then 4, and then 4,
nothing happens, because StdIn does not know that you are done typing the in-
teger. But when you then type <return> to signify the end of your integer, StdIn.
readInt() immediately returns the value 144, which your program adds to sum

public class StdIn

boolean isEmpty() true if no more values, false otherwise

int readInt() read a value of type int

double readDouble() read a value of type double

long readLong() read a value of type long

boolean readBoolean() read a value of type boolean

char readChar() read a value of type char

String readString() read a value of type String

String readLine() read the rest of the line

String readAll() read the rest of the text

API for our library of static methods for standard input

!"#$%&'(')!"*+,,,:01 ./01/23,,,0425,67

128 Elements of Programming

and then calls StdIn.readInt() again. Again, nothing happens until you type the
second value: if you type 2, then 3, then 3, and then <return> to end the number,
StdIn.readInt() returns the value 233, which your program again adds to sum.
After you have typed four numbers in this way, AddInts expects no more input and
prints out the sum, as desired.

Input format. If you type abc or 12.2 or true when
StdIn.readInt() is expecting an int, it will respond
with a NumberFormatException. The format for each
type is the same as you have been using for literal val-
ues within Java programs. For convenience, StdIn treats
strings of consecutive whitespace characters as identical
to one space and allows you to delimit your numbers
with such strings. It does not matter how many spaces
you put between numbers, or whether you enter num-
bers on one line or separate them with tab characters
or spread them out over several lines, (except that your
terminal application processes standard input one line at a time, so it will wait un-
til you type <return> before sending all of the numbers on that line to standard
input). You can mix values of different types in an input stream, but whenever the
program expects a value of a particular type, the input stream must have a value
of that type.

Interactive user input. TwentyQuestions (PROGRAM 1.5.2) is a simple example
of a program that interacts with its user. The program generates a random integer
and then gives clues to a user trying to guess the number. (As a side note: by using
binary search, you can always get to the answer in at most twenty questions. See
SECTION 4.2.) The fundamental difference between this program and others that
we have written is that the user has the ability to change the control flow while the
program is executing. This capability was very important in early applications of
computing, but we rarely write such programs nowadays because modern applica-
tions typically take such input through the graphical user interface, as discussed
in CHAPTER 3. Even a simple program like TwentyQuestions illustrates that writ-
ing programs that support user interaction is potentially very difficult because you
have to plan for all possible user inputs.

command line

standard output stream

Anatomy of a command

% java AddInts 4

144

233

377

1024

Sum is 1778

standard input stream

command-line
argument

!"#$%&'(')!"*+,,,:09 ./01/23,,,0425,67

1291.5 Input and Output

% java TwentyQuestions
I’m thinking of a number between 1 and 1,000,000
What’s your guess? 500000
Too high
What’s your guess? 250000
Too low
What’s your guess? 375000
Too high
What’s your guess? 312500
Too high
What’s your guess? 300500
Too low
...

Program 1.5.2 Interactive user input

public class TwentyQuestions
{
 public static void main(String[] args)
 { // Generate a number and answer questions
 // while the user tries to guess the value.
 int N = 1 + (int) (Math.random() * 1000000);
 StdOut.print("I'm thinking of a number ");
 StdOut.println("between 1 and 1,000,000");
 int m = 0;
 while (m != N)
 { // Solicit one guess and provide one answer
 StdOut.print("What's your guess? ");
 m = StdIn.readInt();
 if (m == N) StdOut.println("You win!");
 if (m < N) StdOut.println("Too low ");
 if (m > N) StdOut.println("Too high");
 }
 }
}

This program plays a simple guessing game. You type numbers, each of which is an implicit
question (“Is this the number?”) and the program tells you whether your guess is too high or
too low. You can always get it to print You win! with less than twenty questions. To use this
program, you need to first download StdIn.java and StdOut.java into the same directory
as this code (which is in a file named TwentyQuestions.java).

N hidden value
m user’s guess

!"#$%&'(')!"*+,,,:03 ./01/23,,,0425,67

130 Elements of Programming

Processing an arbitrary-size input stream. Typically, input streams are finite:
your program marches through the input stream, consuming values until the
stream is empty. But there is no restriction of the size of the input stream, and some
programs simply process all the input presented to them. Average (PROGRAM 1.5.3)
is an example that reads in a sequence of real numbers from standard input and
prints their average. It illustrates a key property of using an input stream: the length

% java Average
10.0 5.0 6.0
3.0
7.0 32.0
<ctrl-d>
Average is 10.5

% java RandomSeq 100000 > data.txt
% java Average < data.txt
Average is 0.5010473676174824

% java RandomSeq 100000 | java Average
Average is 0.5000499417963857

Program 1.5.3 Averaging a stream of numbers

public class Average
{
 public static void main(String[] args)
 { // Average the numbers on the input stream.
 double sum = 0.0;
 int cnt = 0;
 while (!StdIn.isEmpty())
 { // Read a number and cumulate the sum.
 double value = StdIn.readDouble();
 sum += value;
 cnt++;
 }
 double average = sum / cnt;
 StdOut.println("Average is " + average);
 }
}

This program reads in a sequence of real numbers from standard input and prints their average
on standard output (provided that the sum does not overflow). From its point of view, there is
no limit on the size of the input stream. The commands on the right below use redirection and
piping (discussed in the next subsection) to provide 100,000 numbers to average.

cnt count of numbers read
sum cumulated sum

!"#$%&'(')!"*+,,,:.2 ./01/23,,,0425,67

1311.5 Input and Output

of the stream is not known to the program. We type all the numbers that we have,
and then the program averages them. Before reading each number, the program
uses the method StdIn.isEmpty() to check whether there are any more numbers
in the input stream. How do we signal that we have no more data to type? By con-
vention, we type a special sequence of characters known as the end-of-file sequence.
Unfortunately, the terminal applications that we typically encounter on modern
operating systems use different conventions for this critically important sequence.
In this book, we use <ctrl-d> (many systems require <ctrl-d> to be on a line by
itself); the other widely used convention is <ctrl-z> on a line by itself. Average
is a simple program, but it represents a profound new capability in programming:
with standard input, we can write programs that process an unlimited amount of
data. As you will see, writing such programs is an effective approach for numerous
data-processing applications.

STANDARD INPUT IS A SUBSTANTIAL STEP up from the command-line input model that
we have been using, for two reasons, as illustrated by TwentyQuestions and Aver-
age. First, we can interact with our program—with command-line arguments, we
can only provide data to the program before it begins execution. Second, we can
read in large amounts of data—with command-line arguments, we can only enter
values that fit on the command line. Indeed, as illustrated by Average, the amount
of data can be potentially unlimited, and many programs are made simpler by that
assumption. A third raison d’être for standard input is that your operating system
makes it possible to change the source of standard input, so that you do not have to
type all the input. Next, we consider the mechanisms that enable this possibility.

Redirection and piping For many applications, typing input data as a stan-
dard input stream from the terminal window is untenable because our program’s
processing power is then limited by the amount of data that we can type (and our
typing speed). Similarly, we often want to save the information printed on the stan-
dard output stream for later use. To address such limitations, we next focus on the
idea that standard input is an abstraction—the program just expects its input and
has no dependence on the source of the input stream. Standard output is a similar
abstraction. The power of these abstractions derives from our ability (through the
operating system) to specify various other sources for standard input and standard
output, such as a file, the network, or another program. All modern operating sys-
tems implement these mechanisms.

!"#$%&'(')!"*+,,,:.: ./01/23,,,0425,67

132 Elements of Programming

Redirecting standard output to a file. By adding a simple directive to the com-
mand that invokes a program, we can redirect its standard output to a file, either for
permanent storage or for input to another program at a later time. For example,

% java RandomSeq 1000 > data.txt

specifies that the standard output stream is not to be printed in the terminal win-
dow, but instead is to be written to a text file named data.txt. Each call to Sys-
tem.out.print() or System.out.println() appends text at the end of that file.
In this example, the end result is a file that contains 1,000 random values. No out-
put appears in the terminal window: it goes directly into the file named after the >
symbol. Thus, we can save away information for later retrieval. Note that we do not

have to change RandomSeq (PROGRAM 1.5.1) in any way
for this mechanism to work—it is using the standard
output abstraction and is unaffected by our use of a
different implementation of that abstraction. You can
use this mechanism to save output from any program
that you write. Once we have expended a significant
amount of effort to obtain a result, we often want to
save the result for later reference. In a modern system,

you can save some information by using cut-and-paste or some similar mecha-
nism that is provided by the operating system, but cut-and-paste is inconvenient
for large amounts of data. By contrast, redirection is specifically designed to make
it easy to handle large amounts of data.

Redirecting from a file to standard input. Similarly, we can redirect standard
input so that StdIn reads data from a file instead of the terminal application:

% java Average < data.txt

This command reads a sequence of numbers from the file data.txt and computes
their average value. Specifically, the < symbol is a directive that tells the operating
system to implement the standard input stream
by reading from the text file data.txt instead of
waiting for the user to type something into the
terminal window. When the program calls St-
dIn.readDouble(), the operating system reads
the value from the file. The file data.txt could

Redirecting standard output to a file

standard output

RandomSeq

java RandomSeq 1000 > data.txt

data.txt

Redirecting from a file to standard input

standard input

Average

java Average < data.txt
data.txt

!"#$%&'(')!"*+,,,:.0 ./01/23,,,0425,67

1331.5 Input and Output

have been created by any application, not just a Java program—virtually every ap-
plication on your computer can create text files. This facility to redirect from a file
to standard input enables us to create data-driven code where we can change the
data processed by a program without having to change the program at all. Instead,
we keep data in files and write programs that read from standard input.

Connecting two programs. The most flexible way to implement the standard in-
put and standard output abstractions is to specify that they are implemented by
our own programs! This mechanism is called piping. For example, the command

% java RandomSeq 1000 | java Average

specifies that the standard output for RandomSeq and the standard input stream for
Average are the same stream. The effect is as if RandomSeq were typing the num-
bers it generates into the terminal window while Average is running. This example
also has the same effect as the following sequence of commands:

% java RandomSeq 1000 > data.txt
% java Average < data.txt

In this case, the file data.txt is not created. This difference is profound, because
it removes another limitation on the size of the input and output streams that we
can process. For example, we could replace 1000 in our example with 1000000000,
even though we might not have the
space to save a billion numbers on our
computer (we do need the time to pro-
cess them, however). When RandomSeq
calls System.out.println(), a string
is added to the end of the stream; when
Average calls StdIn.readInt(), a
string is removed from the beginning
of the stream. The timing of precisely
what happens is up to the operating
system: it might run RandomSeq until it produces some output, and then run Av-
erage to consume that output, or it might run Average until it needs some output,
and then run RandomSeq until it produces the needed output. The end result is the
same, but our programs are freed from worrying about such details because they
work solely with the standard input and standard output abstractions.

Piping the output of one program to the input of another

standard inputstandard output

RandomSeq

java RandomSeq 1000 | java Average

Average

!"#$%&'(')!"*+,,,:.. ./01/23,,,0425,67

134 Elements of Programming

Filters. Piping, a core feature of the original UNIX system of the early 1970s, still
survives in modern systems because it is a simple abstraction for communicating
among disparate programs. Testimony to the power of this abstraction is that many
UNIX programs are still being used today to process files that are thousands or mil-
lions of times larger than imagined by the programs’ authors. We can communicate
with other Java programs via calls on methods, but standard input and standard
output allow us to communicate with programs that were written at another time
and, perhaps, in another language. With standard input and standard output, we
are agreeing on a simple interface to the outside world. For many common tasks,
it is convenient to think of each program as a filter that converts a standard input
stream to a standard output stream in some way, with piping as the command

% java RangeFilter 100 400
358 1330 55 165 689 1014 3066 387 575 843 203 48 292 877 65 998
<ctrl-d>
358 165 387 203 292

Program 1.5.4 A simple filter

public class RangeFilter
{
 public static void main(String[] args)
 { // Filter out numbers not between lo and hi.
 int lo = Integer.parseInt(args[0]);
 int hi = Integer.parseInt(args[1]);
 while (!StdIn.isEmpty())
 { // Process one number.
 int t = StdIn.readInt();
 if (t >= lo && t <= hi) StdOut.print(t + " ");
 }
 StdOut.println();
 }
}

This filter copies to the output stream the numbers from the input stream that fall inside the
range given by the command-line parameters. There is no limit on the length of the streams.

lo lower bound of range
hi upper bound of range

t current number

!"#$%&'(')!"*+,,,:.- ./01/23,,,0425,67

1351.5 Input and Output

mechanism to connect programs together. For example, RangeFilter (PROGRAM
1.5.4) takes two command-line arguments and prints on standard output those
numbers from standard input that fall within the specified range. You might imag-
ine standard input to be measurement data from some instrument, with the filter
being used to throw away data outside the range of interest for the experiment at
hand. Several standard filters that were designed for UNIX still survive (sometimes
with different names) as commands in modern operating systems. For example,
the sort filter puts the lines on standard input in sorted order:

% java RandomSeq 6 | sort
0.035813305516568916
0.14306638757584322
0.348292877655532103
0.5761644592016527
0.7234592733392126
0.9795908813988247

We discuss sorting in SECTION 4.2. A second useful filter is grep, which prints the
lines from standard input that match a given pattern. For example, if you type

% grep lo < RangeFilter.java

you get the result

 // Filter out numbers not between lo and hi.
 int lo = Integer.parseInt(args[0]);
 if (t >= lo && t <= hi) StdOut.print(t + " ");

Programmers often use tools such as grep to get a quick reminder of variable
names or language usage details. A third useful filter is more, which reads data from
standard input and displays it in your terminal window one screenful at a time. For
example, if you type

% java RandomSeq 1000 | more

you will see as many numbers as fit in your terminal window, but more will wait
for you to hit the space bar before displaying each succeeding screenful. The term
filter is perhaps misleading: it was meant to describe programs like RangeFilter
that write some subsequence of standard input to standard output, but it is now
often used to describe any program that reads from standard input and writes to
standard output.

!"#$%&'(')!"*+,,,:.5 ./01/23,,,0425,67

136 Elements of Programming

Multiple streams. For many common tasks, we want to write programs that take
input from multiple sources and/or produce output intended for multiple destina-
tions. In SECTION 3.1 we discuss our Out and In libraries, which generalize StdOut
and StdIn to allow for multiple input and output streams. These libraries include
provisions not just for redirecting these streams to and from files, but also from
arbitrary web pages.

PROCESSING LARGE AMOUNTS OF INFORMATION PLAYS an essential role in many applica-
tions of computing. A scientist may need to analyze data collected from a series of
experiments, a stock trader may wish to analyze information about recent financial
transactions, or a student may wish to maintain collections of music and mov-
ies. In these and countless other applications, data-driven programs are the norm.
Standard output, standard input, redirection, and piping provides us with the ca-
pability to address such applications with our Java programs. We can collect data
into files on our computer through the web or any of the standard devices and use
redirection and piping to connect data to our programs. Many (if not most) of the
programming examples that we consider throughout this book have this ability.

Standard drawing Up to this point, our input/output abstractions have fo-
cused exclusively on text strings. Now we introduce an abstraction for producing
drawings as output. This library is easy to use and allows us to take advantage of a
visual medium to cope with far more information than is possible with just text.

As with standard input, our standard drawing abstraction is implemented in
a library that you need to download from the booksite, StdDraw.java. Standard
drawing is very simple: we imagine an abstract drawing device capable of drawing
lines and points on a two-dimensional canvas. The device is capable of responding
to the commands that our programs issue in the form of calls to methods in Std-
Draw such as the following:

public class StdDraw (basic drawing commands)

void line(double x0, double y0, double x1, double y1)

void point(double x, double y)

Like the methods for standard input and standard output, these methods are nearly
self-documenting: StdDraw.line() draws a straight line segment connecting the

!"#$%&'(')!"*+,,,:.8 ./01/23,,,0425,67

1371.5 Input and Output

Your first drawing

public class Triangle
{
 public static void main(String[] args)
 {
 double t = Math.sqrt(3.0)/2.0;
 StdDraw.line(0.0, 0.0, 1.0, 0.0);
 StdDraw.line(1.0, 0.0, 0.5, t);
 StdDraw.line(0.5, t, 0.0, 0.0);
 StdDraw.point(0.5, t/3.0);
 }
}

(x1, y1)

(x0, y0)

(0, 0)

(1, 1)

StdDraw.line(x0, y0, x1, y1);

point (x0 , y0) with the point (x1 , y1) whose coor-
dinates are given as arguments. StdDraw.point()
draws a spot centered on the point (x, y) whose co-
ordinates are given as arguments. The default scale
is the unit square (all coordinates between 0 and
1). The standard implementation displays the can-
vas in a window on your computer’s screen, with
black lines and points on a white background.
The window includes a menu option to save your
drawing to a file, in a format suitable for publish-
ing on paper or on the web.

Your first drawing. The HelloWorld equivalent for graphics programming with
StdDraw is to draw a triangle with a point inside. To form the triangle, we draw
three lines: one from the point (0, 0) at the lower left corner to the point (1, 0),
one from that point to the third point at (1/2,
#3/2), and one from that point back to (0, 0).
As a final flourish, we draw a spot in the mid-
dle of the triangle. Once you have success-
fully downloaded StdDraw.java and then
compiled and run Triangle, you are off and
running to write your own programs that
draw figures comprised of lines and points.
This ability literally adds a new dimension to
the output that you can produce.

When you use a computer to create
drawings, you get immediate feedback (the
drawing) so that you can refine and improve
your program quickly. With a computer pro-
gram, you can create drawings that you could
not contemplate making by hand. In particu-
lar, instead of viewing our data as just num-
bers, we can use pictures, which are far more
expressive. We will consider other graphics
examples after we discuss a few other draw-
ing commands.

!"#$%&'(')!"*+,,,:.1 ./01/23,,,0425,67

138 Elements of Programming

Scaling to integer coordinates

int N = 50;
StdDraw.setXscale(0, N);
StdDraw.setYscale(0, N);
for (int i = 0; i <= N; i++)
 StdDraw.line(0, N-i, i, 0);

(N, N)

(0, 0)

Control commands. The default coordinate system for standard drawing is the
unit square, but we often want to draw plots at different scales. For example, a
typical situation is to use coordinates in some range for the x-coordinate, or the
y-coordinate, or both. Also, we often want to draw lines of different thickness and
points of different size from the standard. To accommodate these needs, StdDraw
has the following methods:

public class StdDraw (basic control commands)

void setXscale(double x0, double x1) reset x range to (x0 , x1)

void setYscale(double y0, double y1) reset y range to (y0 , y1)

void setPenRadius(double r) set pen radius to r

Note: Methods with the same names but no arguments reset to default values.

For example, when we issue the command StdDraw.setXscale(0, N), we are tell-
ing the drawing device that we will be using x-coordinates between 0 and N. Note
that the two-call sequence

StdDraw.setXscale(x0, x1);
StdDraw.setYscale(y0, y1);

sets the drawing coordinates to be within a bound-
ing box whose lower left corner is at (x0, y0) and
whose upper right corner is at (x1, y1). If you use
integer coordinates, Java casts them to double, as
expected. Scaling is the simplest of the transforma-
tions commonly used in graphics. In the applica-
tions that we consider in this chapter, we use it in a
straightforward way to match our drawings to our
data.

The pen is circular, so that lines have rounded
ends, and when you set the pen radius to r and draw
a point, you get a circle of radius r. The default pen
radius is .002 and is not affected by coordinate scal-
ing. This default is about 1/500 the width of the de-
fault window, so that if you draw 200 points equally
spaced along a horizontal or vertical line, you will

!"#$%&'(')!"*+,,,:.9 ./01/23,,,0425,67

1391.5 Input and Output

Program 1.5.5 Input-to-drawing filter

public class PlotFilter
{
 public static void main(String[] args)
 { // Plot points in standard input.

 // Scale as per first four values.
 double x0 = StdIn.readDouble();
 double y0 = StdIn.readDouble();
 double x1 = StdIn.readDouble();
 double y1 = StdIn.readDouble();
 StdDraw.setXscale(x0, x1);
 StdDraw.setYscale(y0, y1);

 // Read and plot the rest of the points.
 while (!StdIn.isEmpty())
 { // Read and plot a point.
 double x = StdIn.readDouble();
 double y = StdIn.readDouble();
 StdDraw.point(x, y);
 }
 }
}

Some data is inherently visual. The file USA.txt on the booksite has the coordinates of the US
cities with populations over 500 (by convention, the first four numbers are the minimum and
maximum x and y values).

x0 left bound
y0 bottom bound

x1 right bound

y1 top bound

x, y current point

% java PlotFilter < USA.txt

!"#$%&'(')!"*+,,,:.3 ./01/23,,,0425,67

140 Elements of Programming

be able to see individual circles, but if you draw 250 such points, the result will look
like a line. When you issue the command StdDraw.setPenRadius(.01), you are
saying that you want the thickness of the lines and the size of the points to be five
times the .002 standard.

Filtering data to a standard drawing. One of the simplest applications of stan-
dard draw is to plot data, by filtering it from standard input to the drawing. Plot-
Filter (PROGRAM 1.5.5) is such a filter: it reads a sequence of points defined by (x,
y) coordinates and draws a spot at each point. It adopts the convention that the
first four numbers on standard input specify the bounding box, so that it can scale
the plot without having to make an extra pass through all the points to determine
the scale (this kind of convention is typical with such data files). The graphical
representation of points plotted in this way is far more expressive (and far more
compact) than the numbers themselves or anything that we could create with the
standard output representation that our programs have been limited to until now.
The plotted image that is produced by PROGRAM 1.5.5 makes it far easier for us to
infer properties of the cities (such as, for example, clustering of population centers)
than does a list of the coordinates. Whenever we are processing data that represents
the physical world, a visual image is likely to be one of the most meaningful ways
that we can use to display output. PlotFilter illustrates just how easily you can
create such an image.

Plotting a function graph. Another important use of StdDraw is to plot experi-
mental data or the values of a mathematical function. For example, suppose that
we want to plot values of the function y = sin(4x) " sin(20x) in the interval [0, #].
Accomplishing this task is a prototypical example of sampling: there are an infinite
number of points in the interval, so we have to make do with evaluating the function
at a finite number of points within the interval. We sample the function by choos-
ing a set of x-values, then computing y-values by evaluating the function at each
x-value. Plotting the function by connecting successive points with lines produces
what is known as a piecewise linear approximation. The simplest way to proceed is
to regularly space the x values: we decide ahead of time on a sample size, then space
the x-coordinates by the interval size divided by the sample size. To make sure that
the values we plot fall in the visible canvas, we scale the x-axis corresponding to the
interval and the y-axis corresponding to the maximum and minimum values of the
function within the interval. The smoothness of the curve depends on properties

!"#$%&'(')!"*+,,,:-2 ./01/23,,,0425,67

1411.5 Input and Output

of the function and the size of the sample.
If the sample size is too small, the rendition
of the function may not be at all accurate
(it might not be very smooth, and it might
miss major fluctuations); if the sample is
too large, producing the plot may be time-
consuming, since some functions are time-
consuming to compute. (In SECTION 2.4, we
will look at a method for plotting a smooth
curve without using an excessive number of
points.) You can use this same technique to
plot the function graph of any function you
choose: decide on an x-interval where you
want to plot the function, compute function
values evenly spaced through that interval
and store them in an array, determine and
set the y-scale, and draw the line segments.

Outline and filled shapes. StdDraw also includes methods to draw circles, rect-
angles, and arbitrary polygons. Each shape defines an outline. When the method
name is just the shape name, that outline is traced by the drawing pen. When the
name begins with filled, the named shape is instead filled solid, not traced. As
usual, we summarize the available methods in an API:

public class StdDraw (shapes)

void circle(double x, double y, double r)

void filledCircle(double x, double y, double r)

void square(double x, double y, double r)

void filledSquare(double x, double y, double r)

void polygon(double[] x, double[] y)

void filledPolygon(double[] x, double[] y)

The arguments for circle() and filledCircle() define a circle of radius r cen-
tered at (x, y); the arguments for square() and filledSquare() define a square

Plotting a function graph

double[] x = new double[N+1];
double[] y = new double[N+1];
for (int i = 0; i <= N; i++)
 x[i] = Math.PI * i / N;
for (int i = 0; i <= N; i++)
 y[i] = Math.sin(4*x[i]) + Math.sin(20*x[i]);
StdDraw.setXscale(0, Math.PI);
StdDraw.setYscale(-2.0, 2.0);
for (int i = 1; i <= N; i++)
 StdDraw.line(x[i-1], y[i-1], x[i], y[i]);

N = 200N = 20

!"#$%&'(')!"*+,,,:-: ./01/23,,,0425,67

142 Elements of Programming

StdDraw.square(x, y, r);

(x1, y1)

(x0, y0)

double[] x = {x0, x1, x2, x3};
double[] y = {y0, y1, y2, y3};
StdDraw.polygon(x, y);

(x2, y2)(x3, y3)

(x, y)

StdDraw.circle(x, y, r);

r

(x, y)

r

r

of side length 2r centered on (x, y); and the arguments for polygon() and filled-
Polygon() define a sequence of points that we connect by lines, including one

from the last point to the first point. If you want to define
shapes other than squares or circles, use one of these meth-
ods. For example,

 double[] xd = { x-r, x, x+r, x };
 double[] yd = { y, y+r, y, y-r };
 StdDraw.polygon(xd, yd);

plots a diamond (a rotated 2r-by-2r square) centered on
the point (x, y).

Text and color. Occasionally, you may wish to annotate or
highlight various elements in your drawings. StdDraw has
a method for drawing text, another for setting parameters
associated with text, and another for changing the color
of the ink in the pen. We make scant use of these features
in this book, but they can be very useful, particularly for
drawings on your computer screen. You will find many ex-
amples of their use on the booksite.

public class StdDraw (text and color commands)

void text(double x, double y, String s)

void setFont(Font f)

void setPenColor(Color c)

In this code, Font and Color are non-primitive types that
you will learn about in SECTION 3.1. Until then, we leave
the details to StdDraw. The available pen colors are BLACK,
BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MA-
GENTA, ORANGE, PINK, RED, WHITE, and YELLOW, defined as
constants within StdDraw. For example, the call StdDraw.
setPenColor(StdDraw.GRAY) changes to gray ink. The

default ink color is BLACK. The default font in StdDraw suffices for most of the
drawings that you need (and you can find information on using other fonts on

!"#$%&'(')!"*+,,,:-0 ./01/23,,,0425,67

1431.5 Input and Output

Shape and text examples

StdDraw.square(.2, .8, .1);
StdDraw.filledSquare(.8, .8, .2);
StdDraw.circle(.8, .2, .2);
double[] xd = { .1, .2, .3, .2 };
double[] yd = { .2, .3, .2, .1 };
StdDraw.filledPolygon(xd, yd);
StdDraw.text(.2, .5, "black text");
StdDraw.setPenColor(StdDraw.WHITE);
StdDraw.text(.8, .8, "white text");

!"#$%&'()'

*+,'(&'()'

the booksite). For example, you might wish to use
these methods to annotate function plots to high-
light relevant values, and you might find it useful to
develop similar methods to annotate other parts of
your drawings.

Shapes, color, and text are basic tools that you
can use to produce a dizzying variety of images,
but you should use them sparingly. Use of such ar-
tifacts usually presents a design challenge, and our
StdDraw commands are crude by the standards of
modern graphics libraries, so that you are likely to
need an extensive number of calls to them to pro-
duce the beautiful images that you may imagine. On
the other hand, using color or labels to help focus on
important information in drawings is often worth-
while, as is using color to represent data values.

Animation. The StdDraw library supplies addi-
tional methods that provide limitless opportunities
for creating interesting effects.

public class StdDraw (advanced control commands)

void setCanvasSize(int w, int h) create canvas in screen window of
width from w and height h (in pixels)

void clear() clear the canvas to white (default)

void clear(Color c) clear the canvas; color it c

void show(int dt) draw, then pause dt milliseconds

void show() draw, turn off pause mode

The default canvas size is 512-by-512 pixels; if you want to change it, call set-
CanvasSize() before any drawing commands. The clear() and show() methods
support dynamic changes in the images on the computer screen. Such effects can
provide compelling visualizations. We give an example next that also works for the
printed page. There are more examples in the booksite that are likely to capture
your imagination.

!"#$%&'(')!"*+,,,:-. ./01/23,,,0425,67

144 Elements of Programming

Bouncing ball. The HelloWorld of animation is to produce a black ball that ap-
pears to move around on the canvas. Suppose that the ball is at position (rx , ry) and
we want to create the impression of moving it to a new position nearby, such as, for
example, (rx " .01, ry " .02). We do so in two steps:

Erase the drawing.
Draw a black ball at the new position.

To create the illusion of movement, we iterate these steps for a whole sequence of
positions (one that will form a straight line, in this case). But these two steps do
not suffice, because the computer is so quick at drawing that the image of the ball
will rapidly flicker between black and white instead of creating an animated im-
age. Accordingly, StdDraw has a show() method that allows us to control when the
results of drawing actions are actually shown on the display. You can think of it as
collecting all of the lines, points, shapes, and text that we tell it to draw, and then
immediately drawing them all when we issue the show() command. To control the
apparent speed, show() takes an argument dt that tells StdDraw to wait dt mil-
liseconds after doing the drawing. By default, StdDraw issues a show() after each
line(), point(), or other drawing command; we turn that option off when we
call StdDraw.show(t) and turn it back on when we call StdDraw.show() with no
arguments. With these commands, we can create the illusion of motion with the
following steps:

Erase the drawing (but do not show the result).
Draw a black ball at the new position.
Show the result of both commands, and wait for a brief time.

BouncingBall (PROGRAM 1.5.6) implements these steps to create the illusion of a
ball moving in the 2-by-2 box centered on the origin. The current position of the
ball is (rx , ry), and we compute the new position at each step by adding vx to rx and vy
to ry. Since (vx , vy) is the fixed distance that the ball moves in each time unit, it rep-
resents the velocity. To keep the ball in the drawing, we simulate the effect of the ball
bouncing off the walls according to the laws of elastic collision. This effect is easy
to implement: when the ball hits a vertical wall, we just change the velocity in the
x-direction from vx to –vx , and when the ball hits a horizontal wall, we change the
velocity in the y-direction from vy to –vy . Of course, you have to download the code
from the booksite and run it on your computer to see motion. To make the image
clearer on the printed page, we modified BouncingBall to use a gray background
that also shows the track of the ball as it moves (see EXERCISE 1.5.34).

!"#$%&'(')!"*+,,,:-- ./01/23,,,0425,67

1451.5 Input and Output

Program 1.5.6 Bouncing ball

public class BouncingBall
{
 public static void main(String[] args)
 { // Simulate the movement of a bouncing ball.
 StdDraw.setXscale(-1.0, 1.0);
 StdDraw.setYscale(-1.0, 1.0);
 double rx = .480, ry = .860;
 double vx = .015, vy = .023;
 double radius = .05;
 while(true)
 { // Update ball position and draw it there.
 if (Math.abs(rx + vx) + radius > 1.0) vx = -vx;
 if (Math.abs(ry + vy) + radius > 1.0) vy = -vy;
 rx = rx + vx;
 ry = ry + vy;
 StdDraw.clear();
 StdDraw.filledCircle(rx, ry, radius);
 StdDraw.show(20);
 }
 }
}

This program simulates the movement of a bouncing ball in the box with coordinates between
-1 and +1. The ball bounces off the boundary according to the laws of elastic collision. The
20-millisecond wait for StdDraw.show() keeps the black image of the ball persistent on the
screen, even though most of the ball’s pixels alternate between black and white. If you modify
this code to take the wait time dt as a command-line argument, you can control the speed of
the ball. The images below, which show the track of the ball, are produced by a modified version
of this code (see Exercise 1.5.34).

100 steps 200 steps 500 steps

rx, ry position
vx, vy velocity

dt wait time

radius ball radius

!"#$%&'(')!"*+,,,:-5 ./01/23,,,0425,67

146 Elements of Programming

STANDARD DRAWING COMPLETES OUR PROGRAMMING MODEL by adding a “picture is worth
a thousand words” component. It is a natural abstraction that you can use to better
open up your programs to the outside world. With it, you can easily produce the
function plots and visual representations of data that are commonly used in science
and engineering. We will put it to such uses frequently throughout this book. Any
time that you spend now working with the sample programs on the last few pages
will be well worth the investment. You can find many useful examples on the book-
site and in the exercises, and you are certain to find some outlet for your creativity
by using StdDraw to meet various challenges. Can you draw an N-pointed star? Can
you make our bouncing ball actually bounce (add gravity)? You may be surprised
at how easily you can accomplish these and other tasks.

public class StdDraw

void line(double x0, double y0, double x1, double y1)
void point(double x, double y)

void text(double x, double y, String s)

void circle(double x, double y, double r)

void filledCircle(double x, double y, double r)

void square(double x, double y, double r)

void filledSquare(double x, double y, double r)

void polygon(double[] x, double[] y)

void filledPolygon(double[] x, double[] y)

void setXscale(double x0, double x1) reset x range to (x0 , x1)

void setYscale(double y0, double y1) reset y range to (y0 , y1)

void setPenRadius(double r) set pen radius to r

void setPenColor(Color c) set pen color to c

void setFont(Font f) set text font to f

void setCanvasSize(int w, int h) set canvas to w-by-h window

void clear(Color c) clear the canvas; color it c

void show(int dt) show all; pause dt milliseconds

void save(String filename) save to a .jpg or w.png file

Note: Methods with the same names but no arguments reset to default values.

API for our library of static methods for standard drawing

!"#$%&'(')!"*+,,,:-8 ./01/23,,,0425,67

1471.5 Input and Output

Standard audio As a final example of a basic abstraction for output, we consid-
er StdAudio, a library that you can use to play, manipulate, and synthesize sound
files. You probably have used your computer to process music. Now you can write
programs to do so. At the same time, you will learn some concepts behind a ven-
erable and important area of computer science and scientific computing: digital
signal processing. We will only scratch the surface of this fascinating subject, but you
may be surprised at the simplicity of the underlying concepts.

Concert A. Sound is the perception of the vibration of molecules, in particular,
the vibration of our eardrums. Therefore, oscillation is the key to understanding
sound. Perhaps the simplest place to start is to consider the musical note A above
middle C, which is known as concert A. This note is nothing more than a sine wave,
scaled to oscillate at a frequency of 440 times per second. The function sin(t) re-
peats itself once every 2# units on the x-axis, so if we measure t in seconds and plot
the function sin(2#t $440), we get a curve that oscillates 440 times per second.
When you play an A by plucking a guitar string, pushing air through a trumpet, or
causing a small cone to vibrate in a speaker, this sine wave is the prominent part
of the sound that you hear and recognize as concert A. We measure frequency in
hertz (cycles per second). When you double or halve the frequency, you move up or
down one octave on the scale. For example, 880 hertz is one octave above concert
A and 110 hertz is two octaves below concert A. For reference, the frequency range
of human hearing is about 20 to 20,000 hertz. The amplitude (y-value) of a sound
corresponds to the volume. We plot our curves between !1 and "1 and assume
that any devices that record and play sound will scale as appropriate, with further
scaling controlled by you when you turn the volume knob.

Notes, numbers, and waves

0

1 4 6 9 11
 A
 A! or B"
 B
 C
 C! or D"
 D
 D! or E"
 E
 F
 F! or G"
 G
 G! or A"
 A

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

440.00
466.16
493.88
523.25
554.37
587.33
622.25
659.26
698.46
739.99
783.99
830.61
880.00

2 3 5 7 8 10 12

note i frequency

########
440 2i/12

!"#$%&'(')!"*+,,,:-1 ./01/23,,,0425,67

148 Elements of Programming

Other notes. A simple mathematical formula characterizes the other notes on the
chromatic scale. There are twelve notes on the chromatic scale, divided equally on a
logarithmic (base 2) scale. We get the i th note above
a given note by multiplying its frequency by the
(i /12)th power of 2. In other words, the frequency
of each note in the chromatic scale is precisely the
frequency of the previous note in the scale multi-
plied by the twelfth root of two (about 1.06). This
information suffices to create music! For example,
to play the tune Frère Jacques, we just need to play
each of the notes A B C# A by producing sine waves
of the appropriate frequency for about half a second
and then repeat the pattern. The primary method in
the StdAudio library, StdAudio.play(), allows you
to do just that.

Sampling. For digital sound, we represent a curve
by sampling it at regular intervals, in precisely the
same manner as when we plot function graphs.
We sample sufficiently often that we have an ac-
curate representation of the curve—a widely used
sampling rate for digital sound is 44,100 samples
per second. For concert A, that rate corresponds to
plotting each cycle of the sine wave by sampling it
at about 100 points. Since we sample at regular in-
tervals, we only need to compute the y-coordinates
of the sample points. It is that simple: we represent
sound as an array of numbers (double values that are
between !1 and "1). Our standard sound library
method StdAudio.play() takes an array as its ar-
gument and plays the sound represented by that ar-
ray on your computer. For example, suppose that
you want to play concert A for 10 seconds. At 44,100
samples per second, you need an array of 441,001
double values. To fill in the array, use a for loop that
samples the function sin(2#t $440) at t = 0/44100,

44,100 samples/second, 1,102 samples

1/200 second, 220 samples

1/1000 second, 44 samples

1/1000 second

Sampling a sine wave

1/40 second, 1,102 samples

1/1000 second

22,050 samples/second, 551 samples

11,025 samples/second, 275 samples

5,512 samples/second, 137 samples

1/40 second (various sample rates)

44,100 samples/second (various times)

!"#$%&'(')!"*+,,,:-9 ./01/23,,,0425,67

1491.5 Input and Output

1/44100, 2/44100, 3/44100, . . . 441000/44100. Once we fill the array with these
values, we are ready for StdAudio.play(), as in the following code:

int sps = 44100; // samples per second
int hz = 440; // concert A
double duration = 10.0; // ten seconds
int N = (int) (sps * duration); // total number of samples
double[] a = new double[N+1];
for (int i = 0; i <= N; i++)
 a[i] = Math.sin(2*Math.PI * i * hz / sps);
StdAudio.play(a);

This code is the HelloWorld of digital audio. Once you use it to get your computer
to play this note, you can write code to play other notes and make music! The dif-
ference between creating sound and plotting an oscillating curve is nothing more
than the output device. Indeed, it is instructive and entertaining to send the same
numbers to both standard draw and standard audio (see EXERCISE 1.5.27).

Saving to a file. Music can take up a lot of space on your computer. At 44,100
samples per second, a four-minute song corresponds to 4$60$44100=10,584,000
numbers. Therefore, it is common to represent the numbers corresponding to a
song in a binary format that uses less space than the string-of-digits representation
that we use for standard input and output. Many such formats have been developed
in recent years—StdAudio uses the .wav format. You can find some information
about the .wav format on the booksite, but you do not need to know the details,
because StdAudio takes care of the conversions for you. Our standard library for
audio allows you to play .wav files, to write programs to create and manipulate ar-
rays of double values, and to read and write them as .wav files.

public class StdAudio

void play(String file) play the given .wav file

void play(double[] a) play the given sound wave

void play(double x) play sample for 1/44100 second

void save(String file, double[] a) save to a .wav file

double[] read(String file) read from a .wav file

API for our library of static methods for standard audio

!"#$%&'(')!"*+,,,:-3 ./01/23,,,0425,67

150 Elements of Programming

% java PlayThatTune < elise.txt% more elise.txt
7 .25
6 .25
7 .25
6 .25
7 .25
2 .25
5 .25
3 .25
0 .50

Program 1.5.7 Digital signal processing

public class PlayThatTune
{
 public static void main(String[] args)
 { // Read a tune from StdIn and play it.
 int sps = 44100;
 while (!StdIn.isEmpty())
 { // Read and play one note.
 int pitch = StdIn.readInt();
 double duration = StdIn.readDouble();
 double hz = 440 * Math.pow(2, pitch / 12.0);
 int N = (int) (sps * duration);
 double[] a = new double[N+1];
 for (int i = 0; i <= N; i++)
 a[i] = Math.sin(2*Math.PI * i * hz / sps);
 StdAudio.play(a);
 }
 }
}

This is a data-driven program that plays pure tones from the notes on the chromatic scale,
specified on standard input as a pitch (distance from concert A) and a duration (in seconds).
The test client reads the notes from standard input, creates an array by sampling a sine wave
of the specified frequency and duration at 44100 samples per second, and then plays each note
by calling StdAudio.play().

pitch distance from A
duration note play time

hz frequency

N number of samples

a[] sampled sine wave

!"#$%&'(')!"*+,,,:52 ./01/23,,,0425,67

1511.5 Input and Output

PlayThatTune (PROGRAM 1.5.7) is an example that shows how easily we can
create music with StdAudio. It takes notes from standard input, indexed on the
chromatic scale from concert A, and plays them on standard audio. You can imag-
ine all sorts of extensions on this basic scheme, some of which are addressed in the
exercises. We include StdAudio in our basic arsenal of programming tools because
sound processing is one important application of scientific computing that is cer-
tainly familiar to you. Not only has the commercial application of digital signal
processing had a phenomenal impact on modern society, but the science and en-
gineering behind it combines physics and computer science in interesting ways.
We will study more components of digital signal processing in some detail later in
the book. (For example, you will learn in SECTION 2.1 how to create sounds that are
more musical than the pure sounds produced by PlayThatTune.)

I/O IS A PARTICULARLY CONVINCING EXAMPLE of the power of abstraction because stan-
dard input, standard output, standard draw, and standard audio can be tied to dif-
ferent physical devices at different times without making any changes to programs.
Although devices may differ dramatically, we can write programs that can do I/O
without depending on the properties of specific devices. From this point forward,
we will use methods from StdOut, StdIn, StdDraw, and/or StdAudio in nearly ev-
ery program in this book, and you will use them in nearly all of your programs, so
make sure to download copies of these libraries. For economy, we collectively refer
to these libraries as Std*. One important advantage of using such libraries is that
you can switch to new devices that are faster, cheaper, or hold more data without
changing your program at all. In such a situation, the details of the connection are
a matter to be resolved between your operating system and the Std* implementa-
tions. On modern systems, new devices are typically supplied with software that
resolves such details automatically for both the operating system and for Java.

Conceptually, one of the most significant features of the standard input, stan-
dard output, standard draw, and standard audio data streams is that they are infi-
nite: from the point of view of your program, there is no limit on their length. This
point of view not only leads to programs that have a long useful life (because they
are less sensitive to changes in technology than programs with built-in limits). It
also is related to the Turing machine, an abstract device used by theoretical com-
puter scientists to help us understand fundamental limitations on the capabilities
of real computers. One of the essential properties of the model is the idea of a finite
discrete device that works with an unlimited amount of input and output.

!"#$%&'(')!"*+,,,:5: ./01/23,,,0425,67

152 Elements of Programming

Q&A

Q. Why are we not using the standard Java libraries for input, graphics, and sound?

A. We are using them, but we prefer to work with simpler abstract models. The
Java libraries behind StdIn, StdDraw, and StdAudio are built for production pro-
gramming, and the libraries and their APIs are a bit unwieldy. To get an idea of
what they are like, look at the code in StdIn.java, StdDraw.java, and StdAudio.
java.

Q. So, let me get this straight. If I use the format %2.4f for a double value, I get two
digits before the decimal point and four digits after, right?

A. No, that specifies just four digits after the decimal point. The first value is the
width of the whole field. You want to use the format %7.2f to specify seven charac-
ters in total, four before the decimal point, the decimal point itself, and two digits
after the decimal point.

Q. What other conversion codes are there for printf()?

A. For integer values, there is o for octal and x for hexadecimal. There are also nu-
merous formats for dates and times. See the booksite for more information.

Q. Can my program re-read data from standard input?

A. No. You only get one shot at it, in the same way that you cannot undo a print-
ln() command.

Q. What happens if my program attempts to read data from standard input after it
is exhausted?

A. You will get an error. StdIn.isEmpty() allows you to avoid such an error by
checking whether there is more input available.

Q. What does the error message Exception in thread "main" java.lang.
NoClassDefFoundError: StdIn mean?

A. You probably forgot to put StdIn.java in your working directory.

Q. I have a different working directory for each project that I am working on, so I

!"#$%&'(')!"*+,,,:50 ./01/23,,,0425,67

1531.5 Input and Output

have copies of StdOut.java, StdIn.java, StdDraw.java, and StdAudio.java in
each of them. Is there some better way?

A. Yes. You can put them all in one directory and use the “classpath” mechanism to
tell Java where to find them. This mechanism is operating-system dependent—you
can find instructions on how to use it on the booksite.

Q. My terminal window hangs at the end of a program using StdAudio. How can
I avoid having to use <ctrl-c> to get a command prompt?

A. Add a call to System.exit(0) as the last line in main(). Don’t ask why.

Q. So I use negative integers to go below concert A when making input files for
PlayThatTune?

A. Right. Actually, our choice to put concert A at 0 is arbitrary. A popular standard,
known as the MIDI Tuning Standard, starts numbering at the C five octaves below
concert A. By that convention, concert A is 69 and you do not need to use negative
numbers.

Q. Why do I hear weird results on standard audio when I try to sonify a sine wave
with a frequency of 30,000 Hertz (or more)?

A. The Nyquist frequency, defined as one-half the sampling frequency, represents
the highest frequency that can be reproduced. For standard audio, the sampling
frequency is 44,100, so the Nyquist frequency is 22,050.

!"#$%&'(')!"*+,,,:5. ./01/23,,,0425,67

154 Elements of Programming

Exercises

1.5.1 Write a program that reads in integers (as many as the user enters) from
standard input and prints out the maximum and minimum values.

1.5.2 Modify your program from the previous exercise to insist that the integers
must be positive (by prompting the user to enter positive integers whenever the
value entered is not positive).

1.5.3 Write a program that takes an integer N from the command line, reads
N double values from standard input, and prints their mean (average value) and
standard deviation (square root of the sum of the squares of their differences from
the average, divided by N−1).

1.5.4 Extend your program from the previous exercise to create a filter that prints
all the values that are further than 1.5 standard deviations from the mean. Use an
array.

1.5.5 Write a program that reads in a sequence of integers and prints out both
the integer that appears in a longest consecutive run and the length of the run. For
example, if the input is 1 2 2 1 5 1 1 7 7 7 7 1 1, then your program should
print Longest run: 4 consecutive 7s.

1.5.6 Write a filter that reads in a sequence of integers and prints out the integers,
removing repeated values that appear consecutively. For example, if the input i
1 2 2 1 5 1 1 7 7 7 7 1 1 1 1 1 1 1 1 1, your program should print out
1 2 1 5 1 7 1.

1.5.7 Write a program that takes a command-line argument N, reads in N-1 dis-
tinct integers between 1 and N, and determines the missing value.

1.5.8 Write a program that reads in positive real numbers from standard input
and prints out their geometric and harmonic means. The geometric mean of N posi-
tive numbers x1, x2, ..., xN is (x1 $ x2 $... $ xN)1/N. The harmonic mean is (1/x1 + 1/
x2 + ... + 1/xN) / (1/N). Hint : For the geometric mean, consider taking logs to avoid
overflow.

1.5.9 Suppose that the file input.txt contains the two strings F and F. What

!"#$%&'(')!"*+,,,:5- ./01/23,,,0425,67

1551.5 Input and Output

does the following command do (see EXERCISE 1.2.35)?

java Dragon < input.txt | java Dragon | java Dragon

public class Dragon
{
 public static void main(String[] args)
 {
 String dragon = StdIn.readString();
 String nogard = StdIn.readString();
 StdOut.print(dragon + "L" + nogard);
 StdOut.print(" ");
 StdOut.print(dragon + "R" + nogard);
 StdOut.println();
 }
}

1.5.10 Write a filter TenPerLine that takes a sequence of integers between 0 and
99 and prints 10 integers per line, with columns aligned. Then write a program
RandomIntSeq that takes two command-line arguments M and N and outputs N
random integers between 0 and M-1. Test your programs with the command java
RandomIntSeq 200 100 | java TenPerLine.

1.5.11 Write a program that reads in text from standard input and prints out the
number of words in the text. For the purpose of this exercise, a word is a sequence
of non-whitespace characters that is surrounded by whitespace.

1.5.12 Write a program that reads in lines from standard input with each line
containing a name and two integers and then uses printf() to print a table with a
column of the names, the integers, and the result of dividing the first by the second,
accurate to three decimal places. You could use a program like this to tabulate bat-
ting averages for baseball players or grades for students.

1.5.13 Which of the following require saving all the values from standard input (in
an array, say), and which could be implemented as a filter using only a fixed number
of variables? For each, the input comes from standard input and consists of N real
numbers between 0 and 1.

!"#$%&'(')!"*+,,,:55 ./01/23,,,0425,67

156 Elements of Programming

Print the maximum and minimum numbers.
Print the k th smallest value.
Print the sum of the squares of the numbers.
Print the average of the N numbers.
Print the percentage of numbers greater than the average.
Print the N numbers in increasing order.
Print the N numbers in random order.

1.5.14 Write a program that prints a table of the monthly payments, remaining
principal, and interest paid for a loan, taking three numbers as command-line argu-
ments: the number of years, the principal, and the interest rate (see EXERCISE 1.2.24).

1.5.15 Write a program that takes three command-line arguments x, y, and z,
reads from standard input a sequence of point coordinates (xi, yi, zi), and prints the
coordinates of the point closest to (x, y, z). Recall that the square of the distance
between (x , y , z) and (xi , yi , zi) is (x ! xi)2 + (y ! yi)2 + (z ! zi)2. For efficiency, do
not use Math.sqrt() or Math.pow().

1.5.16 Given the positions and masses of a sequence of objects, write a program
to compute their center-of-mass, or centroid. The centroid is the average position
of the N objects, weighted by mass. If the positions and masses are given by (xi , yi,
mi), then the centroid (x, y, m) is given by:

m = m1 + m2 + ... + mN

x = (m1 x1 + ... + mn xN) / m
y = (m1 y1 + ... + mn yN) / m

1.5.17 Write a program that reads in a sequence of real numbers between !1 and
"1 and prints out their average magnitude, average power, and the number of zero
crossings. The average magnitude is the average of the absolute values of the data
values. The average power is the average of the squares of the data values. The num-
ber of zero crossings is the number of times a data value transitions from a strictly
negative number to a strictly positive number, or vice versa. These three statistics
are widely used to analyze digital signals.

!"#$%&'(')!"*+,,,:58 ./01/23,,,0425,67

1571.5 Input and Output

1.5.18 Write a program that takes a command-line argument N and plots an N-by-
N checkerboard with red and black squares. Color the lower left square red.

1.5.19 Write a program that takes as command-line arguments an integer N and
a double value p (between 0 and 1), plots N equally spaced points of size on the cir-
cumference of a circle, and then, with probability p for each pair of points, draws a
gray line connecting them.

16 .125 16 .25 16 .5 16 1.0

1.5.20 Write code to draw hearts, spades, clubs, and diamonds. To draw a heart,
draw a diamond, then attach two semicircles to the upper left and upper right sides.

1.5.21 Write a program that takes a command-line argument N and plots a rose
with N petals (if N is odd) or 2N petals (if N is even), by plotting the polar coordi-
nates (r, &) of the function r = sin(N &) for & ranging from 0 to 2# radians.

4 5 8 9

1.5.22 Write a program that takes a string s from the command line and displays
it in banner style on the screen, moving from left to right and wrapping back to the
beginning of the string as the end is reached. Add a second command-line argu-
ment to control the speed.

!"#$%&'(')!"*+,,,:51 ./01/23,,,0425,67

158 Elements of Programming

1.5.23 Modify PlayThatTune to take additional command-line arguments that
control the volume (multiply each sample value by the volume) and the tempo
(multiply each note’s duration by the tempo).

1.5.24 Write a program that takes the name of a .wav file and a playback rate r as
command-line arguments and plays the file at the given rate. First, use StdAudio.
read() to read the file into an array a[]. If r = 1, just play a[]; otherwise create
a new array b[] of approximate size r times a.length. If r < 1, populate b[] by
sampling from the original; if r > 1, populate b[] by interpolating from the original.
Then play b[].

1.5.25 Write programs that uses StdDraw to create each of the following designs.

1.5.26 Write a program Circles that draws filled circles of random size at ran-
dom positions in the unit square, producing images like those below. Your program
should take four command-line arguments: the number of circles, the probability
that each circle is black, the minimum radius, and the maximum radius.

200 1 .01 .01 100 1 .01 .05 500 .5 .01 .05 50 .75 .1 .2

!"#$%&'(')!"*+,,,:59 ./01/23,,,0425,67

1591.5 Input and Output

Creative Exercises

1.5.27 Visualizing audio. Modify PlayThatTune to send the values played to stan-
dard drawing, so that you can watch the sound waves as they are played. You will
have to experiment with plotting multiple curves in the drawing canvas to synchro-
nize the sound and the picture.

1.5.28 Statistical polling. When collecting statistical data for certain political polls,
it is very important to obtain an unbiased sample of registered voters. Assume that
you have a file with N registered voters, one per line. Write a filter that prints out a
random sample of size M (see PROGRAM 1.4.1).

1.5.29 Terrain analysis. Suppose that a terrain is represented by a two-dimension-
al grid of elevation values (in meters). A peak is a grid point whose four neighboring
cells (left, right, up, and down) have strictly lower elevation values. Write a program
Peaks that reads a terrain from standard input and then computes and prints the
number of peaks in the terrain.

1.5.30 Histogram. Suppose that the standard input stream is a sequence of dou-
ble values. Write a program that takes an integer N and two double values l and r
from the command line and uses StdDraw to plot a histogram of the count of the
numbers in the standard input stream that fall in each of the N intervals defined by
dividing (l , r) into N equal-sized intervals.

1.5.31 Spirographs. Write a program that takes three parameters R, r, and a from
the command line and draws the resulting spirograph. A spirograph (technically,
an epicycloid) is a curve formed by rolling a circle of radius r around a larger fixed
circle of radius R. If the pen offset from the center of the rolling circle is (r"a), then
the equation of the resulting curve at time t is given by

x(t) = (R + r) cos (t) ! (r + a) cos ((R + r)t /r)
y(t) = (R + r) sin (t) ! (r + a) sin ((R + r)t /r)

Such curves were popularized by a best-selling toy that contains discs with gear
teeth on the edges and small holes that you could put a pen in to trace spirographs.

!"#$%&'(')!"*+,,,:53 ./01/23,,,0425,67

160 Elements of Programming

1.5.32 Clock. Write a program that displays an animation of the second, minute,
and hour hands of an analog clock. Use the method StdDraw.show(1000) to up-
date the display roughly once per second.

1.5.33 Oscilloscope. Write a program to simulate the output of an oscilloscope
and produce Lissajous patterns. These patterns are named after the French physi-
cist, Jules A. Lissajous, who studied the patterns that arise when two mutually per-
pendicular periodic disturbances occur simultaneously. Assume that the inputs are
sinusoidal, so that the following parametric equations describe the curve:

x(t) = Ax sin (wx t + &x)
y(t) = A y sin (wy t + &y)

Take the six parameters Ax , wx , &x , Ay , wy , and &y from the command line.

1.5.34 Bouncing ball with tracks. Modify BouncingBall to produce images like
the ones shown in the text, which show the track of the ball on a gray background.

1.5.35 Bouncing ball with gravity. Modify BouncingBall to incorporate gravity
in the vertical direction. Add calls to StdAudio.play() to add one sound effect
when the ball hits a wall and a different one when it hits the floor.

1.5.36 Random tunes. Write a program that uses StdAudio to play random tunes.
Experiment with keeping in key, assigning high probabilities to whole steps, repeti-
tion, and other rules to produce reasonable melodies.

1.5.37 Tile patterns. Using your solution to EXERCISE 1.5.25, write a program
TilePattern that takes a command-line argument N and draws an N-by-N pattern,
using the tile of your choice. Add a second command-line argument that adds a
checkerboard option. Add a third command-line argument for color selection. Us-
ing the patterns on the facing page as a starting point, design a tile floor. Be creative!
Note: These are all designs from antiquity that you can find in many ancient (and
modern) buildings.

!"#$%&'(')!"*+,,,:82 ./01/23,,,0425,67

1611.5 Input and Output

!"#$%&'(')!"*+,,,:8: ./01/23,,,0425,67

Elements of Programming

1.6 Case Study: Random Web Surfer

COMMUNICATING ACROSS THE WEB HAS BECOME an integral part of everyday life. This
communication is enabled in part by scientific studies of the structure of the web,
a subject of active research since its inception. We next consider a simple model of
the web that has proven to be a particularly successful approach to understand-
ing some of its properties. Variants of
this model are widely used and have been
a key factor in the explosive growth of
search applications on the web.

The model is known as the random
surfer model, and is simple to describe.
We consider the web to be a fixed set of
pages, with each page containing a fixed set of hyperlinks (for brevity, we use the
term links), and each link a reference to some other page. We study what happens
to a person (the random surfer) who randomly moves from page to page, either by
typing a page name into the address bar or by clicking a link on the current page.

The underlying mathematical model behind the web model is known as the
graph, which we will consider in detail at the end of the book (in SECTION 4.5).

We defer discussion of details about processing
graphs until then. Instead, we concentrate on
calculations associated with a natural and well-
studied probabilistic model that accurately de-
scribes the behavior of the random surfer.

The first step in studying the random
surfer model is to formulate it more precise-
ly. The crux of the matter is to specify what it
means to randomly move from page to page.
The following intuitive 90-10 rule captures
both methods of moving to a new page: As-
sume that 90 per cent of the time the random
surfer clicks a random link on the current page
(each link chosen with equal probability) and
that 10 percent of the time the random surfer
goes directly to a random page (all pages on the
web chosen with equal probability).Pages and links

ttt.gov

aaa.edu

mmm.net

mmm.net

fff.org

aaa.edu

www.com
www.com
fff.org

fff.org

ttt.gov

mmm.net

mmm.net

fff.org

aaa.edu

page

links

1.6.1 Computing the transition matrix . 165
1.6.2 Simulating a random surfer 167
1.6.3 Mixing a Markov chain 174

 Programs in this section

!"#$%&'(')!"*+,,,:80 ./01/23,,,0425,67

1631.6 Case Study: Random Web Surfer

You can immediately see that this model has flaws, because you know from
your own experience that the behavior of a real web surfer is not quite so simple:

No one chooses links or pages with equal probability.
There is no real potential to surf directly to each page on the web.
The 90-10 (or any fixed) breakdown is just a guess.
It does not take the back button or bookmarks into account.
We can only afford to work with a small sample of the web.

Despite these flaws, the model is sufficiently rich that computer scientists have
learned a great deal about properties of the web by studying it. To appreciate the
model, consider the small example on the previous page. Which page do you think
the random surfer is most likely to visit?

Each person using the web behaves a bit like the random surfer, so under-
standing the fate of the random surfer is of intense interest to people building web
infrastructure and web applications. The model is a tool for understanding the ex-
perience of each of the hundreds of millions of web users. In this section, you will
use the basic programming tools from this chapter
to study the model and its implications.

Input format We want to be able to study the
behavior of the random surfer on various web mod-
els, not just one example. Consequently, we want to
write data-driven code, where we keep data in files
and write programs that read the data from standard
input. The first step in this approach is to define an
input format that we can use to structure the infor-
mation in the input files. We are free to define any convenient input format.

Later in the book, you will learn how to read web pages in Java programs
(SECTION 3.1) and to convert from names to numbers (SECTION 4.4) as well as other
techniques for efficient graph processing. For now, we assume that there are N web
pages, numbered from 0 to N-1, and we represent links with ordered pairs of such
numbers, the first specifying the page containing the link and the second specifying
the page to which it refers. Given these conventions, a straightforward input for-
mat for the random surfer problem is an input stream consisting of an integer (the
value of N) followed by a sequence of pairs of integers (the representations of all
the links). StdIn treats all sequences of whitespace characters as a single delimiter,
so we are free to either put one link per line or arrange them several to a line.

Random surfer input format

N0 3

4 2

1

% more tiny.txt
5
0 1
1 2 1 2
1 3 1 3 1 4
2 3
3 0
4 0 4 2

links

!"#$%&'(')!"*+,,,:8. ./01/23,,,0425,67

164 Elements of Programming

Transition matrix We use a two-dimensional matrix, that we refer to as the
transition matrix, to completely specify the behavior of the random surfer. With N
web pages, we define an N-by-N matrix such that the entry in row i and column j
is the probability that the random surfer moves to page j when on page i. Our first
task is to write code that can create such a matrix for any given input. By the 90-10
rule, this computation is not difficult. We do so in three steps:

Read N, and then create arrays counts[][] and outDegree[].
Read the links and accumulate counts so that counts[i][j] counts the
links from i to j and outDegree[i] counts the links from i to anywhere.
Use the 90-10 rule to compute the probabilities.

The first two steps are elementary, and the third is not much more difficult: multi-
ply counts[i][j] by .90/degree[i] if there is a link from i to j (take a random
link with probability .9), and then add .10/N to each entry (go to a random page
with probability .1). Transition (PROGRAM 1.6.1) performs this calculation: It is a
filter that converts the list-of-links representation of a web model into a transition-
matrix representation.

The transition matrix is significant because each row represents a discrete
probability distribution—the entries fully specify the behavior of the random surf-
er’s next move, giving the probability of surfing to each page. Note in particular
that the entries sum to 1 (the surfer always goes somewhere).

The output of Transition defines another file format, one for matrices of
double values: the numbers of rows and columns followed by the values for matrix
entries. Now, we can write programs that read and process transition matrices.

Transition matrix computation

leap probabilities transition matrix

0 3

4 2

1

link probabilities

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

.02 .02 .02 .02 .02

 0 .90 0 0 0
 0 0 .36 .36 .18
 0 0 0 .90 0
.90 0 0 0 0
.45 0 .45 0 0

link counts

 0 1 0 0 0
 0 0 2 2 1
 0 0 0 1 0
 1 0 0 0 0
 1 0 1 0 0

degrees
 1
 5
 1
 1
 2

input graph 5
0 1
1 2 1 2
1 3 1 3 1 4
2 3
3 0
4 0 4 2

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

+ =

!"#$%&'(')!"*+,,,:8- ./01/23,,,0425,67

1651.6 Case Study: Random Web Surfer

% java Transition < tiny.txt
5 5
 0.02000 0.92000 0.02000 0.02000 0.02000
 0.02000 0.02000 0.38000 0.38000 0.20000
 0.02000 0.02000 0.02000 0.92000 0.02000
 0.92000 0.02000 0.02000 0.02000 0.02000
 0.47000 0.02000 0.47000 0.02000 0.02000

% more tiny.txt
5
0 1
1 2 1 2
1 3 1 3 1 4
2 3
3 0
4 0 4 2

Program 1.6.1 Computing the transition matrix

public class Transition
{
 public static void main(String[] args)
 { // Print random-surfer probabilites.
 int N = StdIn.readInt();
 int[][] counts = new int[N][N];
 int[] outDegree = new int[N];
 while (!StdIn.isEmpty())
 { // Accumulate link counts.
 int i = StdIn.readInt();
 int j = StdIn.readInt();
 outDegree[i]++;
 counts[i][j]++;
 }

 StdOut.println(N + " " + N);
 for (int i = 0; i < N; i++)
 { // Print probability distribution for row i.
 for (int j = 0; j < N; j++)
 { // Print probability for column j.
 double p = .90*counts[i][j]/outDegree[i] + .10/N;
 StdOut.printf("%8.5f", p);
 }
 StdOut.println();
 }
 }
}

This program is a filter that reads links from standard input and produces the corresponding
transition matrix on standard output. First, it processes the input to count the outlinks from
each page. Then it applies the 90-10 rule to compute the transition matrix (see text). It assumes
that there are no pages that have no outlinks in the input (see Exercise 1.6.3).

N number of pages

counts[i][j]
count of links from
page i to page j

outDegree[i]
count of links from
page i to anywhere

p transition probability

!"#$%&'(')!"*+,,,:85 ./01/23,,,0425,67

166 Elements of Programming

Generating a random integer from a discrete distribution

 0 1 2 3 4
.47 .02 .47 .02 .02
.47 .49 .96 .98 1.0

probabilities p[page][j]

cumulated sum values

j

 0.0 .47 .49 .96 .98 1.0

 generate .71, return 2

Simulation Given the transition matrix, simulating the behavior of the random
surfer involves surprisingly little code, as you can see in RandomSurfer (PROGRAM
1.6.2). This program reads a transition matrix and surfs according to the rules,
starting at page 0 and taking the number of moves as a command-line argument.
It counts the number of times that the surfer visits each page. Dividing that count
by the number of moves yields an estimate of the probability that a random surfer
winds up on the page. This probability is known as the page’s rank. In other words,
RandomSurfer computes an estimate of all page ranks.

One random move. The key to the computation is the random move, which is
specified by the transition matrix. We maintain a variable page whose value is the
current location of the surfer. Row page of the matrix gives, for each j, the prob-
ability that the surfer next goes to j. In other words, when the surfer is at page,

our task is to generate a random inte-
ger between 0 and N-1 according to the
distribution given by row page in the
transition matrix (the one-dimensional
array p[page]). How can we accomplish
this task? We can use Math.random() to
generate a random number r between 0
and 1, but how does that help us get to
a random page? One way to answer this
question is to think of the probabilities
in row page as defining a set of N inter-

vals in (0, 1) with each probability corresponding to an interval length. Then our
random variable r falls into one of the intervals, with probability precisely specified
by the interval length. This reasoning leads to the following code:

double sum = 0.0;
for (int j = 0; j < N; j++)
{ // Find interval containing r.
 sum += p[page][j];
 if (r < sum) { page = j; break; }
}

The variable sum tracks the endpoints of the intervals defined in row p[page], and
the for loop finds the interval containing the random value r. For example, sup-
pose that the surfer is at page 4 in our example. The transition probabilities are .47,

!"#$%&'(')!"*+,,,:88 ./01/23,,,0425,67

1671.6 Case Study: Random Web Surfer

% java Transition < tiny.txt | java RandomSurfer 100
 0.24000 0.23000 0.16000 0.25000 0.12000
% java Transition < tiny.txt | java RandomSurfer 10000
 0.27280 0.26530 0.14820 0.24830 0.06540
% java Transition < tiny.txt | java RandomSurfer 1000000
0.27324 0.26568 0.14581 0.24737 0.06790

Program 1.6.2 Simulating a random surfer

public class RandomSurfer
{
 public static void main(String[] args)
 { // Simulate random-surfer leaps and links.
 int T = Integer.parseInt(args[0]);
 int N = StdIn.readInt();
 StdIn.readInt();

 // Read transition matrix.
 double[][] p = new double[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 p[i][j] = StdIn.readDouble();

 int page = 0; // Start at page 0.
 int[] freq = new int[N];
 for (int t = 0; t < T; t++)
 { // Make one random move.
 double r = Math.random();
 double sum = 0.0;
 for (int j = 0; j < N; j++)
 { // Find interval containing r.
 sum += p[page][j];
 if (r < sum) { page = j; break; }
 }
 freq[page]++;
 }

 for (int i = 0; i < N; i++) // Print page ranks.
 StdOut.printf("%8.5f", (double) freq[i] / T);
 StdOut.println();
 }
}

This program uses a transition matrix to simulate the behavior of a random surfer. It takes the
number of moves as a command-line argument, reads the transition matrix, performs the in-
dicated number of moves as prescribed by the matrix, and prints the relative frequency of hit-
ting each page. The key to the computation is the random move to the next page (see text).

T number of moves

N number of pages

page current page

p[i][j]
probability that the
surfer moves from
page i to page j

freq[i]
number of times the
surfer hits page i

!"#$%&'(')!"*+,,,:81 ./01/23,,,0425,67

168 Elements of Programming

.02, .47, .02, and .02, and sum takes on the values 0.0, 0.47, 0.49, 0.96, 0.98, and
1.0. These values indicate that the probabilities define the five intervals (0, .47),
(.47, .49), (.49, .96), (.96, .98), and (.98, 1), one for each page. Now, suppose that
Math.random() returns the value .71 . We increment j from 0 to 1 to 2 and stop
there, which indicates that .71 is in the interval (.49, .96), so we send the surfer to
the third page (page 2). Then, we perform the same computation for p[2], and the
random surfer is off and surfing. For large N, we can use binary search to substan-
tially speed up this computation (see EXERCISE 4.2.36). Typically, we are interested
in speeding up the search in this situation because we are likely to need a huge
number of random moves, as you will see.

Markov chains. The random process that describes the surfer’s behavior is known
as a Markov chain, named after the Russian mathematician Andrey Markov, who
developed the concept in the early 20th century. Markov chains are widely appli-
cable, well-studied, and have many remarkable and useful properties. For exam-
ple, you may have wondered why RandomSurfer starts the random surfer at page
0 whereas you might have expected a random choice. A basic limit theorem for
Markov chains says that the surfer could start anywhere, because the probability
that a random surfer eventually winds up on any particular page is the same for all
starting pages! No matter where the surfer starts, the process eventually stabilizes to
a point where further surfing provides no further information. This phenomenon
is known as mixing. Though this phenomenon is perhaps counterintuitive at first,
it explains coherent behavior in a situation that might seem chaotic. In the present
context, it captures the idea that the web looks pretty much the same to everyone
after surfing for a sufficiently long time. However, not all Markov chains have this
mixing property. For example, if we eliminate the random leap from our model,
certain configurations of web pages can present problems for the surfer. Indeed,
there exist on the web sets of pages known as spider traps, which are designed to
attract incoming links but have no outgoing links. Without the random leap, the
surfer could get stuck in a spider trap. The primary purpose of the 90-10 rule is to
guarantee mixing and eliminate such anomalies.

Page ranks. The RandomSurfer simulation is straightforward: it loops for the in-
dicated number of moves, randomly surfing through the graph. Because of the
mixing phenomenon, increasing the number of iterations gives increasingly ac-
curate estimates of the probability that the surfer lands on each page (the page

!"#$%&'(')!"*+,,,:89 ./01/23,,,0425,67

1691.6 Case Study: Random Web Surfer

ranks). How do the results compare with your intuition when you first thought
about the question? You might have guessed that page 4 was the lowest-ranked
page, but did you think that pages 0 and 1 would rank higher than page 3? If we
want to know which page is the highest rank, we need more precision and more
accuracy. RandomSurfer needs 10n moves to get answers precise to n decimal places
and many more moves for those answers to stabilize to an accurate value. For our
example, it takes tens of thousands of iterations to get answers accurate to two
decimal places and millions of iterations to get answers accurate to three places (see
EXERCISE 1.6.5). The end result is that page 0 beats page 1 by 27.3% to 26.6%. That
such a tiny difference would appear in such a small problem is quite surprising: if
you guessed that page 0 is the most likely spot for the surfer to end up, you were
lucky! Accurate page rank estimates for the web are valuable in practice for many
reasons. First, using them to put in order the pages that match the search criteria
for web searches proved to be vastly more in line with people’s expectations than
previous methods. Next, this measure of confidence and reliability led to the in-
vestment of huge amounts of money in web advertising based on page ranks. Even
in our tiny example, page ranks might be used to convince advertisers to pay up to
four times as much to place an ad on page 0 as on page 4. Comput-
ing page ranks is mathematically sound, an interesting computer
science problem, and big business, all rolled into one.

Visualizing the histogram. With StdDraw, it is also easy to create a
visual representation that can give you a feeling for how the random
surfer visit frequencies converge to the page ranks. Simply add

StdDraw.clear();
StdDraw.setXscale(-1, N);
StdDraw.setYscale(0, t);
StdDraw.setPenRadius(.5/N);
for (int i = 0; i < N; i++)
 StdDraw.line(i, 0, i, freq[i]);
StdDraw.show(20);

to the random move loop, run RandomSurfer for large values of T, and you will see
a drawing of the frequency histogram that eventually stabilizes to the page ranks.
After you have used this tool once, you are likely to find yourself using it every time

Page ranks with histogram

0 3

4 2

1

0 .27
1 .27
3 .25
2 .15
4 .07

!"#$%&'(')!"*+,,,:83 ./01/23,,,0425,67

170 Elements of Programming

you want to study a new model (perhaps with some minor adjustments to handle
larger models).

Studying other models. RandomSurfer and Transition are excellent examples of
data-driven programs. You can easily create a data model just by creating a file like
tiny.txt that starts with an integer N and then specifies pairs of integers between
0 and N-1 that represent links connecting pages. You are encouraged to run it for
various data models as suggested in the exercises, or to make up some models of
your own to study. If you have ever wondered how web page ranking works, this
calculation is your chance to develop better intuition about what causes one page
to be ranked more highly than another. What kind of page is likely to be rated
highly? One that has many links to other pages, or one that has just a few links to
other pages? The exercises in this section present many opportunities to study the
behavior of the random surfer. Since RandomSurfer uses standard input, you can
write simple programs that generate large input models, pipe their output to Ran-
domSurfer, and therefore study the random surfer on large models. Such flexibility
is an important reason to use standard input and standard output.

DIRECTLY SIMULATING THE BEHAVIOR OF A random surfer to understand the structure
of the web is appealing, but it has limitations. Think about the following question:
Could you use it to compute page ranks for a web model with millions (or billions!)
of web pages and links? The quick answer to this question is no, because you can-
not even afford to store the transition matrix for such a large number of pages. A
matrix for millions of pages would have trillions of entries. Do you have that much
space on your computer? Could you use RandomSurfer to find page ranks for a
smaller model with, say, thousands of pages? To answer this question, you might
run multiple simulations, record the results for a large number of trials, and then
interpret those experimental results. We do use this approach for many scientific
problems (the gambler’s ruin problem is one example; SECTION 2.4 is devoted to
another), but it can be very time-consuming, as a huge number of trials may be
necessary to get the desired accuracy. Even for our tiny example, we saw that it takes
millions of iterations to get the page ranks accurate to three or four decimal places.
For larger models, the required number of iterations to obtain accurate estimates
becomes truly huge.

!"#$%&'(')!"*+,,,:12 ./01/23,,,0425,67

1711.6 Case Study: Random Web Surfer

Mixing a Markov chain It is important to remember that the page ranks are a
property of the web model, not any particular approach for computing it. That is,
RandomSurfer is just one way to compute page ranks. Fortunately, a simple com-
putational model based on a well-studied area of mathematics provides a far more
efficient approach than simulation to the problem of computing page ranks. That
model makes use of the basic arithmetic operations on two-dimensional matrices
that we considered in SECTION 1.4.

Squaring a Markov chain. What is the probability that the random surfer will
move from page i to page j in two moves? The first move goes to an intermedi-
ate page k, so we calculate the probability of moving from i to k and then from k
to j for all possible k and add up the results. For
our example, the probability of moving from 1
to 2 in two moves is the probability of moving
from 1 to 0 to 2 (.02$.02), plus the probability
of moving from 1 to 1 to 2 (.02$.38), plus the
probability of moving from 1 to 2 to 2 (.38$.02),
plus the probability of moving from 1 to 3 to 2
(.38$.02), plus the probability of moving from
1 to 4 to 2 (.20$.47), which adds up to a grand
total of .1172. The same process works for each
pair of pages. This calculation is one that we have
seen before, in the definition of matrix multipli-
cation: the entry in row i and column j in the
result is the dot product of row i and column j in
the original. In other words, the result of multi-
plying p[][] by itself is a matrix where the entry
in row i and column j is the probability that the
random surfer moves from page i to page j in
two moves. Studying the entries of the two-move
transition matrix for our example is well worth
your time and will help you better understand the
movement of the random surfer. For instance, the
largest entry in the square is the one in row 2 and column 0, reflecting the fact that
a surfer starting on page 2 has only one link out, to page 3, where there is also only
one link out, to page 0. Therefore, by far the most likely outcome for a surfer start-

Squaring a Markov chain

p
2

p

0 3

4 2

1

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

.05 .04 .36 .37 .19

.45 .04 .12 .37 .02

.86 .04 .04 .05 .02

.05 .85 .04 .05 .02

.05 .44 .04 .45 .02

probability of
surfing from i to 2

in one move

probability of
surfing from 1 to i

in one move

probability of
surfing from 1 to 2

in two moves
(dot product)

!"#$%&'(')!"*+,,,:1: ./01/23,,,0425,67

172 Elements of Programming

ing on page 2 is to end up in page 0 after two moves. All of the other two-move
routes involve more choices and are less probable. It is important to note that this
is an exact computation (up to the limitations of Java’s floating-point precision), in
contrast to RandomSurfer, which produces an estimate and needs more iterations
to get a more accurate estimate.

The power method. We might then calculate the probabilities for three moves by
multiplying by p[][] again, and for four moves by multiplying by p[][] yet again,
and so forth. However, matrix-matrix multiplication is expensive, and we are actu-
ally interested in a vector-matrix calculation. For our example, we start with the
vector

[1.0 0.0 0.0 0.0 0.0]

which specifies that the random surfer starts on page 0. Multiplying this vector by
the transition matrix gives the vector

[.02 .92 .02 .02 .02]

which is the probabilities that the surfer winds up on each of the pages after one
step. Now, multiplying this vector by the transition matrix gives the vector

[.05 .04 .36 .37 .19]

which contains the probabilities that the surfer winds up on each of the pages after
two steps. For example, the probability of moving from 0 to 2 in two moves is the
probability of moving from 0 to 0 to 2 (.02$.02), plus the probability of mov-
ing from 0 to 1 to 2 (.92$.38), plus the probability of moving from 0 to 2 to 2
(.02$.02), plus the probability of moving from 0 to 3 to 2 (.02$.02), plus the prob-
ability of moving from 0 to 4 to 2 (.02$.47), which adds up to a grand total of .36
. From these initial calculations, the pattern is clear: The vector giving the probabili-
ties that the random surfer is at each page after t steps is precisely the product of the
corresponding vector for t !1 steps and the transition matrix. By the basic limit theo-
rem for Markov chains, this process converges to the same vector no matter where
we start; in other words, after a sufficient number of moves, the probability that
the surfer ends up on any given page is independent of the starting point. Markov
(PROGRAM 1.6.3) is an implementation that you can use to check convergence for
our example. For instance, it gets the same results (the page ranks accurate to two
decimal places) as RandomSurfer, but with just 20 matrix-vector multiplications

!"#$%&'(')!"*+,,,:10 ./01/23,,,0425,67

1731.6 Case Study: Random Web Surfer

The power method for computing page ranks (limit values of transition probabilities)

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

probability of surfing from 0 to 2
in two moves (dot product)

probabilities of surfing
from i to 2 in one move

probabilities of surfing
from 0 to i in one move

probabilities of surfing
from 0 to i in one move

probabilities of surfing
from 0 to i in three moves

probabilities of surfing
from 0 to i in two moves

= [.02 .92 .02 .02 .02][1.0 0.0 0.0 0.0 0.0] *

= [.05 .04 .36 .37 .19][.02 .92 .02 .02 .02] *

p[][] newRank[]rank[]

first move

second move

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

probabilities of surfing
from 0 to i in two moves

= [.44 .06 .12 .36 .03][.05 .04 .36 .37 .19] *

third move

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

probabilities of surfing
from 0 to i in 20 moves

(steady state)

probabilities of surfing
from 0 to i in 19 moves

= [.27 .26 .15 .25 .07][.27 .26 .15 .25 .07] *

20th move

.02 .92 .02 .02 .02

.02 .02 .38 .38 .20

.02 .02 .02 .92 .02

.92 .02 .02 .02 .02

.47 .02 .47 .02 .02

.

.

.

!"#$%&'(')!"*+,,,:1. ./01/23,,,0425,67

174 Elements of Programming

% java Transition < tiny.txt | java Markov 20
 0.27245 0.26515 0.14669 0.24764 0.06806

% java Transition < tiny.txt | java Markov 40
 0.27303 0.26573 0.14618 0.24723 0.06783

Program 1.6.3 Mixing a Markov chain

public class Markov
{ // Compute page ranks after T moves.
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 int N = StdIn.readInt();
 StdIn.readInt();

 // Read p[][] from StdIn.
 double[][] p = new double[N][N];
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 p[i][j] = StdIn.readDouble();

 // Use the power method to compute page ranks.
 double[] rank = new double[N];
 rank[0] = 1.0;
 for (int t = 0; t < T; t++)
 { // Compute effect of next move on page ranks.
 double[] newRank = new double[N];
 for (int j = 0; j < N; j++)
 { // New rank of page j is dot product
 // of old ranks and column j of p[][].
 for (int k = 0; k < N; k++)
 newRank[j] += rank[k]*p[k][j];
 }

 for (int j = 0; j < N; j++)
 rank[j] = newRank[j];
 }

 for (int i = 0; i < N; i++) // Print page ranks.
 StdOut.printf("%8.5f", rank[i]);
 StdOut.println();
 }
}

This program reads a transition matrix from standard input and computes the probabilities
that a random surfer lands on each page (page ranks) after the number of steps specified as
command-line argument.

T number of iterations

N number of pages

p[][] transition matrix

rank[] page ranks

newRank[] new page ranks

!"#$%&'(')!"*+,,,:1- ./01/23,,,0425,67

1751.6 Case Study: Random Web Surfer

Page ranks with histogram for a larger example

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

 0 .002
 1 .017
 2 .009
 3 .003
 4 .006
 5 .016
 6 .066
 7 .021
 8 .017
 9 .040
 10 .002
 11 .028
 12 .006
 13 .045
 14 .018
 15 .026
 16 .023
 17 .005
 18 .023
 19 .026
 20 .004
 21 .034
 22 .063
 23 .043
 24 .011
 25 .005
 26 .006
 27 .008
 28 .037
 29 .003
 30 .037
 31 .023
 32 .018
 33 .013
 34 .024
 35 .019
 36 .003
 37 .031
 38 .012
 39 .023
 40 .017
 41 .021
 42 .021
 43 .016
 44 .023
 45 .006
 46 .023
 47 .024
 48 .019
 49 .016

6 22

!"#$%&'(')!"*+,,,:15 ./01/23,,,0425,67

176 Elements of Programming

instead of the tens of thousands of iterations needed by RandomSurfer. Another 20
multiplications gives the results accurate to three decimal places, as compared with
millions of iterations for RandomSurfer, and just a few more give the results to full
precision (see EXERCISE 1.6.6).

MARKOV CHAINS ARE WELL-STUDIED, BUT THEIR impact on the web was not truly felt un-
til 1998, when two graduate students, Sergey Brin and Lawrence Page, had the au-
dacity to build a Markov chain and compute the probabilities that a random surfer
hits each page for the whole web. Their work revolutionized web search and is the
basis for the page ranking method used by GOOGLE, the highly successful web search
company that they founded. Specifically, the company periodically recomputes the
random surfer’s probability for each page. Then, when you do a search, it lists the
pages related to your search keywords in order of these ranks. Such page ranks
now predominate because they somehow correspond to the expectations of typi-
cal web users, reliably providing them with relevant web pages for typical searches.
The computation that is involved is enormously time-consuming, due to the huge
number of pages on the web, but the result has turned out to be enormously profit-
able and well worth the expense. The method used in Markov is far more efficient
than simulating the behavior of a random surfer, but it is still too slow to actually
compute the probabilities for a huge matrix corresponding to all the pages on the
web. That computation is enabled by better data structures for graphs (see CHAPTER
4).

Lessons Developing a full understanding of the random surfer model is beyond
the scope of this book. Instead, our purpose is to show you an application that in-
volves writing a bit more code than the short programs that we have been using to
teach specific concepts. What specific lessons can we learn from this case study?

We already have a full computational model. Primitive types of data and strings,
conditionals and loops, arrays, and standard input/output enable you to address in-
teresting problems of all sorts. Indeed, it is a basic precept of theoretical computer
science that this model suffices to specify any computation that can be performed
on any reasonable computing device. In the next two chapters, we discuss two criti-
cal ways in which the model has been extended to drastically reduce the amount of
time and effort required to develop large and complex programs.

!"#$%&'(')!"*+,,,:18 ./01/23,,,0425,67

1771.6 Case Study: Random Web Surfer

Data-driven code is prevalent. The concept of using standard input and output
streams and saving data in files is a powerful one. We write filters to convert from
one kind of input to another, generators that can produce huge input files for study,
and programs that can handle a wide variety of different models. We can save data
for archiving or later use. We can also process data derived from some other source
and then save it in a file, whether it is from a scientific instrument or a distant
website. The concept of data-driven code is an easy and flexible way to support this
suite of activities.

Accuracy can be elusive. It is a mistake to assume that a program produces ac-
curate answers simply because it can print numbers to many decimal places of
precision. Often, the most difficult challenge that we face is ensuring that we have
accurate answers.

Uniform random numbers are only a start. When we speak informally about
random behavior, we often are thinking of something more complicated than the
“every value equally likely” model that Math.random() gives us. Many of the prob-
lems that we consider involve working with random numbers from other distribu-
tions, such as RandomSurfer.

Efficiency matters. It is also a mistake to assume that your computer is so fast that
it can do any computation. Some problems require much more computational ef-
fort than others. CHAPTER 4 is devoted to a thorough discussion of evaluating the
performance of the programs that you write. We defer detailed consideration of
such issues until then, but remember that you always need to have some general
idea of the performance requirements of your programs.

PERHAPS THE MOST IMPORTANT LESSON TO learn from writing programs for complicated
problems like the example in this section is that debugging is difficult. The polished
programs in the book mask that lesson, but you can rest assured that each one is
the product of a long bout of testing, fixing bugs, and running the programs on nu-
merous inputs. Generally we avoid describing bugs and the process of fixing them
in the text because that makes for a boring account and overly focuses attention on
bad code, but you can find some examples and descriptions in the exercises and on
the booksite.

!"#$%&'(')!"*+,,,:11 ./01/23,,,0425,67

178 Elements of Programming

Exercises

1.6.1 Modify Transition to take the leap probability from the command line
and use your modified version to examine the effect on page ranks of switching to
an 80-20 rule or a 95-5 rule.

1.6.2 Modify Transition to ignore the effect of multiple links. That is, if there
are multiple links from one page to another, count them as one link. Create a small
example that shows how this modification can change the order of page ranks.

1.6.3 Modify Transition to handle pages with no outgoing links, by filling rows
corresponding to such pages with the value 1/N.

1.6.4 The code fragment in RandomSurfer that generates the random move fails
if the probabilities in the row p[page] do not add up to 1. Explain what happens in
that case, and suggest a way to fix the problem.

1.6.5 Determine, to within a factor of 10, the number of iterations required by
RandomSurfer to compute page ranks to four decimal places and to five decimal
places for tiny.txt.

1.6.6. Determine the number of iterations required by Markov to compute page
ranks to three decimal places, to four decimal places, and to ten decimal places for
tiny.txt.

1.6.7 Download the file medium.txt from the booksite (which reflects the 50-
page example depicted in this section) and add to it links from page 23 to every
other page. Observe the effect on the page ranks, and discuss the result.

1.6.8 Add to medium.txt (see the previous exercise) links to page 23 from every
other page, observe the effect on the page ranks, and discuss the result.

1.6.9 Suppose that your page is page 23 in medium.txt. Is there a link that you
could add from your page to some other page that would raise the rank of your
page?

1.6.10 Suppose that your page is page 23 in medium.txt. Is there a link that you
could add from your page to some other page that would lower the rank of that
page?

!"#$%&'(')!"*+,,,:19 ./01/23,,,0425,67

1791.6 Case Study: Random Web Surfer

1.6.11 Use Transition and RandomSurfer to determine the transition probabili-
ties for the eight-page example shown below.

1.6.12 Use Transition and Markov to determine the transition probabilities for
the eight-page example shown below.

Eight-page example

0 3

5

4 2

7

6

1

!"#$%&'(')!"*+,,,:13 ./01/23,,,0425,67

180 Elements of Programming

Creative Exercises

1.6.13 Matrix squaring. Write a program like Markov that computes page ranks
by repeatedly squaring the matrix, thus computing the sequence p, p 2, p 4, p 8, p 16,
and so forth. Verify that all of the rows in the matrix converge to the same values.

1.6.14 Random web. Write a generator for Transition that takes as input a page
count N and a link count M and prints to standard output N followed by M random
pairs of integers from 0 to N-1. (See SECTION 4.5 for a discussion of more realistic
web models.)

1.6.15 Hubs and authorities. Add to your generator from the previous exercise a
fixed number of hubs, which have links pointing to them from 10% of the pages,
chosen at random, and authorities, which have links pointing from them to 10% of
the pages. Compute page ranks. Which rank higher, hubs or authorities?

1.6.16 Page ranks. Design an array of pages and links where the highest-ranking
page has fewer links pointing to it than some other page.

1.6.17 Hitting time. The hitting time for a page is the expected number of moves
between times the random surfer visits the page. Run experiments to estimate page
hitting times for tiny.txt, compare with page ranks, formulate a hypothesis about
the relationship, and test your hypothesis on medium.txt.

1.6.18 Cover time. Write a program that estimates the time required for the ran-
dom surfer to visit every page at least once, starting from a random page.

1.6.19 Graphical simulation. Create a graphical simulation where the size of the
dot representing each page is proportional to its rank. To make your program data-
driven, design a file format that includes coordinates specifying where each page
should be drawn. Test your program on medium.txt.

!"#$%&'(')!"*+,,,:92 ./01/23,,,0425,67

1811.6 Case Study: Random Web Surfer

!"#$%&'(')!"*+,,,:9: ./01/23,,,0425,67

 Search booksite...

2. FUNCTIONS

Overview. In this chapter, we consider a concept that has as
profound an impact on control flow as do conditionals and loops:
the function, which allows us to transfer control back and forth
between different pieces of code. Functions are important because
they allow us to clearly separate tasks within a program and
because they provide a general mechanism that enables us to
reuse code.

2.1 Static Methods introduces the Java mechanism (the
static method) for implementing functions.
2.2 Libraries and Clients describes how to group related
static methods into libraries to enable modular
programming.
2.3 Recursion considers the idea of a function calling itself.
This possiblility is known as recursion.
2.4 Percolation presents a case study that uses Monte Carlo
simulation to study a natural model known as percolation.

Java programs in this chapter. Below is a list of Java programs
in this chapter. Click on the program name to access the Java
code; click on the reference number for a brief description; read
the textbook for a full discussion.

REF PROGRAM DESCRIPTION

2.1.1 Newton.java Newton's method
(revisited)

2.1.3 Coupon.java coupon collector
(revisited)

2.2.1 StdRandom.java random number library

2.2.3 IFS.java iterated function
systems

2.2.5 StdStats.java data analysis library

2.3.1 Euclid.java Euclid's algorithm

2.3.3 Beckett.java Gray code

2.3.5 Brownian.java Brownian bridge

2.4.2 VerticalPercolation.java vertical percolation

2.4.4 Estimate.java percolation probability
estimate

2.4.6 PercPlot.java adaptive plot client

2body.txt
3body.txt
4body.txt

2bodyTiny.txt

4.1.1.java 41analysis

Exercises. Include a link.

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

2.1 STATIC METHODS

The Java construct for implementing functions is known as the static method.

Using and defining static methods. The use of static methods is easy to understand. For
example, when you write Math.abs(a-b) in a program, the effect is as if you were to replace that
code by the value that is computed by Java's Math.abs() method when presented with the value
a-b. If you think about what the computer has to do to create this effect, you will realize that it
involves changing a program's flow of control.

Flow-of-control. Newton.java comprises two static methods sqrt() and main(). Even though
sqrt() appears first in the code, the first statement executed when the program is executed
is, as always, the first statement in main(). The next few statements operate as usual, except
that the code sqrt(a[i]), which is known as a function call on the static method sqrt(),
causes a transfer of control, to the first line of code in sqrt(), each time that it is
encountered. Moreover, the value of c within sqrt() is initialized to the value of a[i] within
main() at the time of the call. Then the statements in sqrt() are executed in sequence, as
usual, until reaching the return statement, which transfers control back to the statement in
main() containing the call on sqrt().

Function call trace. One simple approach to following the flow of control through function calls
is to imagine that each function prints its name and argument value when it is called and its
return value just before returning, with indentation added on calls and subtracted on returns.
Anatomy of a static method. The square root function maps a nonnegative real number to a
nonnegative real number; the sqrt() static method in Newton maps a double to a double.
For any given initial value of the parameter variable, it will compute a well-defined return
value.

Properties of static methods.

Parameter variables. You can use parameter variables anywhere in the code in the body of the
function in the same way as you use local variables. The only difference between a parameter
variable and a local variable is that the parameter variable is initialized with the argument
value provided by the calling code.

Scope. The scope of a variable name is the set of statements that can refer to that name. The
scope of the variables in a static method is limited to that method's body (or a smaller set of
statements if declared inside a block within the function body). Therefore, you cannot refer to
a variable in one static method that is declared in another.

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Multiple methods. You can define as many static methods as you want in a .java file. These
methods are independent, except that they may refer to each other through calls. They can
appear in any order in the file.

Calling other static methods. Any static method defined in a .java file can call any other static
method in the same file or any static method in a Java library like Math.

Multiple arguments. Like a mathematical function, a Java static method can take on more than
one argument, and therefore can have more than one parameter variable.

Overloading. Static methods whose signatures differ are different static methods. Using one
name for two static methods whose signatures differ is known as overloading.

Single return value. Like a mathematical function, a Java static method can provide only one
return value, of the type declared in the method signature.

Multiple return statements. Control goes back to the calling program as soon as the first
return statement in a static method is reached. You can put return statements wherever
you need them, as in sqrt(). Even though there may be multiple return statements, any
static method returns a single value each time it is invoked: the value following the first return
statement encountered.
Side effects. A static method may use the keyword void as its return type, to indicate that it
has no return value. An explicit return is not necessary in a void static method: control
returns to the caller after the last statement. In this book, we use void static methods for two
purposes: for output, in StdOut, StdDraw, and StdAudio and to manipulate arrays.

Functions.java gives a number of examples.

Implementing mathematical functions. We now consider
two important functions that play an important role in
science, engineering, and finance. The Gaussian (normal)
distribution function is characterized by the familiar bell-
shaped curve and defined by the formula:

and the cumulative Gaussian distribution function Φ(z) is
defined to be the area under the curve defined by φ(x)
above the x-axis and to the left of the vertical line x = z. For
example, Φ(1.96) = 0.975. This means that 97.5% of the
area under the standard Gaussian curve is to the left of z =
1.96.

Closed form. In the simplest situation, we have a
closed-form mathematical equation defining our
function in terms of functions that are implemented in
the Math library. This is the case for φ(x).

No closed form. Otherwise, we may need a more
complicated algorithm to compute function values.
This situation is the case for Φ(z), for which no closed-
form expression exists. For small (respectively large) z, the value is extremely close to 0
(respectively 1); so the code directly returns 0 (respectively 1); otherwise the following Taylor
series approximation is an effective basis for evaluating the function:

Gaussian.java implements both of these static methods.

Using static methods to organize code. With the ability to define functions, we can better
organize our programs by defining functions within them when appropriate. For example,
Coupon.java is a version of CouponCollector.java that better separates the individual components of
the computation.

Given N, compute a random coupon value

Given N, do the coupon collection experiment

Get N from the command line, then compute and print the result

Whenever you can clearly separate tasks in programs, you should do so.

Arrays as arguments and return values. A static method can take an array as an argument or as
a return value.

Arrays as arguments. The following static method computes the mean (average) value of an
array of double values.

public static double mean(double[] a) {
 double sum = 0.0;
 for (int i = 0; i < a.length; i++)
 sum = sum + a[i];
 return sum / a.length;
}

We have been using arrays as arguments from the beginning. The code

public static void main(String[] args)

defines main() as a static method that takes an array of strings as argument and returns
nothing. By convention, the Java system collects the strings that you type after the program
name in the java command into an array args[] and calls main().

Side effects with arrays. It is often the case that the purpose of a static method that takes an
array as argument is to produce a side effect (change values in the array). A prototypical
example of such a method is one that exchanges the values at two given indices in a given
array. A second prototypical example of a static method that takes an array as argument is
one that randomly shuffles the values in the array, using this version of the approach that we
examined in Section 1.4 (simplified by use of the exch() method just defined). Program
Shuffle.java takes this approach.
Arrays as return values. A static method can also provide an array as a return value.

Superposition of sound waves. Notes like concert A have a pure sound that is not very musical,
because the sounds that you are accustomed to hearing have many other components. Most musical
instruments produce harmonics (the same note in different octaves and not as loud), or you might
play chords (multiple notes at the same time). To combine multiple sounds, we use superposition:
simply add their waves together and rescale to make sure that all values stay between 1 and 1.

PlayThatTuneDeluxe.java is a version of PlayThatTune that encapsulates the sound wave calculation
and adds harmonics. Here a few sample data files (created by various students):

Ascale.txt
elise.txt
StairwayToHeaven.txt
firstcut.txt
looney.txt
National_Anthem.txt
arabesque.txt
entertainer.txt
freebird.txt
tomsdiner.txt

Q + A

Q. Why do I need to use the return type void? Why not omit the return type?

A. Java requires it; we have to include it. Second-guessing a decision made by a programming-
language designer is the first step to becoming one.

Q. Can I return from a void function by using return. If so, what return value should I use?

A. Yes. use the statement return; with no return value.

Q. What happens if I leave out the keyword static?

A. As usual, the best way to answer a question like this is to try it yourself and see what happens.
Non-static methods are different from static methods. You will learn about them in Chapter 3.

Q. What happens if I write code after a return statement?

A. Once a return statement is reached, control immediately returns to the caller, so any code after
a return statement is useless. The Java compiler identifies this situation as an error, reporting
unreachable code.

Q. What happens if I do not include a return statement?

A. No problem, if the return type is void. In this case, control will return to the caller after the last
statement. When the return type is not void, the compiler will report a missing return
statement error if there is any path through the code that does not end in a return.

Q. The issue with side effects and arrays passed as arguments is confusing. Is it really all that
important?

A. Yes. Properly controlling side effects is one of a programmers most important tasks in large
systems. Taking the time to be sure that you understand the difference between passing a value
(when arguments are of a primitive type) and passing a reference (when arguments are arrays) will
certainly be worthwhile. The very same mechanism is used for all other types of data, as you will
learn in Chapter 3.

Q. So why not just eliminate the possibility of side effects by making all arguments pass-by-value,
including arrays?

A. Think of a huge array with, say, millions of elements. Does it make sense to copy all of those
values for a static method that is just going to exchange two of them? For this reason, most
programming languages support passing an array to a function without creating a copy of the array
elements—Matlab is a notable exception.

Exercises

1. Write a static method max3() that takes three int values as arguments and returns the value
of the largest one. Add an overloaded function that does the same thing with three double
values.

public static int max3(int a, int b, int c) {
 int max = a;
 if (b > max) max = b;
 if (c > max) max = c;
 return max;
}

public static double max3(double a, double b, double c) {
 double max = a;
 if (b > max) max = b;
 if (c > max) max = c;
 return max;
}

2. Write a static method odd() that takes three boolean inputs and returns true if an odd
number of inputs are true, and false otherwise.

3. Write a static method majority() that takes three boolean arguments and returns true if
at least two of the arguments have the value true, and false otherwise. Do not use an if
statement. Solution: here are two solutions: the first is concise; the second strictly adheres to
the rules.

public static boolean majority(boolean a, boolean b, boolean c) {
 return (a && b) || (a && c) || (b && c);
}

public static boolean majority(boolean a, boolean b, boolean c) {
 while (a && b) return true;
 while (a && c) return true;
 while (b && c) return true;
 return false;
}

4. Write a static method eq() that takes two arrays of integers as arguments and returns true if
they contain the same number of elements and all corresponding pairs of elements are equal.

Solution. ArraysEquals.java.
5. Write a static method areTriangular() that takes three double values as arguments and

returns true if they could be the sides of a triangle (none of them is greater than or equal to
the sum of the other two). See Exercise 1.2.15.

6. Write a static method sigmoid() that takes a double argument x and returns the double
value obtained from the formula: 1 / (1 - e^-x).

7. If the argument of sqrt() in Newton.java has the value Infinity, then Newton.sqrt()
returns the value Infinity, as desired. Explain why.

8. Add a method abs() to Newton.java, change sqrt() to use abs() instead of Math.abs(),
and add print statements to produce a function call trace, as described in the text. Hint : You
need to add an argument to each function to give the level of indentation.

9. Give the function call trace for java Newton 4.0 9.0.

10. Write a static method lg() that takes a double value N as argument and returns the base 2
logarithm of N. You may use Java's Math library.

11. Write a static method lg() that takes an int value N as argument and returns the largest
int not larger than the base-2 logarithm of N. Do not use Math.

12. Write a static method signum() that takes an int value N as argument and returns -1 if N is
less than 0, 0 if N is equal to 0, and +1 if N is greater than 0. (See also the static method
Integer.signum().)

13. Consider the following static method duplicate() below.

public static String duplicate(String s) {
 String t = s + s;
 return t;
}

What does the following code fragment print out?

String s = "Hello";
s = duplicate(s);
String t = "Bye";
t = duplicate(duplicate(duplicate(t)));
StdOut.println(s + t);

14. Consider the static method cube() below.

public static void cube(int i) {
 i = i * i * i;
}

How many times is the following for loop iterated?

for (int i = 0; i < 1000; i++)
 cube(i);

Answer: see textbook.
15. The following checksum formula is widely used by banks and credit card companies to validate

legal account numbers:

d0 + f(d1) + d2 + f(d3) + d4 + f(d5) + d6 + ... = 0 (mod 10)

The di are the decimal digits of the account number and f(d) is the sum of the decimal digits of
2d (for example, f(7) = 5 because 2 * 7 = 14 and 1 + 4 = 5). For example, 17327 is valid
because 1 + 5 + 3 + 4 + 7 = 20, which is a multiple of 10. Implement the function f and write
a program to take a 10-digit integer as a command-line argument and print a valid 11-digit
number with the given integer as its first 10 digits and the checksum as the last digit.

16. Given two stars with angles of declination and right ascension (d1, a1) and (d2, a2), the angle
they subtend is given by the Haversine formula:

2 arcsin((sin^2(d/2) + cos (d2) * cos(d1) * sin^2(a/2)^1/2),

where a1 and a2 are angles between -180 and 180 degrees, d1 and d2 are angles between
-90 and 90 degrees, a = a2 - a1, d = d2 - d1. Write a program to take declination and right
ascension of two stars as command-line arguments and print the angle they subtend. Hint: Be
careful about converting from degrees to radians.

See also Exercise 1.2.33. Latitude corresponds to declination and longitude to ascension.
17. Write a readBoolean2D() method that reads a two-dimensional boolean matrix (with

dimensions) into an array. Answer: see textbook.
18. Write a method that takes an array of double values as argument and rescales the array so

that each element is between 0 and 1 (by subtracting the minimum value from each element
and then dividing each element by the difference between the minimum and maximum
values). Use the max() method defined in the table in the text, and write and use a matching
min() method.

19. Write a method histogram() that takes an array a[] of int values and an integer M as
argument and returns an array of length M whose ith entry is the number of times the integer
i appeared in the argument array. If the values in a[] are all between 0 and M-1, the sum of
the values in the returned array should be equal to a.length.

20. Assemble code fragments in this section and in Section 1.4 to develop a program that takes N
from the command line and prints N five-card hands, separated by blank lines, drawn from a
randomly shuffled card deck, one card per line using card names like Ace of Clubs.

21. Write a method multiply() that takes two square matrices of the same dimension as
arguments and produces their product (another square matrix of that same dimension). Extra
credit: Make your program work whenever the number of rows in the first matrix is equal to
the number of columns in the second matrix.

22. Write a method any() that takes an array of boolean values as argument and returns true if
any of the entries in the array is true, and false otherwise. Write a method all() that takes
an array of boolean values as argument and returns true if all of the entries in the array are
true, and false otherwise.

23. Develop a version of getCoupon() that better models the situation when one of the coupons

is rare: choose one value at random, return that value with probability N /1000, and return all
other values with equal probability. Extra credit: How does this change affect the average
value of the coupon collector function?

24. Modify PlayThatTune.java to add harmonics two octaves away from each note, with half the
weight of the one-octave harmonics.

Creative Exercises

25. Birthday problem. Develop a class with appropriate static methods for studying the birthday
problem (see Exercise 1.4.35).

26. Euler's totient function. Euler's totient function is an important function in number theory:
φ(n) is defined as the number of positive integers less than or equal to n that are relatively
prime with n (no factors in common with n other than 1). Write a function that takes an
integer argument n and returns φ(n), and a main() that takes an integer from the command
line, calls the function, and prints the result.

27. Harmonic numbers. Write a program Harmonic that contains three static methods H(),
Hsmall(), and Hlarge() for computing the Harmonic numbers. The Hsmall() method
should just compute the sum (as in Harmonic.java), the Hlarge() method should use the
approximation H(N) = N = log_e(N) + γ + 1/(2N) - 1/(12N^2) + 1/(120N^4) (the number γ
= .577215664901532... is known as Euler's constant), and the H() method should call
Hsmall() for (N < 100) and Hlarge() otherwise.

28. Gaussian random values. Experiment with the following method for generating random
variables from the Gaussian distribution, which is based on generating a random point in the
unit circle and using a form of the Box-Muller transform. (see Exercise 1.2.27 and the
discussion of do-while at the end of Section 1.3).

public static double gaussian() {
 double r, x, y;
 do {
 x = uniform(-1.0, 1.0);
 y = uniform(-1.0, 1.0);
 r = x*x + y*y;
 } while (r >= 1 || r == 0);
 return x * Math.sqrt(-2.0 * Math.log(r) / r);
}

Take a command-line argument N and generate N random numbers, using an array a[20] to
count the numbers generated that fall between i*.05 and (i+1)*.05 for i from 0 to 19. Then
use StdDraw to plot the values and to compare your result with the normal bell curve.

Remark: This method is preferred over the one described in Exercise XYZ for both efficiency
and accuracy. Although it involves a loop, the do-while loop is executed only 4 / π = 1.273
times on average. This reduces the overall expected number of calls to transcendental
functions.

29. Binary search. A general method that we study in detail in Section 4.2 is effective for
computing the inverse of a cumulative probability density function like Phi(). Such functions
are continuous and nondecreasing from (0, 0) to (1, 1). To find the value x0 for which f(x0) =
y0, check the value of f(.5). If it is greater than y0, then x0 must be between 0 and .5;
otherwise, it must be between .5 and 1. Either way, we halve the length of the interval known
to contain x0. Iterating, we can compute x0 to within a given tolerance. Add a method
PhiInverse() to Gaussian.java that uses binary search to compute the inverse.

Change main() to take a number p between 0 and 100 as a third command-line argument
and print the minimum score that a student would need to be in the top p percent of students
taking the SAT in a year when the mean and standard deviation were the first two command-
line arguments.

30. Black-Scholes option valuation. The Black Scholes formula supplies the theoretical value of
a European call option on a stock that pays no dividends, given the current stock price s, the
exercise price x, the continuously compounded riskfree interest rate r, the standard deviation
σ of the stock's return (volatility) and the time (in years) to maturity t. The value is given by
the formula

where

Write a program BlackScholes.java that takes s, x, r, sigma, and t from the command line and
prints the Black-Scholes value.

Myron Scholes won the 1997 Nobel Prize in Economics for the Black-Scholes paper.

31. Implied volatility. Typically the volatility is the unknown value in the Black-Scholes formula.
Write a program that reads s, x, r, t, and the current price of the option from the command
line and uses binary search (see Exercise 2.1.29) to compute σ.

32. Horner's method. Write a class Horner.java with a method double eval(double x,
double[] p) that evaluates the polynomial p(x) whose coefficients are the entries in p[]:

p0 + p1x
1 + p2x

2 + ... + pN-2x
N-2 + pN-1x

N-1

Use Horner's method, an efficient way to perform the computations that is suggested by the
following parenthesization:

p0 + x (p1 + x(p2 + ... + x(pN-2 + xpN-1))...)

Write a test client with a static method exp() that uses Horner.eval() to compute an
approximation to e^x, using the first N terms of the Taylor series expansion e^x = 1 + x + x
2/2! + x 3/3! + Include code to check your answer against that computed by Math.exp().

33. Benford's law. The American astronomer Simon Newcomb observed a quirk in a book that
compiled logarithm tables: the beginning pages were much grubbier than the ending pages.
He suspected that scientists performed more computations with numbers starting with 1 than
with 8 or 9, and postulated the first digit law, which says that under general circumstances,
the leading digit is much more likely to be 1 (roughly 30%) than the digit 9 (less than 4%).
This phenomenon is known as Benford's law and is now often used as a statistical test. For
example, IRS forensic accountants rely on it to discover tax fraud. Write a program
Benford.java that reads in a sequence of integers from standard input and tabulates the
number of times each of the digits 1-9 is the leading digit, breaking the computation into a set
of appropate static methods. Use your program to test the law on some tables of information
from your computer or from the web. Then, write a program to foil the IRS by generating
random amounts from $1.00 to $1,000.00 with the same distribution that you observed.

The file princeton-files.txt is a list of file sizes on a public Unix machine at Princeton.
34. Binomial distribution. Write a function public static double binomial(int k, int

N, double p) to compute the probability of obtaining exactly k heads in N biased coin flips
(heads with probability p) using the formula

 N!
 f(k, N, p) = --------- (p^k) ((1-p)^(N-k))
 k! (N-k)!

Hint: To stave off overflow, compute x = ln f(N, k, p) and then return e^x. In main(), take N
and p from the command line and check that the sum over all values of k between 0 and N is
(approximately) 1. Also, compare every value computed with the normal approximation f(N, k,
p) = φ(Np, Np(1-p))

(see Exercise 2.2.1).
35. Coupon collecting from a binomial distribution. Develop a version of getCoupon() that

uses binomial() from the previous exercise to return coupon values according to the binomial
distribution with p = 1/2. Hint : Generate a uniformly distributed random number x between 0
and 1, then return the smallest value of k for which the sum of f (N, j, p) for all j < k exceeds
x. Extra credit : Develop a hy- pothesis for describing the behavior of the coupon collector
function under this assumption.

36. Chords. Develop a version of PlayThatTune.java that can handle songs with chords (including
harmonics). Develop an input format that allows you to specify different durations for each
chord and different amplitude weights for each note within a chord. Create test files that
exercise your program with various chords and harmonics, and create a version of Fur Elise
that uses them.

37. Postal bar codes. The POSTNET barcode used by the U.S. Postal System to route mail is
defined as follows: Each decimal digit in the zip code is encoded using a sequence of three
half-height and two full-height bars. The barcode starts and ends with a full-height bar (the
guard rail) and includes a checksum digit (after the five-digit zip code or ZIP+4), computed by
summing up the original digits modulo 10. Implement the ollowing functions

Draw a half-height or full-height bar on StdDraw.

Given a digit, draw its sequence of bars.
Compute the checksum digit.

and a and a test client that reads in a five- (or nine-) digit zip code as the command-line
argument and draws the corresponding postal bar code.

Value 0 1 2 3 4 5 6 7 8 9

Encoding || || |
|

|| |
|

| | || |
|

| | | |

38. Calendar. Write a program Calendar.java that takes two command-line arguments m and y
and prints out the monthly calendar for the mth month of year y, as in this example:

 February 2009
 S M Tu W Th F S
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

Hint: See LeapYear.java and Exercise 1.2.29.
39. Fourier spikes. Write a program that takes a command-line argument N and plots the

function Plot (cos(t) + cos(2t) + cos(3t) + cos(4t) + ... + cos(Nt)) / N for 500 equally spaced
samples of t from -10 to 10 (in radians). Run your program for N = 5 and N = 500. Note: You
will observe that the sum converges to a spike (0 everywhere except a single value). This
property is the basis for a proof that any smooth function can be expressed as a sum of
sinusoids.

Web Exercises

1. Diamond tile. Write a program DiamondTile.java that takes a command-line argument N and
creates an N-by-N tile of diamonds. Include static methods diamond() and
filledDiamond().

2. Hexagonal tile. Write a program HexTile.java that takes a command-line argument N and
creates an N-by-N tile of hexagons. Include static methods hexagon() and
filledHexagon().

3. Inverse Gaussian cumulative distribution. Suppose SAT math scores are normally
distributed with mean 500 and standard deviation. Estimate how high student must score in
order to be among the top 10%. To do this you need to find the value z for which Φ(z, 500,
100) = 0.9. Hint: use binary search.

4. SAT scores. A prominent northeastern university receives 20,000 student applications.
Assume that the SAT scores of these individuals is normally distributed with mean 1200 and
standard deviation 100. Suppose the university decides to admit the 5,000 students with the
best SAT scores. Estimate the lowest score that will still be admitted.

5. Voting machines. Suppose that in a population of 100 million voters, 51% vote for candidate
A and 49% vote for candidate B. However, the voting machines are prone to make mistakes,
and 5% of the time they produce the wrong answer. Assuming the errors are made
independently and at random, is a 5% error rate enough to invalidate the results of a close
election? What error rate can be tolerated?

6. Gambler's histogram. Write a program RandomWalk.java that takes one command line
parameter M and simulates a gambler starting with M who places exactly M one dollar bets.

a. Produce a histogram of the amount of money the gambler ends up with by running this
experiment N times.

b. The amount of money the gambler ends up with follows a binomial distribution with
mean M and variance N/4. The distribution can be approximated by a normal distribution
with the same mean and variance. Produce a histogram for the fraction of time you'd
expect the gambler to end up with the amount in each histogram bin.

Organize your program up into several functions.
7. Statistical sampling. Write a program Sampling.java takes a random sample of N people and

asks them a yes/no question. Compute a 95% confidence interval.
8. Blackjack. Write a program Blackjack.java that plays the basic strategy or write a

program BlackjackCounter.java that implements the high-low card counting system.

9. Wavelets. Applications to computer vision, human vision, speech processing, compressing the
FBI fingerprint database, filtering noisy data, detecting self-similarity in time series, sound
synthesis, computer graphics, medical imaging, analyzing the clumping of galaxies, and
analyzing turbulence. The Haar function is definite by Φ(x) = 1 if 0 ≤ x < 1/2, Φ(x) = -1 if 1/2
≤ x < 1, and Φ(x) = 0 otherwise. For integer m and n, the Haar basis function Φm,n(x) = 2-

m/2 Φ(2-mx - n). Write a program Haar.java that takes two integer input M and N, and one
real input x and prints Φm,n(x). Or maybe plot it?

10. Baccarat. Baccarat is a simple card game which has been romanticized in James Bond
movies. When the player is dealt nine, the croupier proclaims "neuf a la banque". Write a
program that determines your chance of winning....

11. Collinear points. Write a function

public boolean areCollinear(int x1, int y1, int x2, int y2, int x3, int y3)

that returns true if the three points (x1, y1), (x2, y2), and (x3, y3) lie on the same line, and
false otherwise.

12. Gauss error function. The error function is a function that arises in probablity, statistics, and
solutions to differential equations. For example, Φ(z) = 1/2 + (1 + erf(z / sqrt(2))), where
Φ(z) is the Gaussian cumulative distribution function defined above.

The integral has no closed form solution in terms of elementary functions so we resort to
approximations. When z is nonnegative, the Chebyshev fitting estimate below is accurate to 7
significant digits:

If z is negative, use the identity erf(z) = -erf(-z). A particularly efficient way to implement it is
via a judicious use of parentheses known as Horner's method. Write a function erf() in
ErrorFunction.java takes one real input z and computes the error function using the formula
above.

13. Haversine. Write a function haversine() that takes one double argument θ and returns
haversine(θ) = (sin(θ/2))^2.

14. Soil temperature. (Cleve Moler) Suppose the soil temperature is uniformly Ti (20 degrees C)
at the surface and beneath. A cold front moves in and the surface temperature Ts (-15 C)
remains for the foreseeable future. The temperature T(x, t) at time t seconds of the soil at x
meteres beneath the surface is given by T(x, t) = Ts + (Ti - Ts) erf(x / 2 sqrt(alpha t)), where
alpha (0.138 * 10^-6 m^2 / s) is the thermal conductivity of the soil. What is the temperature
at 10 meters after 30 days of exposure to these conditions? How long until water freezes (0
degrees) at 5 meters beneath the surface? How deep to dig a water main so that it can
withstand 60 days of exposure to these conditions without freezing?

15. Implied volatility of Black-Scholes. The volatility parameter sigma is often unknown.
Suppose you know the price of a call option whose underlying asset has current price S, strike
price X, time to maturity T, and interest rate r. Determine the implied volatility by solving the
Black-Scholes formula for sigma. There is no closed form solution, so use binary search. You
can use repeated doubling or halving to find appropriate values of sigma_min and sigma_max
to bracket the true value.

16. Craps. Calculate the probability of winning a pass bet in craps. Here are the rule for a pass
bet. Roll two 6-sided dice, and let x be their sum.

if x is 7 or 11, you win instantly
if x is 2, 3, or 12, you lose instantly
otherwise, repeatedly roll two dice until their sum is either x or 7

if their sum is x, you win
if their sum is 7, you lose

Program Craps.java takes a command line parameter N and simulates N pass bets. The
program's organization benefits from two helper functions: sumOfTwoDice and winsPassBet.
Both functions have one interesting feature - they do not take any input arguments. The first
function simulate the throw of two dice. This returns an integer between 2 and 12, but not all
values are equally likely. To simulate the probabilities correctly, we call
StdRandom.random(6) twice and one to generate a number between 1 and 6. Then, we add
the two values. The second function returns a boolean value: true if we win the pass bet and
false otherwise. This function has several return statements. As soon as the first one is
executed, the function terminates with the given return value.

17. Musical scale. Using the function note(), write a program Scale.java to play a major scale.

18. Primality testing. Create a function isPrime() that takes an integer argument N and
returns true or false depending on whether N is prime.

public static boolean isPrime(long N) {
 if (N < 2) return false;
 for (long i = 2; i*i <= N; i++) {
 if (N % i == 0) return false;

 }
 return true;
}

19. Electronic funds transfer routing number check. Given a 9 digit EFT routing number
a1a2a3a4a5a6a7a8a9 the check equation is

3 a1 + 7a2 + a3 + 3a4 + 7a5 + a6 +3a7 +7a8 +a9 mod 10 = 0

Check digit reference.
20. Write a static method nint() that takes a real number as a parameter and returns the

nearest integer. Do not use any Math library function, instead use casting.
21. Write a static method int mod(int a, int n), where a is an integer and n is a positive

integer, and returns a mod n. This corresponds to a % n when a is positive, but if a is
negative, a % n returns a nonpositive integer.

22. Present value.
a. Write a method fv that computes the amount of money you will have if you invest C

dollars today at the compound interest rate of r per period, in T periods. The formula for
the future value is given by C*(1 + r)^T.

b. Write a method pv that computes the amount of money that would have to be invested
now, at the compound interest rate r per period, to obtain a cash flow of C in T periods.
The formula for the present value is given by C/(1 + r)^T.

23. The ACT is another standardized test. Assume that test scores follow a Gaussian distribution
with mean 18 and standard deviation 6. Also assume that the test takers for SAT and ACT are
indistinguishable. Which is better, an SAT score of 620 or ACT of 26?

24. Write a program Factorial.java that takes one integer command line input n and prints out n!
= 1 * 2 * ... * n. Write a function that has the following signature:

public static long factorial(int n)

What is the largest value of n that your function can handle without overflow?
25. What is wrong with the following function?

static int sum(int n) {
 if (n < 0) return;
 double sum = 0.0;
 for (int i = 0; i < n; i++)
 sum = sum + i;
 return sum;
}

Answer: The function is declared to return a value of type int. The first return statement is
wrong since it returns nothing. The second return statement is wrong since it returns a value
of type double.

26. What does the following do?

public static void negate(int a) {
 a = -a;
}

public static int main(String[] args) {
 int a = 17;
 System.out.println(a);
 negate(a);
 System.out.println(a);
}

Answer: It prints 17 twice. A function cannot change the value of a primitive type variable in
another function.

27. Write a function that takes three real arguments, x, y, and s, and plots an equilateral triangle
centered on (x, y) with side length s. Call the function a number of times in main to produce
an entertaining pattern.

28. Which of the following functions returns the minimum of its four inputs? Which is easiest to
understand and verify that it is correct?

public static int min(int a, int b, int c, int d) {
 // if a is the smallest return it
 if (a <= b && a <= c && a <= d) return a;

 // otherwise, if b is the smallest of b, c, and d, return it
 if (b <= c && b <= d) return b;

 // otherwise, return the smaller of c and d
 if (c <= d) return c;
 return d;
}

public static int min(int a, int b, int c, int d) {
 int min = a;
 if (b < min) min = b;
 if (c < min) min = c;
 if (d < min) min = d;
 return min;
}

public static int min(int a, int b, int c, int d) {
 if (a < b && a < c && a < d) return a;
 if (b < c && b < d) return b;
 if (c < d) return c;
 return d;
}

public static int min(int a, int b, int c, int d) {
 if (a <= b) {
 if (a <= c) {
 if (a <= d) return a;
 else return d;
 }
 if (c <= d) return c;
 else return d;
 }
 if (b <= c) {
 if (b <= d) return b;
 else return d;
 }
 else if (c <= d) return c;
 return d;
}

public static int min(int a, int b) {
 if (a <= b) return a;
 else return b;
}
public static int min(int a, int b, int c, int d) {
 return min(min(a, b), min(c, d));
}

29. How would you go about testing whether one of the functions in the previous exercise does
what it claims to do?

Answer: you can't hope to test it on every conceivable input since there are 2128 different
possible inputs. Instead, test it on all 4! = 24 cases depending on whether a < b, a < c, ..., c
< d. Or all 4^4 permutations of 0, 1, 2, and 3.

30. What's wrong with the following method call?

double y = 2.0;
double x = sqrt(double y);

It re-declare the variable y when calling sqrt().

31. Sawtooth. Write a program SawTooth.java to plot 2/pi [sin(1t)/1 + sint(2t)/2 + sin(3t)/3 +
...]. As you plot more and more terms, the wave converges to a sawtooth wave. Then play it
using standard audio.

32. Square wave. Plot 4/pi [sin(1*2*pi*t)/1 + sint(3*2*pi*t)/3 + sin(5*2*pi*t)/5 + ...]. As you
plot more and more terms, the wave converges to a square wave. Then play it using standard
audio.

33. Write a program to print the lyrics to Old McDonald.

public static String sing(String animals, String sound) {
 String s = "";
 s += "Old MacDonald had a farm\n";
 s += "E-I-E-I-O\n";
 s += "And on his farm he had some " + animals + "\n";
 s += "With a " + sound + "-" + sound + " here\n";
 s += "And a " + sound + "-" + sound + " there\n";
 s += "Here a " + sound + ", there a " + sound + "\n";
 s += "Everywhere a + sound + "-" + sound + "\n";
 s += "Old MacDonald had a farm\n";
 s += "E-I-E-I-O\n";
 return s;
}
...
System.out.println(sing("chicks", "cluck"));
System.out.println(sing("cows", "moo"));
System.out.println(sing("pigs", "oink"));
System.out.println(sing("cats", "meow"));
System.out.println(sing("sheep", "baa"));
System.out.println(sing("ducks", "quack"));
System.out.println(sing("horses", "neigh"));

34. Write a static method maxwellBoltzmann() that returns a pseudo-random value from a
Maxwell-Boltzmann distribution with parameter σ. To produce such a value, take the sum of
the squares of three Gaussian random variables with mean 0 and standard deviation σ, and
return the square root. The speeds of molecules in an ideal gas have a Maxwell-Boltzmann
distribution, where the parameter σ is related to XYZ.

35. Write a static method reverse1() that takes a string array as an argument and creates a
new array with the entries in reverse order (and does not change the order of the entries in
the argument array). Write a static method reverse2() that takes a string array as an
argument and reverses its entries. Put your code in a program Reverse.java.

36. Which function gets called by f(1, 2) if I have two overloaded functions

public static void f(int x, double y) {
 System.out.println("f(int, double)");
}

public static void f(double x, int y) {
 System.out.println("f(double, int)");
}

Solution. Ordinarily, Java's type promotion rules would promote either int argument to
double. However, in this case, that would result in two matching overloaded signatures. Since
Java can't resolve the ambiguity, Overloaded.java results in a compile-time error.

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

2.2 LIBRARIES AND CLIENTS

Each program that you have written consists of Java code that resides in a single .java file. For large
programs, keeping all the code in a single file is restrictive and unnecessary. Fortunately, it is very easy
in Java to refer to a method in one file that is defined in another. This ability has two important
consequences on our style of programming:

It allows us to extend the Java language by developing libraries of static methods for use by any
other program, keeping each library in its own file.

It enables modular programming, where we divide a program up into static methods, grouped
together in some logical way according to the dictates of the application. Modular programming is
important because it allows us to independently develop, debug, and even compile parts of big
program one piece at a time, leaving each finished piece in its own file for use without having to
worry about its details again.

Using static methods in other programs. To refer to a static method in one class that is defined in
another: Keep both classes in the same directory in your computer. To call a method, prepend its class
name and a period separator. For example, SATmyYear.java calls the Phi() method in Gaussian.java,
which calls the sqrt() method in Newton.java.

We describe several details about the process.

The public keyword. The public modifier identifies the method as available for use by any other
program with access to the file. You can also identify methods as private (and there are a few
other categories) but you have no reason to do so at this point.

The .class file. It is natural to use the term program to refer to all the code that we keep in a
single file, and we use the term modular program to refer to a set of files that refer to methods in
one another. In Java, by convention, each program is a Java class (kept in a .java file with the
same name of the class). For now, each class is merely a set of static methods (one of which is
main()). When you compile the program (by typing javac followed by the class name), the Java
compiler makes a file with the class name followed by a .class extension that has the code of
your program in a language more suited to your computer.

Compile when necessary. When you compile a program, the Java compiler will compile everything
that needs to be compiled in order to run that program. If you were to be using Newton.sqrt()
in Gaussian, when you type javac Gaussian.java, Java would also check whether you
modified Newton.java since the last time it was compiled (by checking the time it was last
changed against the time Newton.class was created). If so, it would also compile Newton.

Multiple main methods. SATmyYear, Newton, and Gaussian each have main() methods. When
you type java followed by a class name, Java transfers control to the machine code
corresponding to the main() static method defined in that class.

Libraries. We refer to a class that comprises methods for use by other programs as a library.

Clients. We use the term client to refer to the program that calls a given method. When a class
contains a method that is a client of a method in another class, we say that the first class is a
client of the second class.

APIs. Programmers normally think in terms of a contract between the client and the
implementation that is a clear specification of what the method is to do.

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Implementations. We use the term implementation
to describe the Java code that implements the
methods in an API.

This same mechanism is effective for user-defined
libraries. The API allows any client to use the library
without having to examine the code in the
implementation. The guiding principle in API design is to
provide to clients the methods they need and no others.
For example, Gaussian.java is an implementation of the
following API:

Random numbers. StdRandom.java is a library for generating random numbers from various
distributions.

API design. Each of the methods in StdRandom make certain assumptions about the values of
their arguments. For example, we assume that clients will call uniform(N) only for positive
integers N and bernoulli(p) only for p between 0 and 1. All of these assumptions are part of
the contract between the client and the implementation.

Unit testing. Even though we implement StdRandom without reference to any particular client, it
is good programming practice to include a test method main() that, while not used when a client
class uses the library, is helpful for use when debugging and testing the methods in the library.
Whenever you create a library, you should include a main() method for unit testing and
debugging. Proper unit testing can be a significant programming challenge in itself, but, at a
minimum, you should always include a main() method that

exercises all the code

provides some assurance that the code is working

takes a parameter from the command line to allow more testing and then refine that
main() to do more exhaustive testing as you use the library more extensively.

Stress testing. An extensively used library such as this one should also be subject to stress
testing, where we make sure that it does not crash when the client breaks some assumption in
the contract or makes some assumption that is not explicitly covered. What should discrete()
do if array entries do not sum to exactly 1? Such cases are sometimes referred to as corner
cases.

Input and output for arrays. It is useful to build a library of static methods for reading arrays of
primitive types from standard input and printing them to standard output, as expressed in this API:

Iterated function systems. An Iterated function system (IFS) is a general way to produce fractals like
the Sierpinski triangle and the Barnsley Fern. As a first example, consider the following simple process:
Start by plotting a point at one of the vertices of an equilateral triangle. Then pick one of the three
vertices at random and plot a new point halfway between the point just plotted and that vertex.
Continue performing the same operation.

Sierpinski.java simulates this process. Below are snapshots after 1,000, 10,000, and 100,000 steps.
You might recognize the figure as the Sierpinski triangle.

IFS.java is a data-driven version program that simulates a generalization of this process. See the
textbook for details.

You can run it on the inputs sierpinski.txt or fern.txt or tree.txt.

Standard statistics. StdStats.java is a library for statistical calculations and basic visualizations, as
articulated in the following API. See the textbook for details.

Bernoulli trials. Program Bernoulli.java counts the number of heads found when a fair coin is flipped N
times and compares the result with the predicted Gaussian distribution function. According to the
Central Limit Theorem, the resulting histogram is extremely well approximated by the Gaussian
distribution with mean N/2 and variance N/4. Below are sample outputs when N = 16, 32, and 64.

Modular programming. The library implementations that we have developed illustrate a programming
style known as modular programming. Instead of writing a new program that is self-contained in its
own file to address a new problem, we break up each task into smaller, more manageable subtasks,
then implement and independently debug code that addresses each subtask. IFS.java and Bernoulli.java
exemplify modular programming because they are relatively sophisticated computations that are
implemented with several relatively small modules.

We emphasize modular programming throughout this book because it has many important advantages,
including the following:

Programs of a reasonable size. No large task is so complex that it cannot be divided into smaller
subtasks.

Debugging. With modular programming and our guiding principle of keeping the scope of
variables local to the extent possible, we severely restrict the number of possibilities that we have
to consider when debugging. Equally important is the idea of a contract between client and
implementation. Once we are satisfied that an implementation is meeting its end of the bargain,
we can debug all its clients under that assumption.

Code reuse. Once we have implemented libraries such as StdStats and StdRandom, we do not
have to worry about writing code to compute averages or standard deviations or to generate
random numbers again—we can simply reuse the code that we have written.

Maintenance. Like a good piece of writing, a good program can always be improved. Supppose
that while developing a new client, you find a bug in some module. With modular programming,
fixing that bug amounts to fixing bugs in all of the module's clients.

Q + A

Q. I tried to use StdRandom, but get the following error message. What's wrong?

Exception in thread "main" java.lang.NoClassDefFoundError: StdRandom.

A. You need to download StdRandom.java into the directory containing your client, or use your
operating system's classpath mechanism.

Q. Is there a keyword that identifies a class as a library?

A. No, any set of public methods will do. There is a bit of a conceptual leap in this viewpoint, because it
is one thing to sit down to create a .java file that you will compile and run (perhaps run again
sometime later with different data), quite another thing to create a .java file that you will rely on much
later in the future, and still another thing to create a .java file for someone else to use in the future.
You need to develop some libraries for your own use before engaging in this sort of activity, which is the
province of experienced systems programmers.

Q. How do I develop a new version of a library that I have been using for a while?

A. With care. Any change to the API might break any client program, so it is best to work in a separate
directory. But then you are working with a copy of the code. If you are changing a library that has a lot
of clients, you can appreciate the problems faced by companies putting out new versions of their
software. If you just want to add a few methods to a library, go ahead: that is usually not too
dangerous.

Q. How do I know that an implementation behaves properly? Why not automatically check that it
satisfies the API?

A. We use informal specifications because writing a detailed specification is not much different than
writing a program. Moreover, a fundamental tenet of theoretical computer science says that doing so
does not even solve the basic problem because there is no way in general to check that two different
programs perform the same computation.

Exercises

1. Add to Gaussian.java an overloaded method implementation phi(x, mu, sigma) that computes
the Gaussian distribution with a given mean µ and standard deviation σ, based on the formula
φ(x, µ, σ) = φ((x - µ)/σ)/σ. Also include an overloaded implementation of the associated
cumulative distribution function Phi(x, mu, sigma), based on the formula Φ(x, µ, σ) = Φ((x -
µ)/σ).

2. Write a static method library Hyperbolic.java that implements the hyperbolic trigonometric
functions based on the definitions sinh(x) = (e^x - e^-x)/2 and cosh(x) = (x^x + e^-x)/2, with
tanh(x), coth(x), sech(x), csch(x) defined in a manner analogous to standard trigonometric
functions.

3. Write a test client for both StdStats and StdRandom that checks that all of the methods in both
libraries operate as expected. Take a command-line parameter N, generate N random numbers
using each of the methods in StdRandom, and print out their statistics. Extra credit : Defend the
results that you get by comparing them to those that are to be expected from mathematical
analysis.

4. Add to StdRandom.java a method shuffle() that takes an array of double values as argument
and rearranges them in random order. Implement a test client that checks that each permutation
of the array is produced about the same number of times.

5. Develop a client that does stress testing for StdRandom. Pay particular attention to discrete().
For example, do the probabilities sum to 1?

6. Develop a full implementation of StdArrayIO.java (implement all 12 methods indicated in the
API).

7. Write a method that takes double values ymin and ymax (with ymin strictly less than ymax) and a
double array a[] as arguments and uses the StdStats library to linearly scale the values in a[]
so that they are all between ymin and ymax.

8. Write a Gaussian.java and StdStats.java client that explores the effects of changing the mean and
standard deviation on the Gaussian distribution curve. Create one plot with curves having a fixed
mean and various standard deviations and another with curves having a fixed standard deviation
and various means.

9. Add to StdRandom.java a static method maxwellBoltzmann() that returns a random value
drawn from a Maxwell-Boltzmann distribution with parameter σ. To produce such a value, return
the square root of the sum of the squares of three Gaussian random variables with mean 0 and
standard deviation σ. The speeds of molecules in an ideal gas have a Maxwell-Boltzmann
distribution.

10. Modify Bernoulli.java to animate the bar graph, replotting it after each experiment, so that you
can watch it converge to the normal distribution. Then add a command-line argument and an
overloaded binomial() implementation to allow you to specify the probability p that a biased
coin comes up heads, and run experiments to get a feeling for the distribution corresponding to a
biased coin. Be sure to try values of p that are close to 0 and close to 1.

11. Write a library Matrix.java that implements the following API.

12. Write a Matrix.java client MarkovSquaring.java that implements the version of Markov.java
described in Section 1.6 but is based on squaring the matrix, instead of iterating the vector-
matrix multiplication.

13. Rewrite RandomSurfer.java using the Write a StdArrayIO.java and StdRandom.java libraries.
14. Add a method exp() to StdRandom.java that takes an argument λ and returns a random number

from the exponential distribution with rate λ. Hint: If x is a random number uniformly distributed
between 0 and 1, then -ln x / λ is a random number from the exponential distribution with rate λ.

Creative Exercises

15. Sicherman dice. Suppose that you have two six-sided dice, one with faces labeled 1, 3, 4, 5, 6,
and 8 and the other with faces labeled 1, 2, 2, 3, 3, and 4. Compare the probabilities of
occurrence of each of the values of the sum of the dice with those for a standard pair of dice. Use
StdRandom and StdStats.

Solution: dice with these properties are called Sicherman dice: they produce sums with the same
frequency as regular dice (2 with probability 1/36, 3 with probability 2/36, and so on).

16. Craps. Here are the rules for a pass bet in the game of craps: Roll two 6-sided dice, and let x be
their sum.

If x is 7 or 11, you win.
If x is 2, 3, or 12, you lose.

Otherwise, repeatedly roll two the dice until their sum is either x or 7 .
If their sum is x, you win.
If their sum is 7, you lose.

Write a modular program to estimate the probability of winning a pass bet. Modify your program
to handle loaded dice, where the probability of a die landing on 1 is taken from the command line,
the probability of landing on 6 is 1/6 minus that probability, and 2-5 are assumed equally likely.
Hint: Use StdRandom.discrete().

17. Dynamic histogram. Suppose that the standard input stream is a sequence of double values.

Write a program that takes an integer N and two double values l and r from the command line
and uses StdStats to plot a histogram of the count of the numbers in the standard input stream
that fall in each of the N intervals defined by dividing (l , r) into N equal-sized intervals. Use your
program to add code to your solution to exercise 2.2.3 to plot a histogram of the distribution of
the numbers produced by each method, taking N from the command line.

18. Tukey plot. A Tukey plot is a data visualization that generalizes a histogram, and is appropriate
for use when each integer in a given range is associated with a set of y values. For each integer in
the range, we compute the mean, standard deviation, 10th percentile, and 90th percentile of all
the associated y values; draw a vertical line with x-coordinate i running from the 10th percentile y
value to the 90th percentile y value; and then draw a thin rectangle centered on the line that runs
from one standard deviation below the mean to one standard deviation above the mean. Suppose
that the standard input stream is a sequence of pairs of numbers where the first number in each
pair is an int and the second a double value. Write a StdStats and StdDraw client that takes an
integer N from the command line and, assuming that all the int values on the input stream are
between 0 and N-1, uses StdDraw to make a Tukey plot of the data.

19. IFS. Experiment with various inputs to IFS.java to create patterns of your own design like the
Sierpinksi triangle, Barnsley fern, or other examples in the table in the text. You mihgt begin b
experimenting with minor modifications to the given inputs.

20. IFS matrix implementation. Write a version of IFS.java that uses Matrix.multiply() (see
Exercise 2.2.11) instead of the equations that compute the new values of x0 and y0.

21. Stress test. Develop a client that does stress testing for StdStats.java. Work with a classmate,
with one person writing code and the other testing it.

22. Gamblers ruin. Develop a StdRandom.java client to study the gamblers ruin problem (see
Program 1.3.8 and Exercises 1.3.21–24). Note: efining a static method for the experiment is
more difficult than for Bernoulli.java because you cannot return two values.

23. Library for properties of integers. Develop a library based on the functions that we have
considered in this book for computing properties of integers. Include functions for determining
whether a given integer is prime; whether two integers are relatively prime; computing all the
factors of a given integer; the greatest common divisor and least common multiple of two
integers; Eulers totient function (Exercise 2.1.26); and any other functions that you think might
be useful. Include overloaded implementations for long values. Create an API, a client that
performs stress testing, and clients that solve several of the exercises earlier in this book.

24. Voting machines. Develop a StdRandom.java client (with appropriate static methods of its own)
to study the following problem: Suppose that in a population of 100 million voters, 51% vote for
candidate A and 49% vote for candidate B. However, the voting machines are prone to make
mistakes, and 5% of the time they produce the wrong answer. Assuming the errors are made
independently and at random, is a 5% error rate enough to invalidate the results of a close
election? What error rate can be tolerated?

25. Poker analysis. Write a StdRandom.java and StdStats.java client (with appropriate static
methods of its own) to estimate the probabilities of getting one pair, two pair, three of a kind, a
full house, and a flush in a five-card poker hand via simulation. Divide your program into
appropriate static methods and defend your design decisions. Extra credit: Add straight and
straight flush to the list of possibilities.

26. Music library. Develop a library based on the functions in PlayThatTuneDeluxe.java that you can
use to write client programs to create and manipulate songs.

27. Animated plots. Write a program that takes a command-line argument M and produces a bar
graph of the M most recent double values on standard input. Use the same animation technique
that we used for BouncingBall.java: erase, redraw, show, and wait briefly. Each time your
program reads a new number, it should redraw the whole graph. Since most of the picture does
not change as it is redrawn slightly to the left, your program will produce the effect of a fixed-size
window dynamically sliding over the input values. Use your program to plot a huge time-variant
data file, such as stock prices.

28. Array plot library. Develop your own plot methods that improve upon those in StdStats.java. Be
creative! Try to make a plotting library that you think that you will use for some application in the
future.

Web Exercises

1. Sample standard deviation. The sample standard deviation of a sequence of N observations is
defined similar to the standard deviation except that we divide by N-1 instead of N. Add a method
sampleStddev() that computes this quantity.

2. Barnsley fern. Write a program Barnsley.java that takes a command line argument N and plots a
sequence of N points according to the following rules. Set (x, y) = (0.5, 0). Then update (x, y) to
one of the following four quantities according to the probabilities given.

PROBABILITY NEW X NEW Y

2% 0.5 0.27y

15% -0.139x + 0.263y + 0.57 0.246x + 0.224y - 0.036

13% 0.170x - 0.215y + 0.408 0.222x + 0.176y + 0.0893

70% 0.781x + 0.034y + 0.1075 -0.032x + 0.739y + 0.27

The pictures below show the results after 500, 1000, and 10,000 iterations.

3. Black-Scholes. The Black-Scholes model predicts that the asset price at time t will be S' = S exp
{ (rt - 0.5*sigma^2*t + sigma ε sqrt(t) }, where epsilon is a standard Gaussian random variable.
Can use Monte Carlo simulate to estimate. To estimate the value of the option at time T, compute
max(S' - X, 0) and take mean over many trials of epsilon. The value of the option today is e^-rT
* mean. European put = max(X - S', 0). Reuse function. Name your program BlackScholes.java.
See Exercise 2.1.30 for an exact formula for this case.

4. Simulation. Application: some kind of simulation which uses StdRandom and StdStats to flip
coins and analyze mean/variance. [Ex: physics, financial based on Black-Scholes hedge
simulation. Simulation needed to price options whose payoff depends on the price path, not just
the price at the maturity time T. Ex: Asian average price call = max(0, S_bar - X) where S_bar is
the average price of the asset from time 0 to T. Lookback option = max(0, S(T) - min_t S_t).
Idea: discretize time into N periods.] another reference Break up simulation into various pieces
encapsulated as functions.

5. Flaming fractals. Implement a generalization of IFS to produce fractal flames like Water Lilies by
Roger Johnston. Flaming fractals differ from classic IFS by using nonlinear update functions
(sinusoidal, spherical, swirl, horseshoe), using a log-density display to color pixels according to
how many times they result in the process, and incorporating color based on which rule was
applied to get to that point.

6. Random point on a sphere. Use StdRandom.gaussian() to generate a random point on the
surface of a sphere or hypersphere using the following method: generate N random values from
the gaussian distribution, x[0], ..., x[N-1]. Then (x[0]/scale, ..., x[N-1]/scale) is a random point
on the N-dimensional sphere, where scale = sqrt(x[0]^2 + ... + x[N-1]^2).

7. Coupon collector. Write a modular program CouponExperiment.java that runs experiments to
estimate the value of the quantity of interest in the coupon collector problem. Compare the
experimental results from your program with the mathematical analysis, which says that the
expected number of coupons collected before all N values are found should be about N times the
Nth Harmonic number (1 + 1/2 + 1/3 + ... + 1/N) and the standard deviation should be about N
π / sqrt(6).

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

2.3 RECURSION

The idea of calling one function from another immediately suggests the possibility of a
function calling itself. The function-call mechanism in Java supports this possibility, which
is known as recursion. Recursion is a powerful general-purpose programming technique,
and is the key to numerous critically important computational applications, ranging from
combinatorial search and sorting methods methods that provide basic support for
information processing (Chapter 4) to the Fast Fourier Transform for signal processing
(Chapter 9).

Your first recursive program. The HelloWorld for recursion is to implement the
factorial function, which is defined for positive integers N by the equation

N! = N × (N-1) × (N-2) × ... × 2 × 1

N! is easy to compute with a for loop, but an even easier method in Factorial.java is to
use the following recursive function:

public static int factorial(int N) {
 if (N == 1) return 1;
 return N * factorial(N-1);
}

You can persuade yourself that it produces the desired result by noting that
factorial() returns 1 = 1! when N is 1 and that if it properly computes the value

(N-1)! = (N-1) × (N-2) × ... × 2 × 1

then it properly computes the value

N! = N × (N-1)! = N × (N-1) × (N-2) × ... × 2 × 1

We can trace this computation in the same way that we trace any sequence of function
calls.

factorial(5)
 factorial(4)
 factorial(3)
 factorial(2)
 factorial(1)
 return 1
 return 2*1 = 2
 return 3*2 = 6
 return 4*6 = 24
 return 5*24 = 120

Our factorial() implementation exhibits the two main components that are required
for every recursive function.

The base case returns a value without making any subsequent recursive calls. It
does this for one or more special input values for which the function can be
evaluated without recursion. For factorial(), the base case is N = 1.

The reduction step is the central part of a recursive function. It relates the function
at one (or more) inputs to the function evaluated at one (or more) other inputs.
Furthermore, the sequence of parameter values must converge to the base case.
For factorial(), the reduction step is N * factorial(N-1) and N decreases by
one for each call, so the sequence of parameter values converges to the base case
of N = 1.

Mathematical induction. Recursive programming is directly related to mathematical
induction, a technique for proving facts about discrete functions. Proving that a
statement involving an integer N is true for infinitely many values of N by mathematical
induction involves two steps.

The base case is to prove the statement true for some specific value or values of N

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

(usually 0 or 1).

The induction step is the central part of the proof. For example, we typically
assume that a statement is true for all positive integers less than N, then use that
fact to prove it true for N.

Such a proof suffices to show that the statement is true for all N: we can start at the
base case, and use our proof to establish that the statement is true for each larger value
of N, one by one.

Euclid's algorithm. The greatest common divisor (gcd) of two positive integers is the
largest integer that divides evenly into both of them. For example, the greatest common
divisor of 102 and 68 is 34 since both 102 and 68 are multiples of 34, but no integer
larger than 34 divides evenly into 102 and 68.

We can efficiently compute the gcd using the following property, which holds for positive
integers p and q:

If p > q, the gcd of p and q is the same as the gcd of q and p % q.

The static method gcd() in Euclid.java is a compact recursive function whose reduction
step is based on this property.

gcd(1440, 408)
 gcd(408, 216)
 gcd(216, 192)
 gcd(192, 24)
 gcd(24, 0)
 return 24
 return 24
 return 24
 return 24
 return 24

Towers of Hanoi. No discussion of recursion would be complete without the ancient
towers of Hanoi problem. We have three poles and n discs that fit onto the poles. The
discs differ in size and are initially arranged on one of the poles, in order from largest
(disc n) at the bottom to smallest (disc 1) at the top. The task is to move the stack of
discs to another pole, while obeying the following rules:

Move only one disc at a time.
Never place a disc on a smaller one.

To solve the problem, our goal is to issue a sequence of instructions for moving the discs.
We assume that the poles are arranged in a row, and that each instruction to move a
disc specifies its number and whether to move it left or right. If a disc is on the left pole,
an instruction to move left means to wrap to the right pole; if a disc is on the right pole,
an instruction to move right means to wrap to the left pole.

Exponential time. One legend says that the world will end when
a certain group of monks solve the Towers of Hanoi problem in a
temple with 64 golden discs on three diamond needles. We can
estimate the amount of time until the end of the world (assuming
that the legend is true). If we define the function T(n) to be the
number of move directives issued by TowersOfHanoi.java to move
n discs from one peg to another, then the recursive code implies
that T(n) must satisfy the following equation:

T(n) = 2 T(n - 1) + 1 for n > 1, with T(1) = 1

Such an equation is known in discrete mathematics as a
recurrence relation. We can often use them to derive a closed-
form expression for the quantity of interest. For example, T(1) =
1, T(2) = 3, T(3) = 7, and T(4) = 15. In general, T(n) = 2^n - 1.

Knowing the value of T(n), we can estimate the amount of time
required to perform all the moves. If the monks move discs at the
rate of one per second, it would take more than one week for
them to finish a 20-disc problem, more than 31 years to finish a
30-disc problem, and more than 348 centuries for them to finish a 40-disc problem
(assuming that they do not make a mistake). The 64-disc problem would take more than
5.8 billion centuries.

Gray code. The playwright Samuel Beckett wrote a play called Quad that had the

following property: Starting with an empty stage, characters enter and exit one at a
time, but each subset of characters on the stage appears exactly once. The play had four
characters and there are 2^4 = 16 different subsets of four elements; hence the title.
How did Beckett generate the stage directions for this play? How would we do it for 5
actors, or more?

An n-bit Gray code is a list of the 2^n different n-bit binary numbers such that each
entry in the list differs in precisely one bit from its predecessor. Gray codes directly apply
to Beckett's problem because we can interpret each bit as denoting whether the integer
corresponding to its bit position is in the subset. Changing the value of a bit from 0 to 1
corresponds to an integer entering the subset; changing a bit from 1 to 0 corresponds to
and integer exiting the subset.

How do we generate a Gray code? A recursive plan that is very similar to the one that we
used for the towers of Hanoi problem is effective. The n bit binary reflected Gray code is
defined recursively as follows:

the n-1 bit code, with 0 prepended to each word, followed by
the n-1 bit code in reverse order, with 1 prepended to each word.

The 0-bit code is defined to be null, so the 1-bit code is 0 followed by 1. The recursive
definition leads, after some careful thought, to the implementation in Beckett.java for
printing out Beckett's stage directions.

Recursive graphics. Simple recursive drawing schemes can lead to pictures that are
remarkably intricate. For example, an H-tree of order n is defined as follows: The base
case is null for n = 0. The reduction step is to draw, within the unit square three lines in
the shape of the letter H four H-trees of order n-1, one connected to each tip of the H
with the additional provisos that the H-trees of order n-1 are centered in the four
quadrants of the square, halved in size. Program Htree.java takes a command-line
argument n, and plots an order n H-tree using standard draw.

Brownian bridge. An H-tree is a simple example of a fractal: a geometric shape that
can be divided into parts, each of which is (approximately) a reduced size copy of the
original. The study of fractals plays an important and lasting role in artistic expression,
economic analysis, and scientific discovery. Artists and scientists use them to build
compact models of complex shapes that arise in nature and resist description using
conventional geometry, such as clouds, plants, mountains, riverbeds, human skin, and
many others. Economists also use fractals to model function graphs of economic
indicators.

Program Brownian.java produces a function graph that approximates a simple example
known as a Brownian bridge and closely related functions. You can think of this graph as
a random walk that connects two points, from (x0, y0) to (x1, y1), controlled by a few
parameters. The implementation is based on the midpoint displacement method, which is
a recursive plan for drawing the plot within an interva [x0, x1]. The base case (when the
size of the interval is smaller than a given tolerance) is to draw a straight line connecting
the two endpoints. The reduction case is to divide the interval into two halves,

proceeding as follows:

Compute the midpoint (xm, ym) of the interval.
Add to the y-coordinate of the midpoint a random value δ, chosen from the
Gaussian distribution with mean 0 and given variance.
Recur on the subintervals, dividing the variance by a given scaling factor s.

The shape of the curve is controlled by two parameters: the volatility (initial value of the
variance) controls the distance the graph strays from the straight line connecting the
points, and the Hurst exponent controls the smoothness of the curve. We denote the
Hurst exponent by H and divide the variance by 2^(2H) at each recursive level. When H
is 1/2 (divide by 2 at each level) the standard deviation is constant throughout the
curve: in this situation, the curve is a Brownian bridge.

Pitfalls of recursion. With recursion, you can write compact and elegant programs that
fail spectacularly at runtime.

Missing base case. The recursive function in NoBaseCase.java is supposed to
compute Harmonic numbers, but is missing a base case:

public static double H(int N) {
 return H(N-1) + 1.0/N;
}

If you call this function, it will repeatedly call itself and never return.
No guarantee of convergence. Another common problem is to include within a
recursive function a recursive call to solve a subproblem that is not smaller. The
recursive function in NoConvergence.java will go into an infinite recursive loop if it
is invoked with an argument N having any value other than 1:

public static double H(int N) {
 if (N == 1) return 1.0;
 return H(N) + 1.0/N;
}

Excessive space requirements. Java needs to keep track of each recursive call to
implement the function abstraction as expected. If a function calls itself recursively
an excessive number of times before returning, the space required by Java for this
task may be prohibitive. The recursive function in ExcessiveSpace.java correctly
computes the Nth harmonic number. However, we cannot use it for large N
because the recursive depth is proportional to N, and this creates a
StackOverflowError for N = 5,000.

public static double H(int N) {
 if (N == 0) return 0.0;
 return H(N-1) + 1.0/N;
}

Excessive recomputation. The temptation to write a simple recursive program to
solve a problem must always be tempered by the understanding that a simple
program might require exponential time (unnecessarily), due to excessive
recomputation. For example, the Fibonacci sequence

0 1 1 2 3 5 8 13 21 34 55 89
144 233 377 ...

is defined by the formula Fn = Fn-1 +
Fn-2 for n ≥ 2 with F0 = 0 and F1 =
1. A novice programmer might
implement this recursive function to
compute numbers in the Fibonacci
sequence, as in Fibonacci.java:

public static long F(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

However, this program is spectacularly inefficient! To see why it is futile to do so,
consider what the function does to compute F(8) = 21. It first computes F(7) = 13
and F(6) = 8. To compute F(7), it recursively computes F(6) = 8 again and F(5) =
5. Things rapidly get worse because both times it computes F(6) it ignores the fact
that it already computed F(5), and so forth. The the number of times this program
computes F(1) when computing F(n) is precisely Fn. The mistake of recomputation
is compounded, exponentially. No imaginable computer will ever be able to do this
many calculations.

Q + A

Q. Are there situations when iteration is the only option available to address a problem?

A. No, any loop can be replaced by a recursive function, though the recursive version
might require excessive memory.

Q. Are there situations when recursion is the only option available to address a problem?

A. No, any recursive function can be replaced by an iterative counterpart. In Section 4.3,
we will see how compilers produce code for function calls by using a data structure called
a stack.

Q. Which should I prefer, recursion or iteration?

A. Whichever leads to the simpler, more easily understood, or more efficient code.

Q. I get the concern about excessive space and excessive recomputation in recursive
code. Anything else to be concerned about?

A. Be extremely wary of creating arrays in recursive code. The amount of space used can
pile up very quickly, as can the amount of time required for memory management.

Exercises

1. What happens if you run factorial() with negative value of n? With a large
value, say 35?

2. Write a recursive program that computes the value of ln(N!).
3. Give the sequence of integers printed by a call to ex233(6):

public static void ex233(int n) {
 if (n <= 0) return;
 StdOut.println(n);
 ex233(n-2);
 ex233(n-3);
 StdOut.println(n);
}

4. Give the value of ex234(6):

public static String ex234(int n) {
 if (n <= 0) return "";
 return ex234(n-3) + n + ex234(n-2) + n;
}

5. Criticize the folowing recursive function:

public static String ex235(int n) {
 String s = ex233(n-3) + n + ex235(n-2) + n;
 if (n <= 0) return "";
 return s;
}

6. Given four positive integers a, b, c, and d, explain what value is computed by
gcd(gcd(a, b), gcd(c, d)).

7. Explain in terms of integers and divisors the effect of the following Euclid-like
function.

public static boolean gcdlike(int p, int q) {
 if (q == 0) return (p == 1);
 return gcdlike(q, p % q);
}

Solution. Returns whether p and q are relatively prime.

8. Consider the following recursive function.

public static int mystery(int a, int b) {
 if (b == 0) return 0;
 if (b % 2 == 0) return mystery(a+a, b/2);
 return mystery(a+a, b/2) + a;
}

What are the values of mystery(2, 25) and mystery(3, 11)? Given positive
integers a and b, describe what value mystery(a, b) computes. Answer the
same question, but replace + with * and replace return 0 with return 1.

Solution. 50 and 33. It computes a*b. If you replace + with *, it computes a^b.

9. Write a recursive program Ruler.java to plot the subdivisions of a ruler using
StdDraw as in Program 1.2.1.

10. Solve the following recurrence relations, all with T(1) = 1. Assume N is a power of

two.
T(N) = T(N/2) + 1
T(N) = 2T(N/2) + 1
T(N) = 2T(N/2) + N
T(N) = 4T(N/2) + 3

11. Prove by induction that the minimum possible number of moves needed to solve
the towers of Hanoi satisfies the same recurrence as the number of moves used by
our recursive solution.

12. Prove by induction that the recursive program given in the text makes exactly F(n)
recursive calls to F(1) when computing F(N).

13. Prove that the second argument to gcd() decreases by at least a factor of two for
every second recursive call, then prove that gcd(p, q) uses at most log2 N
recursive calls, where N is the larger of p and q.

14. Write a program AnimatedHtree.java that animates the drawing of the H-tree.

Next, rearrange the order of the recursive calls (and the base case), view the
resulting animation, and explain each outcome.

Creative Exercises

15. Binary representation. Write a program IntegerToBinary.java that takes a
positive integer N (in decimal) from the command line and prints out its binary
representation. Recall, in program 1.3.7, we used the method of subtracting out
powers of 2. Instead, use the following simpler method: repeatedly divide 2 into N
and read the remainders backwards. First, write a while loop to carry out this
computation and print the bits in the wrong order. Then, use recursion to print the
bits in the correct order.

16. A4 paper. The width-to-height ratio of paper in the ISO format is the square root
of 2 to 1. Format A0 has an area of 1 square meter. Format A1 is A0 cut with a
vertical line into two equal halves, A2 is A1 cut with a horizontal line into in two
halves, and so on. Write a program that takes a command-line argument n and
uses StdDraw to show how to cut a sheet of A0 paper into 2^n pieces. Here's a
nice illustration of A size formats.

17. Permutations. Write a program Permutations.java that take a command-line
argument n and prints out all n! permutations of the n letters starting at a (assume
that n is no greater than 26). A permutation of n elements is one of the n! possible
orderings of the elements. As an example, when n = 3 you should get the following
output. Do not worry about the order in which you enumerate them.

bca cba cab acb bac abc

18. Permutations of size k. Modify Permutations.java to PermutationsK.java so that
it takes two command-line arguments n and k, and prints out all P(n, k) = n! / (n-
k)! permutations that contain exactly k of the n elements. Below is the desired
output when k = 2 and n = 4. You need not print them out in any particular order.

ab ac ad ba bc bd ca cb cd da db dc

19. Combinations. Write a program Combinations.java that takes one command-line
argument n and prints out all 2^n combinations of any size. A combination is a
subset of the n elements, independent of order. As an example, when n = 3 you
should get the following output.

 a ab abc ac b bc c

Note that the first element printed is the empty string (subset of size 0).
20. Combinations of size k. Modify Combinations.java to CombinationsK.java so that

it takes two command-line arguments n and k, and prints out all C(n, k) = n! / (k!
* (n-k)!) combinations of size k. For example, when n = 5 and k = 3 you should
get the following output.

abc abd abe acd ace ade bcd bce bde cde

Alternate solution using arrays instead of strings: Comb2.java.
21. Hamming distance. The Hamming distance between two bit strings of length n is

equal to the number of bits in which the two strings differ. Write a program that
reads in an integer k and a bit string s from the command line, and prints out all
bit strings that have Hamming distance at most k from s. For example if k is 2 and
s is 0000 then your program should print out

0011 0101 0110 1001 1010 1100

Hint: choose k of the N bits in s to flip.
22. Recursive squares. Write a program to produce each of the following recursive

patterns. The ratio of the sizes of the squares is 2.2. To draw a shaded square,
draw a filled gray square, then an unfilled black square.

a.

b.

c.

d.

RecursiveSquares.java gives a solution to part a.
23. Pancake flipping. You have a stack of N pancakes of varying sizes on a griddle.

Your goal is to re-arrange the stack in descending order so that the largest
pancake is on the bottom and the smallest one is on top. You are only permitted to
flip the top k pancakes, thereby reversing their order. Devise a scheme to arrange
the pancakes in the proper order by using at most 2N - 3 flips. Hint: you can try
out strategies here.

24. Gray code. Modify Beckett.java to print out the Gray code (not just the sequence
of bit positions that change).

Solution. GrayCode.java uses Java's string data type; GrayCodeArray.java uses a

boolean array.
25. Towers of Hanoi variant. Consider the following variant of the towers of Hanoi

problem. There are 2N discs of increasing size stored on three poles. Initially all of
the discs with odd size (1, 3, ..., 2N-1) are piled on the left pole from top to
bottom in increasing order of size; all of the discs with even size (2, 4, ..., 2N) are
piled on the right pole. Write a program to provide instructions for moving the odd
discs to the right pole and the even discs to the left pole, obeying the same rules
as for towers of Hanoi.

26. Animated towers of Hanoi animation. Write a program AnimatedHanoi.java
that uses StdDraw to animate a solution to the towers of Hanoi problem, moving
the discs at a rate of approximately 1 per second.

27. Sierpinski triangles. Write a recursive program to draw the Sierpinski gasket. As
with Htree, use a command-line argument to control the depth of recursion.

28. Binomial distribution. Estimate the number of recursive calls that would be used
by the code

public static double binomial(int N, int k) {
 if ((N == 0) || (k < 0)) return 1.0;
 return (binomial(N-1, k) + binomial(N-1, k-1)) / 2.0;
}

to compute binomial(100, 50). Develop a better implementation that is based
on memoization. Hint: See Exercise 1.4.26.

29. Collatz function. Consider the following recursive function in Collatz.java, which is
related to a famous unsolved problem in number theory, known as the Collatz
problem or the 3n + 1 problem.

public static void collatz(int n) {
 StdOut.print(n + " ");
 if (n == 1) return;
 if (n % 2 == 0) collatz(n / 2);
 else collatz(3*n + 1);
}

For example, a call to collatz(7) prints the sequence

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

as a consequence of 17 recursive calls. Write a program that takes a command-line
argument N and returns the value of n < N for which the number of recursive calls
for collatz(n) is maximized. Hint: use memoization. The unsolved problem is that
no one knows whether the function terminates for all positive values of n
(mathematical induction is no help because one of the recursive calls is for a larger
value of the argument).

30. Brownian island. Benoit Mandelbrot asked the famous question How long is the
coast of Britain? Modify Brownian.java to get a program BrownianIsland.java that
plots Brownian islands, whose coastlines resemble that of Great Britain. The
modifications are simple: first, change curve() to add a gaussian to the x
coordinate as well as to the y coordinate; second, change main() to draw a curve
from the point at the center of the canvas back to itself. Experiment with various
values of the arguments to get your program to produce islands with a realistic

look.

31. Plasma clouds. Write a recursive program Program PlasmaCloud.java to draw
plasma clouds, using the method suggested in the text. Remark: this technique
can be used to produce synthetic terrain, by interpreting the color value as the
altitude. Variants of this scheme are widely used in the entertainment industry to
generate artificial background scenery for movies and the "Genesis effect" in Star
Trek II and the "outline of the "Death Star" in Return of the Jedi.

32. A strange function. Consider McCarthy's 91 function:

public static int mcCarthy(int n) {
 if (n > 100) return n - 10;
 else return mcCarthy(mcCarthy(n+11));
 }

Determine the value of mcCarthy(50) without using a computer. Give the number
of recursive calls used by mcCarthy() to compute this result. Prove that the base
case is reached for all positive integers n or give a value of n for which this
function goes into a recursive loop.

33. Recursive tree. Write a program Tree.java that takes a command-line arguemnt
N and produces the following recurisve patterns for N equal to 1, 2, 3, 4, and 8.

Web Exercises

1. Does Euclid.java still work if the inputs can be negative? If not, fix it. Hint: Recall
that % can return a negative integer if the first input is negative. When calling the
function, take the absolute value of both inputs.

2. Write a recursive program GoldenRatio.java that takes an integer input N and
computes an approximation to the golden ratio using the following recursive
formula:

f(N) = 1 if N = 0
 = 1 + 1 / f(N-1) if N > 0

Redo, but do not use recursion.
3. Discover a connection between the golden ratio and Fibonacci numbers. Hint:

consider the ratio of successive Fibonacci numbers: 2/1, 3/2, 8/5, 13/8, 21/13,
34/21, 55/34, 89/55, 144/89, ...

4. Consider the following recursive function. What is mystery(1, 7)?

public static int mystery(int a, int b) {
 if (0 == b) return 0;
 else return a + mystery(a, b-1);
}

Will the function in the previous exercise terminate for every pair of integers a and
b between between 0 and 100? Give a high level description of what mystery(a,
b) returns, given integers a and b between 0 and 100.

Answer: mystery(1, 7) = 1 + mystery(1, 6) = 1 + (1 + mystery(1, 5)) = ... 7 +
mystery(1, 0) = 7.

Answer: Yes, the base case is b = 0. Successive recursive calls reduce b by 1,
driving it toward the base case. The function mystery(a, b) returns a * b.
Mathematically inclined students can prove this fact via induction using the identity
ab = a + a(b-1).

5. Consider the following function. What does mystery(0, 8) do?

public static void mystery(int a, int b) {
 if (a != b) {
 int m = (a + b) / 2;
 mystery(a, m);
 StdOut.println(m);
 mystery(m, b);
 }
}

Answer: infinite loop.
6. Consider the following function. What does mystery(0, 8) do?

public static void mystery(int a, int b) {
 if (a != b) {
 int m = (a + b) / 2;
 mystery(a, m - 1);
 StdOut.println(m);
 mystery(m + 1, b);
 }
}

Answer: stack overflow.
7. Repeat the previous exercise, but replace if (a != b) with if (a <= b).

8. What does mystery(0, 8) do?

public static int mystery(int a, int b) {
 if (a == b) StdOut.println(a);
 else {
 int m1 = (a + b) / 2;
 int m2 = (a + b + 1) / 2;
 mystery(a, m1);
 mystery(m2, b);
 }
}

9. What does the following function compute?

public static int f(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 if (n == 2) return 1;
 return 2*f(n-2) + f(n-3);

10. Write a program Fibonacci2.java that takes a command-line argument N and prints
out the first N Fibonacci numbers using the following alternate definition:

F(n) = 1 if n = 1 or n = 2

 = F((n+1)/2)2 + F((n-1)/2)2 if n is odd

 = F(n/2 + 1)2 - F(n/2 - 1)2 if n is even

What is the biggest Fibonacci number you can compute in under a minute using
this definition? Compare this to Fibonacci.java.

11. Write a program that takes a command-line argument N and prints out the first N
Fibonacci numbers using the following method proposed by Dijkstra:

F(0) = 0
F(1) = 1
F(2n-1) = F(n-1)^2 + F(n)^2
F(2n) = (2F(n-1) + F(n)) * F(n)

12. Prove by mathematical induction that the alternate definitions of the Fibonacci
function given in the previous two exercises are equivalent to the original
definition.

13. Write a program Pell.java that takes a command-line argument N and prints out
the first N Pell numbers: p0 = 0, p1 = 1, and for n >= 2, pn = 2 pn-1 + pn-2. Print
out the ratio of successive terms and compare to 1 + sqrt(2).

14. Consider the following function from program Recursion.java:

public static void mystery(int n) {
 if (n == 0 || n == 1) return;
 mystery(n-2);
 StdOut.println(n);
 mystery(n-1);
}

What does mystery(6) print out? Hint: first figure out what mystery(2),
mystery(3), and so forth print out.

15. What would happen in the previous exercise if the base case was replaced with the
following statement?

if (n == 0) return;

16. Consider the following recursive functions.

public static int square(int n) {
 if (n == 0) return 0;
 return square(n-1) + 2*n - 1;
}

public static int cube(int n) {
 if (n == 0) return 0;
 return cube(n-1) + 3*(square(n)) - 3*n + 1;
}

What is the value of square(5)? cube(5)? cube(123)?

17. Consider the following pair of mutually recursive functions. What does g(g(2))
evaluate to?

public static int f(int n) { public static int g(int n) {
 if (n == 0) return 0; if (n == 0) return 0;
 return f(n-1) + g(n-1); return g(n-1) + f(n);
} }

18. Write program to verify that (for small values of n) the sum of the cubes of the
first n Fibonacci numbers F(0)^3 + F(1)^3 + ... + F(n)^3 equals (F(3n+4) +
(-1)^n * 6 * f(n-1)) / 10, where F(0) = 1, F(1) = 1, F(2) = 2, and so forth.

19. Transformations by increment and unfolding. Given two integers a ≤ b, write
a program Sequence.java that transforms a into b by a minimum sequence of
increment (add 1) and unfolding (multiply by 2) operations. For example,

% java Sequence 5 23
23 = ((5 * 2 + 1) * 2 + 1)

% java Sequence 11 113
113 = ((((11 + 1) + 1) + 1) * 2 * 2 * 2 + 1)

20. Hadamard matrix. Write a recursive program Hadamard.java that takes a
command-line argument n and plots an N-by-N Hadamard pattern where N = 2n.
Do not use an array. A 1-by-1 Hadamard pattern is a single black square. In
general a 2N-by-2N Hadamard pattern is obtained by aligning 4 copies of the N-by-
N pattern in the form of a 2-by-2 grid, and then inverting the colors of all the
squares in the lower right N-by-N copy. The N-by-N Hadamard H(N) matrix is a
boolean matrix with the remarkable property that any two rows differ in exactly
N/2 bits. This property makes it useful for designing error-correcting codes. Here
are the first few Hadamard matrices.

21. 8 queens problem. In this exercise, you will solve the classic 8-queens problem:
place 8 queens on an 8x8 chess board so that no two queens are in the same row,
column, or diagonal. There are 8! = 40,320 ways in which no two queens are
placed in the same row or column. Any permutation p[] of the integers 0 to 7 gives
such a placement: put queen i in row i, column p[i]. Your program Queens.java
should take one command-line argument N and enumerate all solutions to the N-
queens problem by drawing the location of the queens in ASCII like the two
solutions below.

* * * Q * * * * * * * * Q * * *
* Q * * * * * * * Q * * * * * *
* * * * * * Q * * * * Q * * * *
* * Q * * * * * * * * * * * Q *
* * * * * Q * * * * Q * * * * *
* * * * * * * Q * * * * * * * Q
* * * * Q * * * * * * * * Q * *
Q * * * * * * * Q * * * * * * *

Hint: to determine whether setting q[n] = i conflicts with q[0] through q[n-1]
if q[i] equals q[n]: two queens are placed in the same column
if q[i] - q[n] equals n - i: two queens are on same major diagonal
if q[n] - q[i] equals n - i: two queens are on same minor diagonal

22. Another 8 queens solver. Program Queens2.java solves the 8 queens problem
by implicitly enumeration all N! permutations (instead of the N^N placements). It
is based on program Permutations.java.

23. Euclid's algorithm and π. The probability that two numbers chosen from a large
random set of numbers have no common factors (other than 1) is 6 / π2. Use this
idea to estimate π. Robert Matthews use the same idea to estimate π by taken the
set of numbers to be a function of the positions of stars in the sky.

24. Towers of Hanoi variant II. (Knuth-Graham and Pathashnik) Solve the original
Towers of Hanoi problem, but with the extra restriction that you are not allowed to
directly transfer a disk from A to C. How many moves does it take to solve a

problem with N disks? Hint: move N-1 smallest disks from A to C recursively
(without any direct A to C moves), move disk N from A to B, move N-1 smallest
disks from C to A (without any direct A to C moves), move disk N from B to C, and
move N-1 smallest disks from A to C recursively (without any direct A to C moves).

25. Towers of Hanoi variant III. Repeat the previous question but disallow both A
to C and C to A moves. That is, each move must involve pole B.

26. Towers of Hanoi with 4 pegs. Suppose that you have a fourth peg. What is the
least number of moves needed to transfer a stack of 8 disks from the leftmost peg
to the rightmost peg? Answer. Finding the shortest such solution in general has
remained an open problem for over a hundred years and is known as Reve's
puzzle.

27. Another tricky recursive function. Consider the following recursive function.
What is f(0)?

public static int f(int x) {
 if (x > 1000) return x - 4;
 else return f(f(x+5));
}

28. Checking if N is a Fibonacci number. Write a function to check if N is a
Fibonacci number. Hint: a positive integer is a Fibonacci number if and only if
either (5*N*N + 4) or (5*N*N - 4) is a perfect square.

29. Random infix expression generator. Run Expr.java with different command-line
argument p between 0 and 1. What do you observe?

public static String expr(double p) {
 double r = Math.random();
 if (r <= 1*p) return "(" + expr(p) + " + " + expr(p) + ")";
 if (r <= 2*p) return "(" + expr(p) + " * " + expr(p) + ")";
 return "" + (int) (100 * Math.random());
}

30. A tricky recurrence. Define F(n) so that F(0) = 0 and F(n) = n - F(F(n-1)). What
is F(100000000)?

Solution: The answer is related to the Fibonacci sequence and the Zeckendorf
representation of a number.

31. von Neumann ordinal. The von Neumann integer i is defined as follows: for i =
0, it is the empty set; for i > 0, it is the set containing the von Neumann integers 0
to i-1.

0 = {} = {}
1 = {0} = {{}}
2 = {0, 1} = {{}, {{}}}
3 = {0, 1, 2} = {{}, {{}}, {{}, {{}}}}

Write a program Ordinal.java with a recursive function vonNeumann() that takes a
nonnegative integer N and returns a string representation of the von Neumann
integer N. This is a method for defining ordinals in set theory.

32. Subsequences of a string. Write a program Subsequence.java that takes a string
command-line argument s and an integer command-line argument k and prints
out all subsequences of s of length k.

% java Subsequence abcd 3
abc abd acd bcd

33. Interleaving two strings. Given two strings s and t of distinct characters, print
out all (M+N)! / (M! N!) interleavings, where M and N are the number of characters
in the two strings. For example, if

s = "ab" t = "CD"
abCD CabD
aCbD CaDb
aCDb CDab

34. Binary GCD. Write a program BinaryGCD.java that finds the greatest common
divisor of two positive integers using the binary gcd algorithm: gcd(p, q) =

p if q = 0
q if p = 0
2 * gcd(p/2, q/2) if p and q are even
gcd(p/2, q) if p is even and q is odd
gcd(p, q/2) if p is odd and q is even
gcd((p-q)/2, q) if p and q are odd and p >= q
gcd(p, (q-p)/2) if p and q are odd and p < q

35. Integer partitions. Write a program Partition.java that takes a positive integer N
as a command-line argument and prints out all partitions of N. A partition of N is a
way to write N as a sum of positive integers. Two sums are considered the same if
they only differ in the order of their constituent summands. Partitions arise in
symmetric polynomials and group representation theory in mathematics and
physics.

% java Partition 4 % java Partition 6
4 6
3 1 5 1
2 2 4 2
2 1 1 4 1 1
1 1 1 1 3 3
 3 2 1
 3 1 1 1
 2 2 2
 2 2 1 1
 2 1 1 1 1
 1 1 1 1 1 1

36. Johnson-Trotter permutations. Write a program JohnsonTrotter.java that take a
command-line argument n and prints out all n! permutations of the integer 0
through n-1 in such a way that consecutive permutations differ in only one
adjacent transposition (similar to way Gray code iterates over combinations in such
a way that consecutive combinations differ in only one bit).

% java JohnsonTrotter 3
012 (2 1)
021 (1 0)
201 (2 1)
210 (0 1)
120 (1 2)
102 (0 1)

37. Permutations in lexicographic order. Write a program PermutationsLex.java
that take a command-line argument N and prints out all N! permutations of the
integer 0 through N-1 in lexicographic order.

% java PermutationsLex 3
012
021
102
120
201
210

38. Derangements. A derangement is a permutation p[] of the integers from 0 to N-
1 such that p[i] doesn't equal i for any i. For example there are 9 derangmenets
when N = 4: 1032, 1230, 1302, 2031, 2301, 2310, 3012, 3201, 3210. Write a
program to count the number of derangements of size N using the following
recurrence: d[N] = (N-1) (d[N-1] + d[N-2]), where d[1] = 0, d[2] = 1. The first
few terms are 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, and 1334961.

39. Tribonacci numbers. The tribonacci numbers are similar to the Fibonacci
numbers, except that each term is the sum of the three previous terms in the
sequence. The first few terms are 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81. Write a
program to compute tribonacci numbers. What is the ratio successive terms?
Answer. Root of x^3 - x^2 - x - 1, which is approximately 1.83929.

40. Sum of first n Fibonacci numbers. Prove by induction that the sum of the first n
Fibonacci numbers F(1) + F(2) + ... + F(N) is F(N+2) - 1.

41. Combinational Gray Code. Print out all combination of k of n items in such a way
that consecutive combinations differ in exactly one element, e.g., if k = 3 and n =
5, 123, 134, 234, 124, 145, 245, 345, 135, 235, 125. Hint: use the Gray code, but
only print out those integers with exactly k 1's in their binary representation.

42. Maze generation. Create a maze using divide-and-conquer: Begin with a
rectangular region with no walls. Choose a random gridpoint in the rectangle and
construct two perpendicular walls, dividing the square into 4 subregions. Choose 3
of the four regions at random and open a one cell hole at a random point in each of
the 3. Recur until each subregion has width or height 1.

43. Plasma clouds. Program PlasmaCloud.java takes a command-line argument N
and produces a random N-by-N plasma fractal using the midpoint displacement
method.

Here's an 800-by-800 example. Here's a reference, including a simple 1D version.
Note: some visual artifacts are noticeable parallel to the x and y axes. Doesn't
have all of the statistical properties of 2D fractional Brownian motion.

44. Fern fractal. Write a recursive program to draw a fern or tree, as in this fern
fractal demo.

45. Integer set partition. Use memoization to develop a program that solves the set
partition problem for positive integer values. You may use an array whose size is
the sum of the input values.

46. Voting power. John F. Banzhaf III proposed a ranking system for each coalition in
a block voting system. Suppose party i control w[i] votes. A strict majority of the
votes is needed to accept or reject a proposal. The voting power of party i is the
number of minority coalitions it can join and turn it into a winning majority
coalition. Write a program VotingPower.java that takes in a list of coalition weights
as command-line argument and prints out the voting power of each coalition. Hint:
use Schedule.java as a starting point.

47. Scheduling on two parallel machines. Program Schedule.java takes a
command-line argument N, reads in N real number of standard input, and
partitions them into two groups so that their difference is minimized.

Last modified on March 02, 2012.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

2.4 A CASE STUDY: PERCOLATION

We conclude our study of functions and modules by considering a case study
of developing a program to solve an interesting scientific problem. as Monte
Carlo simulation to study a natural model known as percolation.

Percolation. We model the system as an N-by-N grid of sites. Each site is
either blocked or open; open sites are initially empty. A full site is an open site
that can be connected to an open site in the top row via a chain of
neighboring (left, right, up, down) open sites. If there is a full site in the
bottom row, then we say that the system percolates. If sites are
independently set to be open with vacancy probability p, what is the
probability that the system percolates? No mathematical solution to this
problem has yet been derived. Our task is to write computer programs to help
study the problem.

Scaffolding. Our first step is to pick a representation of the data. We use one
boolean matrix to represent which sites are open and another boolean matrix
to represent which sites are full. We will design a flow() method that takes
as an argument a two-dimensional boolean array open[][] that specifies
which sites are open and returns another two-dimensional boolean array
full[][] that specifies which sites are full. We will also include a
percolates() method that checks whether the array returned by flow()
has any full sites on the bottom.

Vertical percolation. Given a boolean matrix that represents the open sites,
how do we figure out whether it represents a system that percolates? For the
moment, we will consider a much simpler version of the problem that we call
vertical percolation. The simplification is to restrict attention to vertical
connection paths.

Determining the sites that are filled by some path that is connected vertically
to the top is a simple calculation.

Program VerticalPercolation.java

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Data visualization. Program Visualize.java is a test client that generates
random boolean matrices and plots them using standard draw.

Estimating probabilities. The next step in our program development
process is to write code to estimate the probability that a random system (of
size N with site vacancy probability p) percolates. We refer to this quantity as
the percolation probability. To estimate its value, we simply run a number of
experiments. Program Estimate.java encapsulates this computation in a
method eval().

Recursive solution for percolation. How do we test whether a system
percolates in the general case when any path starting at the top and ending at
the bottom (not just a vertical one) will do the job? Remarkably, we can solve
this problem with a compact program, based on a classic recursive scheme
known as depth-first search. Program Percolation.java contains an
implementation of flow() that computes the flow array. See the textbook for
details.

Adaptive plot. To gain more insight into percolation, the next step in
program development is to write a program that plots the percolation
probability as a function of the site vacancy probability p for a given value of
N. Immediately, we are faced with numerous decisions. For how many values
of p should we compute an estimate of the percolation probability? Which
values of p should we choose? Program PercPlot.java implements a recursive
appraoch that produces a good-looking curve at relatively low cost. See the
textbook for details.

The curves support the hypothesis that there is a threshold value (about
.593): if p is greater than the threshold, then the system almost certainly
percolates; if p is less than the threshold, then the system almost certainly
does not percolate. As N increases, the curve approaches a step function that
changes value from 0 to 1 at the threshold. This phenomenon, known as a
phase transition, is found in many physical systems.

Lessons.

Expect bugs. Every interesting piece of code that you write is going to have
at least one or two bugs, if not many more. By running small pieces of code
on small test cases that you understand, you can more easily isolate any bugs
and then more easily fix them when you find them.

Keep modules small. You can focus attention on at most a few dozen lines of
code at a time, so you may as well break your code into small modules as you
write it.

Limit interactions. In a well-designed modular program, most modules
should depend on just a few others. In particular, a module that calls a large
number of other modules needs to be divided into smaller pieces. Modules
thatare called by a large number of other modules (you should have only a
few) need special attention, because if you do need to make changes in a
module's API, you have to reflect those changes in all its clients.

Develop code incrementally. You should run and debug each small module
as you implement it. That way, you are never working with more than a few
dozen lines of unreliable code at any given time.

Solve an easier problem. It is typical to begin by putting together the
simplest code that you can craft that solves a given problem, as we did with
vertical-only percolation.

Consider a recursive solution. Recursion is an indispensable tool in modern
programming that you should learn to trust. If you are not already convinced
of this fact by the simplicity and elegance of the flow() method in
Percolation.java, you might wish to try to develop a nonrecursive version.

Build tools when appropriate. Our visualization method show() and random
boolean matrix generation method random() are certainly useful for many
other applications, as is the adaptive plotting method of PercPlot.java.
Incorporating these methods into appropriate libraries would be simple.

Reuse software when possible. Our StdIn, StdRandom, and StdDraw
libraries all simplified the process of developing the code in this section.

Q + A

Q. Visualize.java and Estimate.java to rename Percolation.java to
PercolationEZ.java or whatever method we want to study seems to be a
bother. Is there a way to avoid doing so?

A. Yes, this is a key issue to be revisited in Chapter 3. In the meantime, you
can keep the implementations in separate subdirectories and use the
classpath, but that can get confusing. Advanced Java language mechanisms
are also helpful, but they also have their own problems.

Q. That recursive flow() method makes me nervous. How can I better
understand what it's doing?

A. Run it for small examples of your own making, instrumented with
instructions to print a function call trace. After a few runs, you will gain
confidence that it always fills the sites connected to the start point.

Q.Is there a simple nonrecursive approach?

A. There are several methods that perform the same basic computation. We

will revisit the problem in Section 4.5. In the meantime, working on
developing a nonrecursive implementation of flow() is certain to be an
instructive exercise, if you are interested.

Q. PercPlot.java seems to involve a huge amount of calculation to get a
simple function graph. Is there some better way?

A. Well, the best would be a mathematical proof of the threshold value, but
that derivation has eluded scientists. As N gets large, there is a

Q. What is the percolation threshold for different lattices?

A. percolation threshold probability p* such that if p < p* then no spanning
cluster exists, and if p >= p* then one spanning cluster exists.

Q. Any relevant papers?

A. Here's a recent physics paper that uses this technique.

Exercises

1. Write a program that takes N from the command line and creates an N-
by-N matrix with the entry in row i and column j set to true if i and j are
relatively prime, then shows the matrix on the standard drawing (see
Exercise 1.4.13). Then, write a similar program to draw the Hadamard
matrix of order N (see Exercise 1.4.25) and the matrix such with the
entry in row N and column j set to true if the coefficient of x^k in
(1+x)^N (binomial coefficient) is odd (see Exercise 1.4.322). You may
be surprised at the pattern formed by the latter.

2. Implement a print() method for Percolation.java that prints 1 for
blocked sites, 0 for open sites, and * for full sites.

3. Give the recursive calls for Percolation.java given the following input:

33
1 0 1
0 0 0
1 1 0

4. Write a client of Percolation.java like Visualize.java that does a series of
experiments for a value of N taken from the command line where the
site vacancy probability p increases from 0 to 1 by a given increment
(also taken from the command line).

5. Create a program PercolationDirected.java that test for directed
percolation (by leaving off the last recursive call in the recursive show()
method in Percolation.java, as described in the text), then use
PercPlot.java to draw a plot of the directed percolation probability as a
function of the site vacancy probability.

5. Write a client of Percolation.java and PercolationDirected.java that takes
a site vacancy probability p from the command line and prints an
estimate of the probability that a system percolates but does not
percolate down. Use enough experiments to get an estimate that is
accurate to three decimal places.

6. Describe the order in which the sites are marked when Percolation is
used on a system with no blocked sites. Which is the last site marked?
What is the depth of the recursion?

7. Experiment with using PercPlot.java to plot various mathematical
functions (just by replacing the call on Estimate.eval() with an
expression that evaluates the function). Try the function sin(x) +
cos(10*x) to see how the plot adapts to an oscillating curve, and come
up with interesting plots for three or four functions of your own
choosing.

8. Modify Percolation.java to animate the flow computation, showing the

sites filling one by one. Check your answer to the previous exercise.
9. Modify Percolation.java to compute that maximum depth of the

recursion used in the flow calculation. Plot the expected value of that
quantity as a function of the site vacancy probability p. How does your
answer change if the order of the recursive calls is reversed?

10. Modify Estimate.java to produce output like that produced by
Bernoulli.java. Extra credit: Use your program to validate the
hypothesis that the data obeys the Gaussian (normal) distribution.

Creative Exercises

11. Vertical percolation. Show that a system with site vacancy probability p
vertically percolates with probability 1 - (1 - p^N)^N, and use
Estimate.java to validate your analysis for various values of N.

12. Rectangular percolation systems. Modify the code in this section to allow
you to study percolation in rectangular systems. Compare the
percolation probability plots of systems whose ratio of width to height is
2 to 1 with those whose ratio is 1 to 2.

13. Adaptive plotting. Modify PercPlot.java to take its control parameters
(gap tolerance, error tolerance, and number of trials) from the
command line. Experiment with various values of the parameters to
learn their effect on the quality of the curve and the cost of computing
it. Briefly describe your findings.

14. Percolation threshold. Write a Percolation.java client that uses binary
search to estimate the threshold value (see Exercise 2.1.29).

15. Nonrecursive directed percolation. Write a nonrecursive program
PercolationDirectedNonrecursive.java that tests for directed percolation
by moving from top to bottom as in our vertical percolation code. Base
your solution on the following computation: if any site in a contigu- ous
subrow of open sites in the current row is connected to some full site on
the previous row, then all of the sites in the subrow become full.

16. Fast percolation test. Modify the recursive flow() method in
Percolation.java so that it returns as soon as it finds a site on the
bottom row (and fills no more sites). Hint: Use an argument done that
is true if the bottom has been hit, false otherwise. Give a rough
estimate of the performance improvement factor for this change when
running PercPlot.java Use values of N for which the programs run at
least a few seconds but not more than a few minutes. Note that the
improvement is ineffective unless the first recursive call in flow() is for
the site below the current site.

17. Bond percolation. Write a modular program for studying percolation
under the assumption that the edges of the grid provide connectivity.
That is, an edge can be either empty or full, and a system percolates if
there is a path consisting of full edges that goes from top to bottom.
Note: This problem has been solved analytically, so your simulations
should validate the hypothesis that the percolation threshold
approaches 1/2 as N gets large.

18. Percolation in three dimensions. Implement a class Percolation3D and a
class BooleanMatrix3D (for I/O and random generation) to study
percolation in three-dimensional cubes, generalizing the two-
dimensional case studied in this chapter. A percolation system is an N-
by-N-by-N cube of sites that are unit cubes, each open with probability

p and blocked with probability 1-p. Paths can connect an open cube with
any open cube that shares a common face (one of six neighbors, except
on the boundary). The system percolates if there exists a path
connecting any open site on the bottom plane to any open site on the
top plane. Use a recursive version of flow() like Program 2.4.5, but
with eight recursive calls instead of four. Plot percolation probability
versus site vacancy probability for as large a value of N as you can. Be
sure to develop your solution incrementally, as emphasized throughout
this section.

19. Bond percolation on a triangular grid. Write a modular program for
studying bond percolation on a triangular grid, where the system is
composed of 2N^2 equilateral triangles packed together in an N-by-N
grid of rhombus shapes. Each interior point has six bonds; each point on
the edge has four; and each corner point has two.

20. Game of life. Implement a class Life that simulates Conway's game of
life. Consider a boolean matrix corresponding to a system of cells that
we refer to as being either live or dead. The game consists of checking
and perhaps updating the value of each cell, depending on the values of
its neighbors (the adjacent cells in every direction, including diagonals).
Live cells remain live and dead cells remain dead, with the following
exceptions:

A dead cell with exactly three live neighbors becomes live.

A live cell with exactly one live neighbor becomes dead.

A live cell with more than three live neighbors becomes dead.

Initialize with a random matrix, or use one of the starting patterns This
game has been heavily studied, and relates to foundations of computer
science.

Web Exercises

1. 2-by-2 percolation. Verify that the probability that a 2-by-2 system
percolates is p^2 (2 - p^2), where p is the probability that a site is
open.

2. Cubic curves. Use recursive subdivision algorithm to plot cubic curves.
3. Random walk. Term coined by Hungarian mathematician George Polya

in a 1921 paper. Start at 0, go left with probability 1/2, go right with
probability 1/2. Reflecting barrier at 0 - if particle hits 0, it must switch
direction at next step and return to 1. Absorbing barrier at N - particle
stops when it hits state N. Estimate number of steps as a function of N
until the particle is absorbed.

Analytical solution: N2.
4. 3d random walk. Take a random walk on a 3d lattice, starting from (0,

0, 0). Write a program Polya.java to estimate the chance that you
return to the origin after at most some number of steps, say 1,000. (In
1d and 2d, you will surely return; in 3d, there is a less than 50%
chance.) Repeat the exercise on a 4d lattice. Solution: the actual
probability (without the artificial restriction on the number of steps) is
known as Polya's random walk constant. It is slightly more than 1/3 for
3D and slightly less than 1/5 for 4D.

5. Self-avoiding random walk. Simulate random walk on lattice until it
intersects. Among all self-avoiding walks (SAW) of length N, what is
average distance from origin? To save time in the simulation, exclude
SAWs that ever take a step backwards. How long until at least one SAW
of length N = 40, N = 80? What is half-life of a SAW? To save more
time in the simulation, allow a SAW only to take a step into an
unoccupied cell (and repeat until it gets trapped). Practically nothing is
known rigorously about these questions, so simulation is the best
recourse. Here's an article from the New Scientist.

Famous 1949 problem of Nobel prize winning chemist, Flory.

Conjecture: exponent of root mean square displacement is 3/4 in 2D
and 3/5 in 3D.

6. Self-avoiding random walk. Write a program SelfAvoidingWalk.java
to simulate and animate a 2D self-avoiding random walk. Self-avoiding
random walks arise in modeling physical processes like the folding of
polymer molecules. Such walks are difficult to model using classical
mathematics. so they are best studied by direct numerical simulation.
See what fraction of such random walks end up more than R^2 (say 30)
from the starting point.

Or keep a trail of length N.

Last modified on August 30, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

3. OBJECT-ORIENTED PROGRAMMING

This section under construction.

Overview. In object-oriented programming, we write Java code to
create new data types, specifying the values and operations to
manipulate those values. The idea originates from modeling (in
software) real-world entities such as electrons, people, buildings,
or solar systems and extends readily to modeling abstract entities
such as bits, numbers, programs or operating systems.

3.1 Data Types describes how to use existing reference data
types, for text processing image processing.
3.2 Creating Data Types describes how to create user-
defined data types using Java's class mechanism.
3.3 Designing Data Types considers important techniques for
designing data types, emphasizing APIs, encapsulation,
immutability, and design-by-contract.
3.4 Case Study: N-Body Simulation presents a case study
that simulates the motion of N particles, subject to Newton's
laws of gravity.

Java programs in this chapter. Below is a list of Java programs
in this chapter. Click on the program name to access the Java
code; click on the reference number for a brief description; read
the textbook for a full discussion.

REF PROGRAM DESCRIPTION

3.1.2 AlbersSquares.java Albers squares

3.1.4 Grayscale.java converting color to grayscale

3.1.6 Fade.java fade effect

3.1.8 GeneFind.java finding genes in a genome

3.1.10 StockQuote.java screen scraping for stock quotes

3.2.1 Charge.java charged-particle data type

3.2.3 Histogram.java histogram data type

3.2.5 Spiral.java Spira mirabilis

3.2.7 Mandelbrot.java Mandelbrot set

3.3.1 Complex.java Complex numbers (revisited)

3.3.3 Vector.java spatial vector data type

3.3.5 CompareAll.java Similarity detection

3.4.2 Universe.java N-body simulation

Exercises. Include a link.

Old stuff.

3.5 Inheritance introduces a technique to define the

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

relationships among objects known as inheritance. We cover
interfaces and subtyping.
3.6 Purple America presents a case study to visualization
geographical and election data for US presidential elections.

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

3.1 DATA TYPES

This section is under construction.

Organizing the data for processing is an essential step in the development of a computer program. Programming
in Java is largely based on doing so with data types known as reference types that are designed to support object-
oriented programming, a style of programming that facilitates organizing and processing data. The eight primitive
data types (boolean, byte, char, double, float, int, long, and short) that you have been using are
supplemented in Java by extensive libraries of reference types that are tailored for a large variety of applications.
As examples, you will learn in this section how to use several reference types, for image processing and string
processing applications. Some of them are built into Java (String and Color) and some were developed for this
book (In, Out, and Picture).

Basic definitions. A data type is a set of values and a set of operations defined on those values. For example,
the values of the primitive data type int are integers between -231 and 231 - 1; the operations of int are the
basic arithmetic and logical operations that we have been using since Chapter 1. You have already been using a
data type that is not primitive - the String data type. The values of String are sequences of characters; we
have used only a few of the available operations on those values (such as concatenating two strings).

API. We specify the behavior of a data type for clients by listing its methods, in an API (applications program
interface). For example, the table below specifies a class Charge for writing programs that operate on particles
that carry electrical charges.

The first method, with the same name as the class and no return type, is a special method known as a
constructor. The other methods can take arguments and return values in the same manner as the static methods
that we have been using, but they are not static methods: they implement operations for the data type. Charge
has two methods: The first is potentialAt(), which computes and returns the electric potential at the given
point that is due to the charge. Coulomb's law tells us that the potential is given by V = kq /r, where q is the
charge value, r is the distance from the point to the charge, and k = 8.99 × 10^9 Nm^2/C^2 is the electrostatic
constant. For consistency, we use SI units. The second is toString(), which returns a string that represents the
point charge. While the API does not give details of the implementation, it provides the information we need to
write programs that use the data type.

Color. Color is a sensation in the eye from electromagnetic radiation. Since people want to view and manipulate
color images on their computers, color is a widely used abstraction in computer graphics and Java provides a
Color data type. Java has thousands of data types in its libraries, so we need to explicitly list which Java libraries
we are using in our program to avoid naming conflicts. Specifically, we include the statement

import java.awt.Color;

at the beginning of any program that uses Color.

To represent color values, Color uses the RGB system where a color is defined
by three integers (each between 0 and 255) that represent the intensity of the
red, green, and blue (respectively) components of the color. Other color values
are obtained by mixing the red, blue and green components. That is, the data
type values of Color are three 8-bit integers. With this convention, Java is
using 24 bits to represent each color and can represent 256^3 = 2^24 ~ 16.7
million possible colors. Scientists estimate that the human eye can distinguish
only about 10 million distinct colors.

Color has a constructor that takes three integer arguments, so that you can
write, for example

Color red = new Color(255, 0, 0);
Color white = new Color(255, 255, 255);
Color sienna = new Color(160, 82, 45);

to create objects whose values represent the colors red, white, and sienna, respectively. We have been using
colors in StdDraw since Section 1.5, but have been limited to a set of predefined colors such as StdDraw.BLACK,
StdDraw.RED, StdDraw.BLUE, and StdDraw.GRAY. Now we have millions of colors from which to choose.
Spectrum.java is a demonstration that shows you all of the colors, using StdDraw.

The API for Color contains several constructors and over twenty methods; we briefly summarize the ones that we
will use:

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Albers squares. AlbersSquares.java displays the two colors entered in RGB representation on the command line in
the familiar format developed in the 1960s by the color theorist Josef Albers that revolutionized the way that
people think about color.

Luminance. The quality of the images on modern displays such as LCD monitors, plasma TVs, and cell-
phone screens depends on an understanding of a color property known as monochrome luminance, or
effective brightness. A standard formula for luminance is derived from the eye's sensitivity to red, green,
and blue. It is a linear combination of the three intensities: if a color's red, green and blue values are r, g,
and b, respectively then its luminance is defined by the equation

Y = 0.299 r + 0.587g + 0.114b.

Grayscale. The RGB system has the property that when all three color intensities are the same, the resulting
color is on a grayscale that ranges from black (all 0s) to white (all 255s). To print a color photograph in a
black-and-white newspaper (or a book) we need a static method to convert from color to grayscale.
Luminance provides a simple solution: to convert a color to grayscale, simply replace the color by a new
color whose red, green, and blue values equal its luminance!
Color compatibility. The luminance value is also crucial in determining whether two colors are compatible, in
the sense that printing text in one of the colors on a background in the other color will be readable. A widely
used rule of thumb is that the difference between the luminance of the foreground and background colors
should be at least 128. For example, black text on white background has a luminance difference of 255, but
black text on a blue background has a luminance difference of only 29. This rule is important in the design
of advertising, road signs, websites, and many other applications.

Luminance.java is a static method library that we can use to convert to grayscale and test whether two colors are
compatible. The methods in Luminance illustrate the utility of using data types to organize information. Using the
Color reference type and passing objects as arguments and return values of functions makes these
implementations substantially simpler than the alternative of having to pass around the three intensity values.
Returning multiple values from a function is particularly problematic.

Image processing. You are familiar with the concept of a photograph. The history of photography is a history of
technological development. During the last century, photography was based on chemical processes, but its future
is now based in computation.

Digital images. We have been using standard draw to plot geometric objects (points, lines, circles, squares) in a
window on the computer screen. The basic abstraction for computer displays is the same one that is used for
digital photographs and is very simple: A digital image is a rectangular grid of pixels (picture elements), where the
color of each pixel is individually defined. Digital images are sometimes referred to as raster or bitmapped images.

Our class Picture.java is a data type for digital images. The set of values is a two-dimensional array of Color
values, and the operations are what you might expect: create an image (either a blank one with a given width and
height or one initialized from a picture file), set the value of a pixel to a given color, return the color of a given
pixel, return the width or the height, show the image in a window on your computer screen and save the image to
a file, as specified in the following API summary:

These methods, coupled with Java's Color data type, open the door to image processing for you. By convention,
(0, 0) is the upper leftmost pixel, so the image is laid out in the customary manner for arrays (by contrast, the
convention for StdDraw is to have the point (0,0) at the lower left corner, so that drawings are oriented in
customary manner for Cartesian coordinates).

Grayscale. Grayscale.java converts an image from color to grayscale. This task is a prototypical image-
processing task: for each pixel in the source image, we have a pixel in the target image, with a different
color.

Scale. One of the most common image-processing tasks is to make an image smaller or larger. Scale.java
takes a filename and the width and height of the target image as command-line arguments, and rescale the
image to the specified size.

600-by-300

298-by-298

200-by-200

200-by-400

Fade effect. Program Fade.java takes three command line inputs. The first specifies the number of frames.
The next two inputs are the names of two image files (of the same dimensions). The program displays a
sequence of images, fading from the first picture to the second one by taking convex combinations of the
color values. A convex combination of two RGB colors (r1, g1, b1) and (r2, g2, b2) is (β r1 + (1-β)r2, β g1
+ (1-β)g2, β b1 + (1-β)b2) where β is a real number between 0 and 1.

Electric potential visualization. Image processing is also helpful in scientific visualization. Program
Potential.java visualizes the potential values created by a set of charges. It relies on the data file
charges.txt.

Strings. We've been using strings and string concatenation since our very first Java program. Now we will explore
many additional operations built in to Java's String data type that open up the world of text processing. Before
using them, we must know their calling conventions. The Application Programming Interface (API) describes the
set of operations associated with a data type and how to invoke them. You can find formal descriptions in Sun's
online documentation of the String class. The table below summarizes several useful string processing methods
and gives brief examples to illustrate their usage. As with arrays, the characters of a string are indexed starting at
0.

Operation Description Invoking string s Return
value

s.length() return length of s Hello 5

s.charAt(1) return character of s with index 1 Hello e

s.substring(1, 4) return substring from 1 (inclusive) to 4
(exclusive)

Hello ell

s.substring(1) return substring starting at index 1 Hello ello

s.toUpperCase() return upper case version of s Hello HELLO

s.toLowerCase() return lower case version of s Hello hello

s.startsWith("http:") does s start with http:? http://www.cnn.com true

s.endsWith(".com") does s end with .com? http://www.cnn.com true

s.indexOf(".java") return index of first occurrence of .java in s
(-1 if no occurrence)

Hello.java.html 5

s.indexOf(".java", 6) return index of first occurrence of .java in s,
starting at index 6

Hello.java.html -1

s.lastIndexOf(".") return index of last occurrence of . in s Hello.java.html 10

s.trim() return s with leading and trailing whitespace
removed

" Hello there "
"Hello
there"

s.replace(",", ".") return s with all occurrences of , replace by . 13,125,555 13.125.555

s.compareTo("abc") compare s to abc lexicographically "abc" 0

Genomics. Program GeneFind.java identifies possible genes in a genome.

Input. In Section XYZ we learned how to read numerical and text input from the terminal using StdIn.java.
However, this supported only one input stream (standard input). Sometimes our programs need to read data from
several input sources (standard input, files, web sites). Program In.java is a convenient class to do exactly this.

Screen scraping. Now we illustrate a nice combination of using the built-in String library with our In library.

The goal is to query a web page, extract some information, and report back the results. This process in known as
screen scraping. Program StockQuote.java the symbol of New York Stock Exchange stock and prints out its
current trading price. To report the stock price of Google (NYSE symbol = goog), it reads the Web page
http://finance.yahoo.com/q?s=goog". Then, it identifies the relevant information using indexOf and
substring. The relevant information is enclosed between the tags and immediately following the text
Last Trade.

public static void main(String[] args) {
 String name = "http://finance.yahoo.com/q?s=" + args[0];
 In in = new In(name);
 String input = in.readAll();
 int p = input.indexOf("Last Trade:", 0);
 int from = input.indexOf("", p);
 int to = input.indexOf("", from);
 String price = input.substring(from + 3, to);
 System.out.println(price);
}

The program heavily depends on the web page format of Yahoo. If Yahoo changes their web page format, we
would need to change our program. Nevertheless, this is likely more convenient than maintaining the data
ourselves.

Output. We are also interested in writing output to files or the network instead of just standard output. Program
Out.java provides a mechanism for writing data to various output streams. Using Out, writing to a file is almost as
easy as writing to standard output.

Program Cat.java takes a sequence of strings as command line inputs (names of text files), and concatenates
them, printing the results to standard output.

Program Split.java This program uses multiple output streams to split a CSV file into separate files, one for each
comma-delimited field.

Primitive types vs. reference types. Java has two different categories of data types: primitive types (also
known as value types) and reference types. We're already familiar with many of the eight primitive types in Java:
boolean, char, byte, short, int, long, float, and double. Value types store the integral, floating pointing or
boolean value, e.g., 17, 3.14, or true. The primitive types and the associated operations are typically
implemented directly in hardware, so they are especially efficient. When we declare a variable of a primitive type,
the system allocates enough memory to store a value of that type (e.g., 4 bytes for an int and 8 bytes for a
double). We can initialize or modify the value using the assignment operator. However, when we pass a variable
to a function, the system passes a copy of the integral, floating point or boolean value itself. This is called pass-
by-value. One consequence is that if we pass an integer variable a to a function, the function cannot change the
value that is stored in a since we have only passed a copy of the value stored in a.

Reference types have very different characteristics. A reference stores the memory address of an object. It
captures the difference between a thing and its name.

Thing Name

Web page www.princeton.edu

Email inbox nobody@princeton.edu

Bank account 45-234-23310076

US citizen 166-34-9114

Word of TOY memory 1C

Byte of computer memory FFBEFB24

Cell phone (609) 876-5309

House 35 Olden Street

We say that the reference points to the object and often draw an arrow from the reference to what it points to. A
reference of a given type always points to an object of the correct type or to the special value null which
indicates that the reference points to nothing. Each reference points to one object, but two or more references can
point to the same object. We initialize a reference by using an assignment statement. We can either set it equal to
another reference (of the appropriate type) or we can also use the keyword new to make it point to a newly
created object. Java manipulates objects by reference, but passes them to methods and functions by value. This
means that if we pass a variable p of type Picture to a function, the function can change the state of the object
referenced by p, e.g., change the colors of some of the pixels. It cannot, however, change what object p
references.

Analogy. Object = house. Reference = paper with street address of house written in pencil. Each piece of paper
can have at most one address. We can give piece of paper to a house painter and tell them to paint the house red.
Can have multiple pieces of paper with the same address. When the house is painted, both pieces of paper have

the street address of the same red house. It's possible to erase what's on the paper, and write down a new street
address. But if you change what's written on your piece paper, it doesn't change what's written on my piece of
paper.

Cash (value) vs. credit card (pointer to value).

In Program xyz, it is important to compare the strings s1 s2 with s1.equals(s2) instead of (s1 == s2). The
former is a built-in method that tests whether the two strings are composed of exactly the same sequence of
characters. The latter checks whether the two objects reference the same location in memory.

The distinction between primitive and reference types is a tradeoff between efficiency and elegance. There is
substantial memory overhead (around 16 bytes) associated with creating each new object. OOP purists would
argue that a language should not have any primitive types, only objects and reference types.

Arrays are objects. Arrays are treated as objects in Java, except that there is special syntax for indexing into an
array using square brackets. Otherwise, an array is just another example of a reference types. When we pass an
array to a function, the system passes a copy of the reference, not a copy of the array. This means that the
function is free to modify the contents of the array. If the array is huge, there is substantial savings in passing a
reference to the array. Give example of pass-by-value....

Automatic memory management. One of the most significant features of the Java programming language is its
ability to automatically manage memory. Memory management is straightforward with primitive types: allocate a
fixed chunk of memory (e.g., 4 bytes for an int) when we declare a variable, and release it when the variable
goes out of scope. It is important to free the memory whenever possible since your computer only has a finite
amount of memory, and it may eventually consume it all. Managing memory for reference types is substantially
more challenging. Each time we create an object with the keyword new, the system finds a free chunk of memory
of the right size, and reserves it for the object. When the object is no longer accessible (e.g., the last reference to
it goes out of scope), we want the system to free up the memory and recycle it for it for use the next time you
create an object with new. In many languages (including C and C++) the programmer is responsible for marking
those objects that it no longer needs. This process is tedious and notoriously error-prone. If the programmer is
not diligent, the system may slowly leak memory and eventually run out. Many modern languages (including Java)
include a garbage collector to transfer the burden of memory management from the programmer to the system.
The garbage collector periodically identifies chunks of memory that are not in use, and notifies the system to
reclaim them. If a chunk of memory has no references to it, then it can be safely garbage-collected since the
programmer would have no way of accessing it.

Particle system physics engine. Jeff Traer-Bernstein has a particle system physics engine.

Q + A

Q. What's the difference between =, ==, and equals?

A. Variant of same question of 2.2 and 2.3.

Q. Why doesn't (s == "") work reliably for checking whether s is the empty string?

A. It compares whether the two strings refer to the same memory location. The two strings can refer to different
memory locations which each represent the string "".

Q. How can I check whether a string s is the empty string?

A. Use (s.equals("")) or (s.length() == 0).

Q. Is there a difference between the empty string and null?

A. Yes. The empty string is a string consisting of 0 characters. You can invoke all of the usual string methods, e.g.,
length. On the other hand, null is not a string object. You will get a NullPointerExceptionError if you try
to invoke any method on a variable storing null.

Q. What's the substring trap?

A. The String method call s.substring(i, j) returns the substring of s starting at index i and ending at j-1 (not at j
as you might suspect).

Q. Can I apply several string operations at once?

A. Yes, the statement s.trim().toLowerCase().equals("saturday") works as expected (e.g., returns true
if s represents the string " Saturday "). The reason it works is because (i) each of the methods returns its
result as a string and (ii) methods in Java are invoked from left to right.

Q. What special capabilities do strings have over other objects?

A. String concatenation with + and assignment using quoted sequences of characters.

Q. How can I change the value of a string object?

A. You can't since strings are immutable in Java. However, you can make a string reference point to a different
string by reassigning it.

String s = "aaaa"; // s refers to the value "aaaa"
s.replaceAll("a", "b"); // s still refers to the value "aaaa"
String t = s; // t refers to the value "aaaa"
s = s.replaceAll("a", "b"); // s now refers to the value "bbbb"
 // t still refers to the value "aaaa"

Q. Why use the RGB format for representing colors?

A. RGB is commonly used in television screens, computer monitors and digital cameras. The screens (CRT or LCD)
are comprised of thousands or millions of tiny red, green, and blue dots. The device can light each pixel up in
various degrees of brightness. It is an additive model (the device emits a combination of the colors) as opposed to
a subtractive model (where the medium reflects the colors, e.g., with dyes or pigments).

Q. When using a linear filter, each pixel becomes a weighted average of its 8 neighbors. What do I do when the
pixel has less than 8 neighbors because it is near the border?

A. You could assume the image is toroidal (periodic boundary conditions) and make the left boundary wrap around
to the right boundary.

Q. How can I convert from an uppercase letter to an integer between 0 and 25?

A. Recall that characters are 16-bit integers and that the uppercase letters are store consecutively in ascending
order. The expression c - 'A' does the job. You can also use c - '0' to convert from one of the characters '0'
through '9' to the corresponding integer.

Q. Where can I download some test files for image processing?

A. USC SIPI contains standard test images (including Peppers and Baboon).

Q. What special capabilities do arrays have over other objects?

A. Indexing into the array using square brackets. Declaring an array involves specifying its type with square
brackets. Initializing an array involves using either new with square braces or list its constituent values within
curly braces.

Q. How can I pass an array to a function in such a way that the function cannot change the array?

A. You can't since arrays are mutable. However, you can achieve the same effect by building a wrapper data type
and passing that instead. Stay tuned.

Q. I've heard that Java has no "pointers." Is this true?

A. It's true that Java doesn't have an explicit pointer type, but you should view Java references as "safe pointers."
Java's implementation of references is opaque so you cannot do pointer arithmetic on them or cast them to
numeric types. Java also automatically dereferences pointers as needed.

Q. Is it correct to say that Java passes primitive types by value and objects by reference?

A. Not quite. See this explanation. For C++ programmers, it's better to think of a Java reference as a "safe
pointer." Java references behave like C++ references, except that assignment and == work like pointers.

Q. When I declare an object, when do I need to use new?

A. Every time you call new, you get a new instance of the data type, with its own instance variables. If you don't
need a new instance, but rather just want a new variable of the given type to reference an existing instance, don't
use new. Methods can also return new instances by invoking new, e.g., the plus method with the Complex data
type.

Exercises

1. Write a program FourChargeClient.java that takes a double command-line argument r, creates four
Charge objects that are each distance r from the center of the screen (.5, .5), and prints the potential at
location (.25, .5) due to the combined four charges. All four charges should have the same unit charge.

2. Write a function that takes as input a string and returns the number of occurrences of the letter e.

3. Give a one line Java code fragment to replace all periods in a string with commas. Answer: s =
s.replace(".", ",").

Don't use s = s.replaceAll(".", ","). The replaceAll() method uses regular expressions (See
Section 7.2) and "." string has a special meaning.

4. Replace all tabs with four spaces. Answer: s = s.replace("\t", " ").

5. Write a program that takes a command line input string s, reads strings from standard input, and prints out
the number of times s appears. Hint: use don't forget to use equals instead of == with references.

6. Write a program that reads in the name of a month (3 letter abbreviation) as a command line parameter
and prints the number of days in that month in a non leap year.

public static void main(String[] args) {
 String[] months = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 };
 int[] days = {
 31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31
 };
 String name = args[0];
 for (int i = 0; i < 12; i++)
 if (name.equalsIgnoreCase(months[i]))
 System.out.println(name + " has " + days[i] + " days");
}

7. Write a program Squeeze.java that takes as input a string and removes adjacent spaces, leaving at most
one space in-a-row.

8. What does the following code fragment do?

public static void main(String[] args) {

 String s1 = args[0];
 String s2 = args[1];
 int length1 = s1.length();
 int length2 = s2.length();
 if (length1 > length2) System.out.println(length1);
 else System.out.println(length2);
}

Which one or more of the following converts all of the strings in the array a to upper case?

for (int i = 0; i < a.length; i++) {
 String s = a[i];
 s = s.toUpperCase();
}

for (int i = 0; i < a.length; i++) {
 a[i].toUpperCase();
}

for (int i = 0; i < a.length; i++) {
 a[i] = a[i].toUpperCase();
}

Answer: only the last one.
9. Write a function that takes as input a string and returns the string in reverse order.

10. What does the following recursive function return, given an input string s?

public static String mystery(String s) {
 int N = s.length();
 if (N <= 1) return s;
 String a = s.substring(0, N/2);
 String b = s.substring(N/2, N);
 return mystery(b) + mystery(a);
}

11. Describe the string that the following function returns, given a positive integer N?

public static String mystery(int N) {
 String s = "";
 while(N > 0) {
 if (N % 2 == 1) s = s + s + "x";
 else s = s + s;
 N = N / 2;
 }
 return s;
}

12. Write a function that takes a string s and an integer n and returns a new string t of length exactly n that
consists of s (truncated if its length is greater than n) followed by a sequence of '-' characters (if the
length of s is less than n).

13. Write a function that takes as input a string and returns true if the string is a palindrome, and false
otherwise. A palindrome is a string that reads the same forwards or backwards.

14. Write a function that takes as input a string and returns true if the string is a Watson-Crick complemented
palindrome, and false otherwise. A Watson-Crick complemented palindrome is a DNA string that is equal
to the complement (A-T, C-G) of its reverse.

15. Write a function that takes as input a DNA string of A, C, G, and T characters and returns the string in
reverse order with all of characters replaced by their complements. For example, if the input is ACGGAT,
then return ATCCGT.

16. What does the following recursive function return, given two strings s and t of the same length?

public static String mystery(String s, String t) {
 int N = s.length();
 if (N <= 1) return s + t;
 String a = mystery(s.substring(0, N/2), t.substring(0, N/2));
 String b = mystery(s.substring(N/2, N), t.substring(N/2, N));
 return a + b;
}

17. Write a program that reads in a string and prints out the first character that appears exactly once in the
string. Ex: ABCDBADDAB -> C.

18. Given a string, create a new string with all the consecutive duplicates removed. Ex: ABBCCCCCBBAB ->
ABCBAB.

19. Write a function that takes two string arguments s and t, and returns the index of the first character in s
that appears in ts (or -1 if no character in s appears in t).

20. Given a string s, determine whether it represents the name of a web page. Assume that all web page names
start with http:

Solution: The easiest way is using the startsWith method in Java's string library, e.g., if
(s.startsWith("http:")).

21. Given a string s that represents the name of a web page, break it up into pieces, where each piece is
separated by a period, e.g., http://www.cs.princeton.edu should be broken up into www, cs, princeton, and
edu, with the http:// part removed. Use either the split or indexOf methods.

22. Given a string s that represents the name of a file, write a code fragment to determine its file extension.
The file extension is the substring following the last period. For example, the file type of monalisa.jpg is
jpg, and the file type of mona.lisa.png is png.

Library solution: this solution is used in Picture.java to save an image to the file of the appropriate type.

String extension = s.substring(s.lastIndexOf('.') + 1);

23. Given a string s that represents the name of a file, write a code fragment to determine its directory portion.
This is the prefix that ends with the last / character (the directory delimiter); if there is no such /, then it is
the empty string. For example, the directory portion of /Users/wayne/monalisa.jpg is /Users/wayne/.

24. Given a string s that represents the name of a file, write a code fragment to determine its base name
(filename minus any directories). For /Users/wayne/monalisa.jpg, it is monalisa.jpg.

25. What does the following code fragment print out?

String string1 = "hello";
String string2 = string1;
string1 = "world";
System.out.println(string2);

26. Write a program that reads in text from standard input and prints it back out, removing any lines that
consisting of only whitespace.

27. Write a program that reads in text from standard input and prints it back out, replacing all single quotation
marks with double quotation marks.

28. Write a program Paste.java that takes an arbitrary number of command line inputs and concatenates the
corresponding lines of each file, and writes the results to standard output. (Typically each line in given file
has the same length.) Counterpart of the program Cat.java.

29. What does the program LatinSquare.java print when N = 5?

String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 char c = alphabet.charAt((i + j) % N);
 System.out.print(c + " ");
 }
 System.out.println();
}

A Latin square of order N is an N-by-N array consisting of N different symbols, such that each symbol
appears exactly once in each row and column. Latin squares are useful in statistical design and
cryptography.

30. What does the following code fragment print?

String s = "Hello World";
s.toUpperCase();
s.substring(6, 11);
System.out.println(s);

Answer: Hello World. The methods toUpperCase and substring return the resulting strings, but the
program ignores these so s is never changed. To get it to print WORLD, use s = s.toUpperCase() and s =
s.substring(6, 11).

31. What happens when you execute the following code fragment?

String s = null;
int length = s.length();

Answer: you get a NullPointerException since s is null and you are attempting to dereference it.

32. What are the values of x and y after the two assignment statements below?

int x = '-'-'-';
int y = '/'/'/';

33. Suppose that a and b are each integer arrays consisting of 100 million integers. What does the follow code
do. How long does it take?

int[] t = a;
a = b;
b = t;

Answer It swaps them, but it does so without copying millions of elements.
34. What does the following statement do where c if of type char?

System.out.println((c >= 'a' && c <= 'z') ||
 (c >= 'A' && c <= 'Z'));

Answer: prints true if c is an uppercase or lowercase letter, and false otherwise.

35. Write an expression that tests whether or not a character represents one of the digits '0' through '9'
without using any library functions.

boolean isDigit = ('0' <= c && c <= '9');

36. Write a program FlipY.java that reads in an image and flips it vertically.

37. Write a program WidthChecker.java that takes a command line parameter N, reads text from standard
input, and prints to standard output all lines that are longer than N characters (including spaces).

38. Write a program Hex2Decimal.java that converts from a hexadecimal string (using A-F for the digits 11-15)
to decimal.

Answer: the following solution uses several string library methods and Horner's method.

public static int hex2decimal(String s) {
 String digits = "0123456789ABCDEF";
 s = s.toUpperCase();
 int val = 0;
 for (int i = 0; i < s.length(); i++) {
 char c = s.charAt(i);
 int d = digits.indexOf(c);
 val = 16*val + d;
 }
 return val;
}

Alternate solution: Integer.parseInt(String s, int radix). More robust, and works with negative
integers.

Creative Exercises

1. Picture dimensions. Write a program Dimension.java that take the name of an image file as a
command line input and prints out its dimension (width-by-height).

2. Bounding box. Write a program BoundingBox.java that reads in an image file and output the smallest
bounding box (rectangle parallel to the x and y axes) that contains all of the non-white pixels. Useful for
automatic cropping.

3. Anti-aliasing. Anti-aliasing is a method of removing artifacts from representing a smooth curve with a
discrete number of pixels. A very crude way of doing this (which also blurs the image) is to convert an N-by-
N grid of pixels into an (N-1)-by-(N-1) by making each pixel be the average of four cells in the original
image as below. Write a program AntiAlias that reads in an integer N, then an N-by-N array of integers,
and prints out the antialiased version. Reference.

4. Thresholding. Write a program Threshold.java that reads in a grayscale version of a black-and-white
picture, creates and plots a histogram of 256 grayscale intensities, and determines the threshold value for
which pixels are black, and which are white.

5. Mirror image. Read in a W-by-H picture and produce a 2W-by-H picture which concatenates the original W-
by-H picture with the mirror image of the W-by-H picture. Repeat by mirror around the y-axis. Or create a
W-by-H picture, but mirror around the center, deleting half the picture.

6. Linear filters. A box filter or mean filter replaces the color of pixel (x, y) by the average of its 9
neighboring pixels (including itself). The matrix [1 1 1; 1 1 1; 1 1 1] / 9 is called the convolution kernel. The
kernel is the set of pixels to be averaged together. Program MeanFilter.java implements a mean filter using
the Picture data type.

7. Blur filter. Use low-pass 3-by-3 uniform filter [1/13 1/13 1/13; 1/13 5/13 1/13; 1/13, 1/13, 1/13].

8. Emboss filter. Use prewitt masks [-1 0 1; -1 1 1; -1 0 1] (east) or [1 0 -1; 2 0 -2; 1 0 -1], [-1 -1 0; -1 1
1; 0 1 1] (south-east),

9. Sharpen filter. Psychophysical experiments suggest that a photograph with crisper edges is more
aesthetically pleasing than exact photographic reproduction. Use a high-pass 3-by-3 filter. Light pixels near
dark pixels are made lighter; dark pixels near light pixels are made darker. Laplace kernel. Attempts to
capture region where second derivative is zero. [-1 -1 -1; -1 8 -1; -1 -1 -1]

10. Oil painting filter. Set pixel (i, j) to the color of the most frequent value among pixels with Manhattan
distance W of (i, j) in the original image.

11. Reverse string. Write a recursive function to reverse a string. Do not use any loops. Hint: use the String
method substring.

static String reverse(String s) {
 int N = s.length();
 if (N == 0) return "";
 else return reverse(s.substring(1, N)) + s.charAt(0);
}

12. Frequency analysis of English text. Write a program LetterFrequency.java that reads in text from
standard input (e.g., Moby Dick) and calculate the fraction of times each of the 26 lowercase letters
appears. Ignore uppercase letters, punctuation, whitespace, etc. in your analysis. Use CharStdIn.java
from Section 2.4 to read process the text file.

13. Complemented DNA string. Write a program to read in a DNA string (A, C, T, G) and print out its
complement (substitute A for T, T for A, C for G, and G for C). Hint: use replace several times, but be
careful.

14. Print longest word. Read a list of words from standard input, and print out the longest word. Use the
length method.

15. Print longest word(s). Repeat the previous exercise, but print out all of the longest words if there is a tie,
say up to a maximum of 10 words. Use an array of strings to store the current longest words.

16. Test if two files are equal. Write a program that takes the name of two text files as command line inputs
and checks if their contents are identical.

17. Parsing command line options. Unix command line programs typically support flags which configure the
behavior of a program to produce different output, e.g., "wc -c". Write a program that takes any number of
flags from the command line and runs whichever options the user specifies. To check options, use
something like if (s.equals("-v")).

18. Capitalization. Write a program Capitalizer.java that reads in text strings from standard input and
modifies each one so that the first letter in each word is uppercase and all other letters are lowercase.

19. Reverse domain. Write a program to read in a domain name as a command line input and print the
reverse domain. For example, the reverse domain of cs.princeton.edu is edu.princeton.cs. This is
useful for web log analysis.

20. Railfence transposition cipher. Write a program RailFenceEncoder.java that reads in text from
standard input and prints out the characters in the odd positions, followed by the even positions. For
example, if the original message is "Attack at Dawn", then you should print out "Atc tDwtaka an". This is a
crude form of cryptography.

21. Railfence transposition cipher. Write a program RailFenceDecoder.java that reads in a message
encoded using the railfence transposition cipher and prints out the original message by reversing the
encryption process.

22. Scytale cipher. The scytale cipher is one of the first cryptographic devices used for military purposes. (See
The Code Book, p. 8 for a nice picture.) It was used by the Spartans in the fifth century BCE. To scramble
the text, you print out every kth character starting at the beginning, then every kth character starting at the
second character, and so forth. Write a pair of programs ScytaleEncoder.java and
ScytaleDecoder.java that implement this encryption scheme.

23. Kama-sutra cipher. The Kama-sutra, written in the fourth century BCE by Vatsyayana, outlines 64 arts
that women should study. Number 45 outlines a method to help women conceal their secret affairs. Each
letter in the alphabet is paired up with another one, as in the table below:

A B C E F G H K L M N P R
Q D Z U J I X Y W S O V T

Then a message is encoded by replacing each letter with its pair. For example, the message "MEET AT
ELEVEN" is encoded as "SUUR QR UWUPUO". This is one of the earliest known substitution ciphers. Write a
program KamaSutra.java that scrambles a message using this scheme. Observe that you can unscramble a
message by applying the same scheme again.

24. Password checker. Write a program that reads in a string from the command line and checks whether it is
a "good" password. Here, assume "good" means that it (i) is at least 8 characters long, (ii) contains at least
one digit 0-9, (iii) contains at least one upper case letter, (iv) contains at least one lower case letter, and (v)
contains at least one non-alphanumeric character.

25. Subsequence. Given two strings s and t, write a program Subsequence.java that determines whether s is
a subsequence of t. That is, the letters of s should appear in the same order in t, but not necessarily
contiguously. For example accag is a subsequence of taagcccaaccgg.

26. Bible codes. Some religious zealots believe that the Torah contains hidden phrases that appear by reading
every kth letter, and that such pattern can be used to find the Ark of the Covenant, cure cancer, and predict
the future. Results not based on scientific method and results have been debunked by mathematicians and
attributed to illicit data manipulation. Using the same methodology one can find statistically similar patterns
in a Hebrew translation of War and Peace.

27. Word chain checker. Write a program that reads in a list of words from the command line and prints true
if they form a word chain and false otherwise. In a word chain, adjacent words must differ in exactly one
letter, e.g., HEAL, HEAD, DEAD, DEED, DEER, BEER.

28. Haiku detector. Write a program that reads in text from standard input and checks whether it forms a
haiku. A haiku consists of three lines containing the correct number of syllables (5, 7, and 5, respectively).
For the purpose of this problem, define a syllable to be any contiguous sequence of consecutive vowels (a,
e, i, o, u, or y). According to this rule, haiku has two syllables and purpose has three syllables. Of course,
the second example is wrong since the e in purpose is silent.

29. ISBN numbers. Write a program to check whether an ISBN number is valid. Recall check digit. An ISBN
number can also have hyphens inserted at arbitrary places.

30. Longest common prefix. Write a function that takes two input string s and t, and returns the longest
common prefix of both strings. For example, if s = ACCTGAACTCCCCCC and t = ACCTAGGACCCCCC, then
the longest common prefix is ACCT. Be careful if s and t start with different letters, or if one is a prefix of
the other.

31. Complemented palindrome detector. In DNA sequence analysis, a complemented palindrome is a string
equal to its reverse complement. Adenine (A) and Thymine (T) are complements, as are Cytosine (C) and
Guanine (G). For example, ACGGT is a complement palindrome. Such sequences act as transcription-binding
sites and are associated with gene amplification and genetic instability. Given a text input of N characters,
find the longest complemented palindrome that is a substring of the text. For example, if the text is
GACACGGTTTTA then the longest complemented palindrome is ACGGT. Hint: consider each letter as the
center of a possible palindrome of odd length, then consider each pair of letters as the center of a possible
palindrome of even length.

32. DNA validation. Write a function that takes as input a string and returns true if it consists entirely of A, C,
G, and T's, and false otherwise.

33. Highest density C+G region. Given a DNA string s of A, C, T, G and a parameter L, find a substring of s
that contains the highest ratio of C + G characters among all substrings that have at least L characters.

34. DNA to RNA. Write a function that takes a DNA string (A, C, G, T) and returns the corresponding RNA
string (A, C, G, U).

35. DNA complement. Write a function that takes as input a DNA string (A, C, G, T) and returns the
complementary base pairs (T, G, C, A). DNA is typically found in a double helix structure. The two
complementary DNA strands are joined in a spiral structure.

36. Circular shifts. Application: computational biology. A string s is a circular shift of a string t if its characters
can be circularly shifted to the right by some number of positions, e.g., actgacg is a circular shift of
tgacgac, and vice versa. Write a program that checks whether one string s is a circular shift of another t.
Hint: it's a one liner with indexOf and string concatenation.

37. Substring of a circular shifts. Write a function that takes two strings s and t, and returns true if s is a
substring of a circular string t, and false otherwise. For example gactt is a substring of the circular string
tgacgact.

38. DNA to Protein. A protein is a large molecule (polymer) consisting of a sequence of amino acids
(monomers). Some examples of proteins are: hemoglobin, hormones, antibodies, and ferritin. There are 20
different amino acids that occur in nature. Each amino acid is specified by three DNA base pairs (A, C, G, or
T). Write a program to read in a protein (specified by its base pairs) and converts it into a sequence of
amino acids. Use the following table. For example, the amino acid Isoleucine (I) is encode by ATA, ATC, or
ATT.

Rosetta stone of life.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA ter TGA ter
TTG Leu TCG Ser TAG ter TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Amino acid Abbrev Abbrev Amino acid Abbrev Abbrev

Alanine ala A Lleucine leu L

Arginine arg R Lysine lys K

Asparagine asn N Methionine met M

Aspartic Acid asp D Phenylalanine phe F

Cysteine cys C Proline pro P

Glutamic Acid glu E Serine ser S

Glutamine gln Q Threonine thr T

Glycine gly G Tryptophan trp W

Histidine his H Tyrosine tyr Y

Isoleucine ile I Valine val V

39. Counter. Write a program that reads in a decimal string from the command line (e.g., 56789) and starts
counting from that number (e.g., 56790, 56791, 56792). Do not assume that the input is a 32 or 64 bit
integer, but rather an arbitrary precision integer. Implement the integer using a String (not an array).

40. Arbitrary precision integer arithmetic. Write a program that takes two decimal strings as inputs, and
prints out their sum. Use a string to represent the integer.

41. Boggle. The game of Boggle is played on a 4-by-4 grid of characters. There are 16 dice, each with 6 letters
on the them. Create a 4-by-4 grid, where each die appears in one of the cells at random, and each die
displays one of the 6 characters at random.

FORIXB MOQABJ GURILW SETUPL CMPDAE ACITAO SLCRAE ROMASH
NODESW HEFIYE ONUDTK TEVIGN ANEDVZ PINESH ABILYT GKYLEU

42. Generating cryptograms. A cryptogram is obtained by scrambling English text by replacing each letter
with another letter. Write a program to generate a random permutation of the 26 letters and use this to
map letters. Give example: Don't scramble punctuation or whitespace.

43. Scrabble. Write a program to determine the longest legal Scrabble word that can be played? To be legal,
the word must be in The Official Tournament and Club Wordlist (TWL98), which consists of all 168,083
words between 2 and 15 letters in TWL98. The number of tiles representing each letter are given in the
table below. In addition, there are two blanks which can be used to represent any letter.

a b c d e f g h i j k l m n o p q r s t u v w x y z -
9 2 2 4 12 2 3 2 9 1 1 4 2 6 8 2 1 6 4 6 4 2 2 1 2 1 2

44. Soundex. The soundex algorithm is a method of encoding last names based on the way it sounds rather
than the way it is spelled. Names that sound the same (e.g., SMITH and SMYTH) would have the same
soundex encoding. The soundex algorithm was originally invented to simplify census taking. It is also used
by genealogists to cope with names with alternate spellings and by airline receptionists to avoid
embarrassment when later trying to pronounce a customer's name.

Write a program Soundex.java that reads in two lowercase strings as parameters, computes their soundex,
and determines if they are equivalent. The algorithm works as follows:

a. Keep the first letter of the string, but remove all vowels and the letters 'h', 'w', and 'y'.
b. Assign digits to the remaining letter using the following rules:

1: B, F, P, V
2: C, G, J, K, Q, S, X, Z
3: D, T
4: L
5: M, N
6: R

c. If two or more consecutive digits are the same, delete all of the duplicates.
d. Convert the string to four characters: the first character is the first letter of the original string, the

remaining three characters are the first three digits in the string. Pad the string with trailing 0's if
there are not enough digits; truncate it if there are too many digits.

45. Longest word. Given a dictionary of words and a starting word s, find the longest word that can be formed,
starting at s, and inserting one letter at a time such that each intermediate word is also in the dictionary.
For example, if the starting word is cal, then the following is a sequence of valid words coal, coral,
choral, chorale. Reference.

46. Phone words. Write a program PhoneWords.java that takes a 7 digit string of digits as a command line
input, reads in a list of words from standard input (e.g., the dictionary), and prints out all 7-letter words (or
3-letter words followed by 4-letter words) in the dictionary that can be formed using the standard phone
rules, e.g., 266-7883 corresponds to compute.

0: No corresponding letters
1: No corresponding letters
2: A B C
3: D E F
4: G H I
5: J K L
6: M N O
7: P Q R S
8: T U V
9: W X Y Z

47. Rot13. Rot13 is a very simple encryption scheme used on some Internet newsgroups to conceal potentially
offensive postings. It works by cyclically shifting each lowercase or uppercase letter 13 positions. So, the
letter 'a' is replaced by 'n' and the letter 'n' is replaced by 'a'. For example, the string "Encryption" is
encoded as "Rapelcgvba." Write a program ROT13.java that reads in a String as a command line parameter
and encodes it using Rot13.

48. Longest Rot13 word. Write a program that reads in a dictionary of words into an array and determines the
longest pair of words such that each is the Rot13 of the other, e.g., bumpily and unfiber.

49. Thue-Morse weave. Recall the Thue-Morse sequence from Exercises in Section 2.3. Write a program
ThueMorse.java that reads in a command line input N and plots the N-by-N Thue-Morse weave in turtle
graphics. Plot cell (i, j) black if the ith and jth bits in the Thue-Morse string are different. Below are the
Thue-Morse patterns for N = 4, 8, and 16.

Because of the mesmerizing non-regularity, for large N, your eyes may have a hard time staying focused.
50. Repetition words. Write a program Repetition.java to read in a list of dictionary words and print out all

words for which each letter appears exactly twice, e.g., intestines, antiperspirantes, appeases, arraigning,
hotshots, arraigning, teammate, and so forth.

51. Text twist. Write a program TextTwist.java that reads in a word from the command line and a dictionary of
words from standard input, and prints out all words of at least four letters that can be formed by
rearranging a subset of the letters in the input word. This forms the core of the Yahoo game Text Twist.
Hint: create a profile of the input word by counting the number of times each of the 26 letters appears.
Then, for each dictionary word, create a similar profile and check if each letter appears at least as many
times in the input word as in the dictionary word.

52. Word frequencies. Write a program (or several programs and use piping) that reads in a text file and
prints out a list of the words in decreasing order of frequency. Consider breaking it up into 5 pieces and use
piping: read in text and print the words one per line in lowercase, sort to bring identical words together,
remove duplicates and print count, sort by count.

53. VIN numbers. A VIN number is a 17-character string that uniquely identifies a motor vehicle. It also
encodes the manufacturer and attributes of the vehicle. To guard against accidentally entering an incorrect
VIN number, the VIN number incorporates a check digit (the 9th character). Each letter and number is
assigned a value between 0 and 9. The check digit is chosen so to be the weighted sum of the values mod
11, using the symbol X if the remainder is 10.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 - 1 2 3 4 5 - 7 - 9 2 3 4 5 6 7 8 9

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10 11 12 13 14 15 16 17
 8 7 6 5 4 3 2 10 0 9 8 7 6 5 4 3 2

For example the check digit of the partial VIN number 1FA-CP45E-?-LF192944 is X because the weighted
sum is 373 and 373 mod 11 is 10.

 1 F A C P 4 5 E X L F 1 9 2 9 4 4
 1 6 1 3 7 4 5 5 - 3 6 1 9 2 9 4 4
 8 7 6 5 4 3 2 10 - 9 8 7 6 5 4 3 2
--
 8 42 6 15 28 12 10 50 - 27 48 7 54 10 36 12 8

Write a program VIN.java that takes a command line string and determines whether or not it is a valid VIN
number. Allow the input to be entered with upper or lower case, and allow dashes to be inserted. Do
thorough error checking, e.g., that the string is the right length, that no illegal characters are used (I, O, Q),
etc.

54. Music CDs. Screen-scrape MusicBrainz to identify information about music CDs.
55. Pig Latin. Pig Latin is a fun secret language for young children. To convert a word to Pig Latin:

If it begins with a vowel, append "hay" to the end. At the beginning of a word, treat y as a vowel
unless it is followed by a vowel.
If it begins with a sequence of consonants, move the consonants to the end, then append "ay". Treat
a u following a q as a consonant.

For example, "input" becomes "input-hay", "standard" becomes "andard-stay", "quit" becomes "it-quay".
Write a program PigLatinCoder.java that reads in a sequence of words from standard input and prints
them to standard output in Pig Latin. Write a program PigLatinDecoder.java that reads in a sequence of
words encoded in Pig Latin from standard input and prints the original words out in.

56. Rotating drum problem. Applications to pseudo-random number generators, computational biology,
coding theory. Consider a rotating drum (draw picture of circle divided into 16 segments, each of one of two
types - 0 and 1). We want that any sequence of 4 consecutive segments to uniquely identify the quadrant of
the drum. That is, every 4 consecutive segments should represent one of the 16 binary numbers from 0000
to 1111. Is this possible? A de Bruijn sequence of order n is a shortest (circular) string such that every

sequence of n bits appears as a substring at least once. For example, 0000111101100101 is a de Bruijn
sequence of order 4, and all 2^4 possible 4-bit sequence (0000, 0001, ..., 1111) occur exactly once. Write a
program DeBruijn.java that reads in a command line parameter n and prints out an order n de Bruijn
sequence. Algorithm: start with n 0's. Append a 1 if the n-tuple that would be formed has not already
appeared in the sequence; append a 0 otherwise. Hint: use the methods String.indexOf and
String.substring.

57. Ehrenfecucht-Mycielski sequence. The Ehrenfecucht-Mycielski sequence in a binary sequence that starts
with "010". Given the first n bits b0, b1, ..., bn-1, bn is determined by finding the longest suffix bj, bj+1, ...,
bn-1 that occurs previously in the sequence (if it occurs multiple times, take the last such occurrence). Then,
bn is the opposite of the bit that followed the match.
0100110101110001000011110110010100100111010001100000101101111100. Use substring and
lastIndexOf.

58. Luminance and chrominance. Decompose a picture into its monochrome luminance Y = .299 r + .587 g
+ .114 b , chrominance I = .596 r -.274 g -.322 b, and chrominance Q = .211 r - .523 g + .312 b. Plot all 3
images.

59. Flip horizontally. Write a program FlipX.java that takes a command line argument which is the name of a
JPG or PNG file, displays it in a window, flips the image horizontally, and displays the resulting image in the
window. We illustrate using standard computer graphics test images - baboon.jpg and peppers.jpg.

60. Color separation. Write a program ColorSeparation.java that takes the name of an image file as a
command line input, and creates three images, one that contains only the red components, one for green,
and one for blue.

61. Saturation. saturation.
62. Brighten. Write a program Brighter.java that takes a command line argument which is the name of a JPG

or PNG file, displays it in a window, and display a second version which is a brighter copy. Use the Color
method brighter(), which return a brighter version of the invoking color.

63. Rotate. Write a program Rotation.java that rotates the image 30 degrees counterclockwise. reference. We
check if the pre-image is out-of-bounds.

theta = pi / 6 radians
ii = -(i - i0)*cos(theta) + (j - j0)*sin(theta) + i0
jj = (i - i0)*sin(theta) + (j - j0)*cos(theta) + j0

Here (i0, j0) is the center of the image and theta is the angle of rotation (counterclockwise). Important idea
= sampling.

64. Swirl. Write a program Swirl.java that applies a swirl filter. Similar to rotation filter, except that angle
changes as a function of distance to the center.

r = sqrt((i - i0)^2 + (j - j0)^2)
theta = r * pi / 256
ii = -(i - i0)*cos(theta) + (j - j0)*sin(theta) + i0
jj = (i - i0)*sin(theta) + (j - j0)*cos(theta) + j0

65. Wave. Write a program Wave.java that produces a wave effect.

ii = i
jj = j + 20*sin(2*pi*j/128)

66. Glass filter. Write a program Glass.java that takes a command line argument which is the name of a JPG or
PNG file, displays it in a window, applies a "glass filter", and displays the resulting image in the window. This
effect is achieved by setting pixel (i, j) to be the color of a random neighboring pixel (within Manhattan
distance 5). This has the effect of blurring the images as well.

67. Slide show. Write a program to display a sequence of images in a slide show (one every two seconds),
using a fade effect (or some other transition effect) between pictures.

68. Tile. Program Tile.java takes a command line argument which is the name of a JPG or PNG file, two
command line integers M and N, and creates an M-by-N tiling of the picture. Below is a 2-by-3 tiling of the
baboon picture.

69. Edge detection. Goal: form mathematical model of some feature of the image. To accomplish this, we
want to detect edges or lines. An edge is a area of a picture with a strong contrast in intensity from one
pixel to the next. Edge detection is a fundamental problem in image processing and computer vision. The
Sobel method is a popular edge detection technique. We assume that the image is grayscale. (If not, we can
convert by taking the average of the red, green, and blue intensities.) For each pixel (i, j) we calculate the
edge strength by computing two 3-by-3 convolution masks. This involves taking the grayscale values of the
nine pixels in the 3-by-3 neighborhood centered on (i, j), multiplying them by the corresponding weight in
the 3-by-3 mask, and summing up the products.

-1 0 +1 +1 +2 +1
-2 0 +2 0 0 0
-1 0 +1 -1 -2 -1

This produces two values Gx and Gy. In the output picture, we color the pixel (i, j) according to the
grayscale value 255 - Sqrt(Gx*Gx + Gy*Gy). There are various ways to handle the boundary. For simplicity,
we ignore this special case and color the boundary pixels black. Program EdgeDetector.java takes the name
of an image as a command line input and applies the Sobel edge detection algorithm to that image.

Web exercises

1. Painter's and printer's color triangles. Create the following two images. The primary hues of the
painter's triangle are red, green, and blue; the primary hues of the printer's triangle are magenta, cyan, and
yellow.

2. Entropy. The Shannon entropy measures the information content of an input string and plays a cornerstone
role in information theory and data compression. It was proposed by Claude Shannon in 1948, borrowing
upon the concept in statistical thermodynamics. Assuming each character i appears with probability pi, the
entropy is defined to be H = - sum pi log2 pi, where the contribution is 0 if pi = 0. Compute entropy of DNA
sequence.

a. Write a program to read in a ASCII text string from standard input, count the number of times each
ASCII character occurs, and compute the entropy, assuming each character appears with the given
probabilities.

b. Repeat part (a) but use Unicode.
3. wget. Write a program Wget.java that takes the name of a URL as a command-line argument and saves the

referenced file using the same filename.
4. Capitalize. Write a program Capitalize.java that reads in text from standard input and capitalizes each word

(make first letter uppercase and make the remaining letters lowercase).
5. Shannon's entropy experiment. Recreate Shannon's experiment on the entropy of the English language

by listing a number of letters in a sentence and prompting the user for the next symbol. Shannon concluded
that there is approximately 1.1 bits of info per letter in the alphabet.

6. Scrambled text. Some cognitive psychologists believe that people recognize words based on their shape.

to a rscheearch at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the
olny iprmoetnt tihng is taht frist and lsat ltteer is at the rghit pclae. The rset can be a toatl mses and
you can sitll raed it wouthit porbelm. Tihs is bcuseae we do not raed ervey lteter by itslef but the wrod
as a wlohe.

Write a program that reads in text from standard input and prints the text back out, but shuffles the internal
letters in each word. Write and use a function scramble() that takes as input a string and returns another
string with the internal letters in random order. Use the shuffling algorithm in Shuffle.java for the shuffling
part.

7. Date format conversion. Write a program to read in a data of the form 2003-05-25 and convert it to
5/25/03.

8. interesting English words
9. Two-stroke apparent motion. Create the optical illusion of two-stroke apparent motion or four-stroke

10. De Valois' checkerboard. Create the optical illusion of De Valois' checkerboard or one of the other optical
illusions from the Shapiro Perception Lab.

More stuff. Here's a FAQ for manipulating pixels in Java. Here's a list of more possible transformations for
monochrome images [pdf].

brighten: brighten image by multiplying by a constant.

invert: create a negative by inverting each pixel.
rotate
addGreen: add more green

removeRed: remove red-eye?

Floyd-Steinberg dithering
cross-dissolving (blend images via convex combinations of pixels)
contrast: compute mean luminance L = 0.30r + 0.59g + 0.11b for each pixel, and scale deviation from L for
each pixel component.
color quantization

swirl (iterate over destination pixels and compute inverse map to determine color, possibly by taking
nearest point or bilinear)
scan-line flood fill
draw line, curve, ellipse using Breshenam / midpoint method
see here for more ideas

Miasma animation using MemoryImageSource.

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

3.2 CREATING DATA TYPES

This section under major construction.

In principle, we could write all of our programs using only the eight built-in primitive
types, but, it is much more convenient to write programs at a higher level of
abstraction. Accordingly, a variety of data types are built into the Java language and
libraries. Still, we certainly cannot expect Java to contain every conceivable data type
that we might ever wish to use, so we need to be able to define our own.

Basic elements of a data type. To illustrate the process of implementing a data type
in a Java class, we discuss each component for the Charge.java data type of Section
3.1. Every data-type implementation that you will develop has the same basic
ingredients as this simple example.

API. The applications program interface is the contract with all clients and
therefore the starting point for any implementation:

To implement Charge, we need to define the data type values, then implement
the constructor that creates objects having specified values, and then implement
two methods that can manipulate those values.
Class. The data-type implementation is a Java class. As usual, we put the code
for a data type in a file with the same name as the class, followed by the .java
extension. We have been implementing Java classes, but the classes that we have
been implementing do not have the key features of data types: instance variables,
constructors, and instance methods. Instance variables are similar to the variables
that we have been using in our program; constructors and methods are similar to
functions, but their effect is quite different. Each of these building blocks is also
qualified by an access modifier. We next consider these four concepts, with
examples.
Access modifiers. We designiate every instance variable and method within a class
(and the class itself) as either public (this entity is available to clients) or
private (this entity is not visible to clients). Our convention is to use public for
the constructors and methods in the API (since we are promising to provide them
to clients) and private for everything else.

Instance variables. To write code for the methods that manipulate data type
values, the first thing that we need is to declare variables that we can use to refer
to the values in code. These variables can be any type of data. We declare the
types and names of these instance variables in the same way as we declare local
variables: for Charge, we use three double values, two to describe the charge's
position in the plane and one to describe the amount of charge. There is a critical
distinction between instance variables and the local variables within a static
method or a block that you are accustomed to using: there is just one value
corresponding to each local variable name, but there are numerous values
corresponding to each instance variable (one for each object that is an instance of
the data type).

Constructors. A constructor creates an object and provides a reference to that
object. Java automatically invokes a constructor when a client program uses the
keyword new. Java does most of the work: our code only needs to initialize the
instance variables to meaningful values. Constructors always share the same

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

name as the class. To the client, the combination of new followed by a constructor
name (with argument values enclosed within parentheses) is the same as a
function call that returns a value of the corresponding type. A constructor
signature has no return type because constructors always return a reference to an
object of its data type. Each time that a client invokes a constructor) Java
automatically

allocates memory space for the object
invokes the constructor code to initialize the data type values
returns a reference to the object

The constructor in Charge is typical: it initializes the data type values with the
values provided by the client as arguments.

Instance methods. To implement instance methods, we write code that is
precisely like the code that we learned in Chapter 2 to implement static methods
(functions). Each method has a signature (which specifies its return type and the
types and names of its parameter variables) and a body (which consists of a
sequence of statements, including a return statement that provides a value of the
return type back to the client). When a client invokes a method, the parameter
values are initialized with client values, the lines of code are executed until a
return value is computed, and the value is returned to the client, with the same
effect as if the method invocation in the client were replaced with that value. All of
this action is the same as for static methods, but there is one critical distinction
for instance methods: they can perform operations on instance values.

Variable names in methods. Accordingly, code in instance methods uses three
kinds of variables:

parameter variables
local variables
instance variables

The first two of these are familiar: parameter variables are specified in the
method signature and initialized with client values when the method is called, and
local variables are declared and initialized within the method body, just as for
static methods. The scope of parameter variables is the entire method; the scope
of local variables is the block where they are defined. Instance variables are
completely different: they hold data-type values for objects in a class, and their
scope is the entire class. How do we specify which object's values we want to use?
If you think for a moment about this question, you will recall the answer. Each
object in the class has a value: the code in a class method refers to the value for
the object that was used to invoke the method. When we write
c1.potentialAt(x, y), the code in potentialAt() is referring to the instance
variables for c1. The code in potentialAt() uses all three kinds of variable
names:

Summary. Here is a diagram illustrating all of the basic components that you need to
understand to be able to build data types in Java.

Stopwatch. Stopwatch.java implements the following API:

It is a stripped-down version of an old-fashioned stopwatch. When you create one, it
starts running, and you can ask it how long it has been running by invoking the method
elapsedTime().

Histogram. Data-type instance variables can be arrays. Histogram.java maintains an
array of the frequency of occurrence of integer values in a given interval [0, N) and uses
StdStats.java to display a histogram of the values, controlled by this API:

Turtle graphics. Turtle.java is a mutable type for turtle graphics.

Ngon. Program Ngon.java takes a command-line argument N and draws a regular
N-gon.

By taking N to a sufficiently large value, we obtain a good approximation to a
circle. In Cartesian geometry, a circle is the locus of points at distance r from a
fixed center point (a, b). Declarative definition describes points on a circle.

(x - a)^2 + (y - b)^2 = r^2

In Differential geometry, a circle is shape of constant curvature (how much we
turn for each step we move). Imperative definition tells us how to draw it.

REPEAT
 GO FORWARD 1 UNIT
 TURN LEFT 1 UNIT

Koch curves. The Koch curve of order 0 is a line segment. To draw a Koch curve of

order n in turtle graphics
Draw a Koch curve of order n-1
Rotate 60° counterclockwise
Draw a Koch curve of order n-1
Rotate 120° clockwise
Draw a Koch curve of order n-1
Rotate 60° counterclockwise
Draw a Koch curve of order n-1

Below are the Koch curves of order 0, 1, 2, and 3.

Program Koch.java reads in a command line parameter N and plots an order N
Koch snowflake using our graphics library. It uses some high school geometry to
calculate what size to draw the line segments and where to start drawing.

Historical context: In 1872 Karl Weierstrass made the shocking discovery a
function that is everywhere continuous but nowhere differentiable. Later this
would become one of the characteristic properties of fractals. Helge von Koch
wanted to find a less abstract example. In 1904, von Koch described the
geometric construction, which we now refer to as the Koch curve. Von Koch
proved that, in the limit, the Koch snowflake is a curve of infinite length, but it
does not have a tangent at any point. From this, he proved that there exist
continuous functions f(t) and g(t) such that the Koch snowflake is (f(t), g(t)) for 0
≤ t ≤ 1, but f(t) and g(t) are nowhere differentiable.

Spira mirabilis. Spiral.java creates a logarithmic spiral (aka equiangular spiral or
growth spiral). Biological principle: as size increases, shape is unaltered. Radius
grows exponentially with the angle.

The logarithmic spiral was first described by Descartes in 1638. Bernouilli was so
amazed by its many properties that he named it Spira mirabilis (miraculous or
marvelous spiral) and asked to have it engraved on his tombstone (but an
Archimedean spiral was put there instead). Shape arises in nature: chambers of a
nautilus shell, arms of tropical hurricanes, arms of spiral galaxy, approach of a
hawk to its prey, a charged particle moving in a uniform magnetic field,
perpendicular to that field.

Brownian motion. Imagine a disoriented turtle (again following its standard
alternating turn and step regimen) turns in a random direction before each step.
DrunkenTurtle.java plots the path followed by such a turtle. In 1827, the botanist
Robert Brown observed through a microscope that pollen grains immersed in
water seemed to move about in just such a random fashion, which later became
known as Brownian motion and led to Albert Einstein???s insights into the atomic
nature of matter. DrunkenTurtles.java plots many such turtles, all of whom
wander around.

Turtle graphics was originally developed by Seymour Papert at MIT in the 1960s as part
of an educational programming language, Logo. But turtle graphics is no toy, as we
have just seen in numerous scientific examples. Turtle graphics also has numerous
commercial applications. For example, it is the basis for PostScript, a programming
language for creating printed pages that is used for most newspapers, magazines, and
books.

Complex numbers. A complex number is a number of the form x + iy, where x and y
are real numbers and i is the square root of -1. The number x is known as the real part
of the complex number, and iy is known as the imaginary part. Complex numbers are a
quintessential mathematical abstraction: whether or not one believes that it makes
sense physically to take the square root of -1, complex numbers help us understand the
natural world. They are extensively used in applied mathematics and play an essential
role in many branches of science and engineering. They are used to model physical
systems of all sorts, from circuits to sound waves to electromagnetic fields. These
models typically require extensive computations involving manipulating complex
numbers according to well-defined arithmetic operations, so we want to write computer
programs to do the computations. In short, we need a new data type.

Developing a data type for complex numbers is a prototypical example of the value of
object-oriented programming. No programming language can provide implementations
of every mathematical abstraction that we might need, but the ability to implement data
types give us not just the ability to write programs to easily manipulate abstractions like
complex numbers, polynomials, vectors, matrices, and many other basic tools that have
been developed by mathematicians over the past several centuries, but also the
freedom to think in terms of new abstractions.

The basic operations on complex numbers are to add and multiply them by applying the
commutative, associative, and distributive laws of algebra (along with the identity i2 -
1); and to compute the magnitude, as follows:

addition: (x+iy) + (v+iw) = (x+v) + i(y+w).
multiplication: (x + iy) * (v + iw) = (xv - yw) + i(yv + xw).
magnitude: |x + iy| = sqrt(x^2 + y^2)
real and imaginary parts: re(x + iy) = x, and im(x + iy) = y

For example, if a = 3 + 4i, and b = -2 + 3i, then a + b = 1 + 7i, a * b = -18 + i, and
|a| = 5.

With these basic definitions, the path to implementing a data type for complex numbers
is clear. We start with an API that specifies the data-type operations:

Program Complex.java is an immutable class that implements this API. It has all of the
same components as did Charge (and every Java data type implementation): instance
variables (re and im), a constructor, instance methods, and a test client.

The code that implements the arithmetic methods makes use of a new mechanism for
accessing object values:

Accessing values in objects of this type. Both plus() and times() need to
access values in two objects: the object passed as a parameter and the object
used to invoke the method. If the method is called with a.plus(b). we can
access the values of a using the instance variable names re and im, as usual, but
to access the values of of b we use the code b.re and b.im. However, since we
keep the instance variables private, you cannot access directly instance
variables in another class (but you can access any object's instance variables
wihin the same class). This policy reduces flexibility but improves design when
developing modular programs.
Chaining. Observe the manner in which main() chains two method calls into one
compact expression: the expression z.times(z).plus(z0) evaluates to z2 + z0.
This usage is convenient because we do not have to invent a variable name for
the intermediate value. If you study the expression, you can see that there is no
ambiguity: moving from left to right, each method returns a reference to a
Complex object, which is used to invoke the next method. If desired, we can use
parentheses to override the precedence order (for example,
z.times(z.plus(z0)) evaluates to z(z + z0)).

Creating and returning new objects. Observe the manner in which plus() and
times() provide return values to clients: they need to return a Complex value,
so they each compute the requisite real and imaginary parts, use them to create a
new object and then return a reference to that object. This arrangement allow
clients to manipulate complex numbers by manipulating local variables of type
Complex.

Mandelbrot set. The uses complex numbers to plot a gray scale version of the The
Mandelbrot set is a specific set of complex numbers with many fascinating properties. It
is a fractal pattern that is related to the Barnsley fern, the Sierpinski triangle, the
Brownian bridge, and oth- er recursive (self-similar) patterns and programs that we
have seen in this book. Patterns of this kind are found in natural phenomena of all sorts,
and these models and programs are very important in modern science. The set of points
in the Mandelbrot set cannot be described by a single mathematical equation. Instead, it
is defined by an algorithm, and therefore a perfect candidate for a Complex client: we
study the set by writing programs to plot it.

The rule for determining whether or not a complex number z0 is in the Mandelbrot set is
simple: Consider the sequence of complex numbers z0, z1, z2, ..., zi, ..., where zi+1 =

(zi)2 + z0. For example, the following table shows the first few entries in the sequence
corresponding to z0 = 1 + i:

Now, if the sequence |zi| diverges to infinity, then z0 is not in the Mandelbrot set; if the
sequence is bounded, then z0 is in the Mandelbrot set. For many points, the test is
simple; for many other points, the test requires more computation, as indicated by the
examples in the following table:

Is a complex number in the set? In some cases, we can prove whether or not numbers
are in the set: for example, 0 + 0i is certainly in the set (since the magnitude of all the

numbers in its sequence is 0) and 2 + 0i is certainly not in the set (since its sequence
dominates the powers of 2, which diverges). Given a complex point, we can compute
the terms at the beginning of its sequence, but may not be able to know for sure that
the sequence remains bounded. Remarkably, there is a test that tells us for sure that a
point is not in the set: if the magnitude of any number in the sequence ever gets to be
greater than 2 (like 3 + 0i), then the sequence will surely diverge.

Plotting the Mandelbrot set. A visual representation of the
Mandelbrot set is easy to define. Just as we plot a real function
by sampling points in an interval, we plot the Mandelbrot set
by sampling complex points. Each complex number x + iy
corresponds to a point (x, y) in the plane so we can plot the
results as follows: for a specified resolution N, we define a
regularly spaced N-by-N pixel grid within a specified square
and draw a black pixel if the corresponding point is in the
Mandelbrot set and a white pixel if it is not. This plot is a
strange and wondrous pattern, with all the black dots
connected and falling roughly within the 2-by-2 square
centered on the point -1/2 + 0i. Large values of N will produce
higher resolution images, at the cost of more computation.
Looking closer reveals self-similarities throughout the plot. For
example, the same bulbous pattern with self-similar
appendages appears all around the contour of the main black
cardioid region. When we zoom in near the edge of the
cardioid, tiny self-similar cardioids appear!

Program Mandelbrot.java uses this test to plot a visual representation of the Mandelbrot
set. Since our knowledge of the set is not quite black-and-white, we use grayscale in
our visual representation. It is based on the following function (a Complex client), which
computes the sequence starting at a given number and returns the number of iterations
for which the magnitude stays less than 2, up to a given maximum:

public static int mand(Complex z0, int d) {
 Complex z = z0;
 for (int t = 0; t < d; t++) {
 if (z.abs() >= 2.0) return t;
 z = z.times(z).plus(z0);
 }
 return d;
}

For each pixel, the method main() in Mandelbrot computes the point z0 corresponding
to the pixel and computes 255 - mand(z0, 255) to represent the grayscale value of the
pixel. Any pixel that is not black corresponds to a point that we know to be not in the
Mandelbrot set because the magnitude of the numbers in its sequence grew past 2 (and
therefore will go to infinity); the black pixels (grayscale value 0) correspond to points
that we assume to be in the set because the magnitude stayed less than 2 for 255
iterations, but we do not necessarily know for sure. The complexity of the images that
this simple program produces is remarkable, even when we zoom in on a tiny portion of
the plane. For even more dramatic pictures, we can use use color (see exercise 3.2.33).

Q + A

Q. Do instance variables have initial values that we can depend upon?

A. Yes. They are automatically set to 0 for numeric types, false for the boolean type,
and the special value null for all reference types.

Q. What is null?

A. It is a literal value that refers to no object. Invoking a method using the null
reference is meaningless and results in a NullPointerException.

Q. Can we initialize instance variables to other values when declaring them?

A. Yes, you can initialize instance variables using the same conventions as you have
been using for initializing local variables. Each time an object is created by a client with
new, its instance variables are initialized with those same values, then the constructor is
called.

Q. Must every class have a constructor?

A. Yes, but if you do not specify a constructor, Java provides a default (no-argument)
constructor automatically. When the client invokes that constructor with new, the
instance variables are initialized as usual. If you do specify a constructor, the default
no-argument constructor disappears.

Q. Suppose I do not include a toString() method. What happens if I try to print an
object of that type with StdOut.println()?

A. The printed output is an integer: the object's hash code. Most objects that do not
have an explicit toString() implementation also do not have an explicit hashCode()
implementation. The default value is "typically implemented by converting the internal
address of the object into an integer. "

Q. Can I have a static method in a class that implements a data type?

A. Of course. All of our classes have main(). But it is easy to get confused when static
methods and instance methods are mixed up in the same code. For example, it is
natural to consider using static methods for operations that involve multiple objects
where none of them naturally suggests itself as the one that should invoke the method.
For example, we say z.abs() to get |z|, but saying a.plus(b) to get the sum is
perhaps not so natural. Why not b.plus(a)? An alternative is to define a static method
within Complex, like

public static Complex plus(Complex a, Complex b) {
 return new Complex(a.re + b.re, a.im + b.im);
}

but we avoid such usage so that we can write

z = z.times(z).plus(z0).

instead of

z = Complex.plus(Complex.times(z, z), z0)

Q. These computations with plus() and times() seem rather clumsy. Is there some
way to use symbols like * and + in expressions involving objects where they make
sense, like Complex and Vector, so that we could write expressions like z = z * z +
z0 instead?

A. Some languages (notably C++) support this feature, which is known as operator
overloading, but Java does not do so (except that there is language support for
overloading + with string concatenation). As usual, this is a decision of the language
designers that we just live with, but many Java programmers do not consider this to be
much of a loss. Operator overloading makes sense only for types that represent numeric
or algebraic abstractions, a small fraction of the total, and many programs are easier to
understand when operations have descriptive names such as plus and times.

Q. Are there other kinds of variables besides parameter, local, and instance variables in

a class?

A. If you include the keyword static in a class declaration (outside of any type) it
creates a completely different type of variable, known as a static variable. Like instance
variables, static variables are accessible to every method in the class; however, they are
not associated with any object. In older programming languages, such variables are
known as global variables, because of their global scope. In modern programming, we
focus on limiting scope and therefore rarely use such variables.

Q. Is there a relationship between the Vector in this section and the Vector class in
the Java library?

A. No. We use the name because the term vector properly belongs to phyiscs and linear
algebra.

Q. Mandlebrot creates hundreds of millions of Complex objects. Doesn't all that object-
creation overhead slow things down?

A. Yes, but not so much that we cannot generate our plots. Our goal is to make our
programs readable and easy to maintain - limiting scope via the complex number
abstraction helps us achieve that goal. You certainly could speed up Mandelbrot by
bypassing the complex number abstraction or by using a different implementation of
Complex.

Q. What does the error message "can't make a static reference to a non-static variable"
mean?

A.

public class Test {
 private static int M; // class variable
 private int N; // instance variable
 public static int getM() { return M; } // OK
 public static int getN() { return N; } // ERROR
}

Exercises

1. Why does program Bug1.java create a java.lang.NullPointerException
when executed?

public class Bug1 {
 private String s;
 public void Bug1() { s = "hello"; }
 public String toString() { return s; }
 public static void main(String[] args) {
 Bug1 x = new Bug1();
 StdOut.println(x);
 }
}

Answer: the programmer probably intended to make the no argument constructor
set the string to hello. However, it has a return type (void) so it is an ordinary
instance method instead of a constructor. It just happens to have the same name
as the class.

2. Why does program Bug2.java create a java.lang.NullPointerException
when executed?

3. Implement a data type Die for rolling a fair die, say with 6 sides. Include a
mutator method roll() and an accessor method value.

4. Implement a mutable data type LFSR for a linear feedback shift register.

5. Implement a mutable data type Counter.

6. Implement a mutable data type Odometer.

7. Implement a mutable data type StopWatch.

8. Implement a data type VotingMachine for tabulating votes. Include mutator
methods voteRepublican(), voteDemocrat(), and voteIndependent().
Include an accessor method getCount() to retrieve the total number of votes.

9. What happens when you try to compile and execute the following code fragment?

Student x;
StdOut.println(x);

Answer: it complains that x may not be initialized, and does not compile.

10. Suppose you want to add a constructor to Complex that takes one real argument
and initializes a complex object with that value. You write the following code

public void Complex(double real) {
 re = real;
 im = 0.0;
}

Why does the statement Complex c = new Complex(1.0) given a compiler
error? Answer: constructors do not have return types, not even void. So the code
above is actually a method named Complex not a constructor. Remove the
keyword void and it will work. This is a common gotcha.

11. What happens when you try to compile and execute the following code fragment?

Student[] students = new Student[10];
StdOut.println(students[5]);

Answer: it compiles and prints out null.

12. What is wrong with the following code fragment?

int N = 17;
Dog[] dogs = new Dog[N];
for (int i = 0; i < N; i++) {
 dog.bark();
 dog.eat();
}

Answer: it produces a NullPointerException because we forgot use new to
create each individual Dog object. To correct, add the following loop after the
array initialization statement.

for (int i = 0; i < N; i++)
 dogs[i] = new Dog();

13. What does the following code fragment print?

Complex c = new Complex(2.0, 0.0);
StdOut.println(c);
StdOut.println(c.mul(c).mul(c).mul(c));
StdOut.println(c);

14. Modify the toString method in Complex.java so that it prints 3 - i as 3 - i
instead of 3 + -i, and prints 3 as 3 instead of 3 + 0i.

15. What's wrong with the following code fragment that swaps the Student objects x

and y?

Student swap = new Student();
swap = x;
x = y;
y = swap;

Answer: First, the data type Student does not have a no-argument constructor.
If it did, then it would technically be correct, but the new Student() line is
unnecessary and wasteful. It allocates memory for a new student object, sets
swap equal to that memory address, then immediately sets swap equal to the
memory address of x. The allocated memory is no longer accessible. The following
version is correct.

Student swap = x;
x = y;
y = swap;

16. Add a method minus(Complex b) to Complex that takes a complex argument b
and returns the difference between the invoking object and b.

17. Add a method divides(Complex b) to Complex that takes a complex argument
b and returns the quotient of the invoking object divided by b.

18. Add a method conjugate() to Complex that returns the complex conjugate of
the invoking object.

19. Write a program RootsOfUnity.java that takes a command line argument N and
uses Complex to compute and print out the N Nth roots of unity.

20. Write a program to read in three real numbers a, b, and c and print out all roots
of ax2 + bx + c, including complex ones.

21. Find inputs to the Mandelbrot update formula that make it converge (z0 = 1/2 +
0i), cycle with a period of 1 (z0 = -2 + 0i), cycle with a period of 2 (z0 = -1 + 0i),
or stay bounded without converging (z0 = -3/2 + 0i).

22. Write a program ColorMandelbrot.java that plots a color version of the Mandelbrot
set. Read in a 256-by-3 array of color values from standar input into an array,
and then use the ith color if the Mandelbrot function takes i iterations. Use the
data file mandel.txt as an example.

-1.5 -1.0 2.0 2.0 0.10259 -0.641 0.0086 0.0086

23. Julia sets. The Julia set for a given complex number c is a set of points related to
the Mandelbrot function. Instead of fixing z and varying c, we fix c and vary z.
Those points z for which the modified Mandelbrot function stays bounded are in
the Julia set; those for which the sequence diverges to infinity are not in the set.
All points z of interest lie in the the 4-by-4 box centered at the origin. The Julia
set for c is connected if and only if c is in the Mandelbrot set! Write a program
ColorJulia.java that takes two command line parameters a and b, and plots a color
version of the Julia set for c = a + ib. Read in a 256-by-3 array of color values
from standar input into an array, and then use the ith color if the Julia function
takes i iterations. Use the data file mandel.txt as an example.

-1.25 0.00 -0.75 0.10

24. Point3D. Create a data type for points in 3 dimensional space. Include a
constructor that takes three real coordinates x, y, and z. Include methods
distance, distanceSquared, and distanceL1 for the Euclidean distance,
Euclidean distance squared, and the L1-distance.

25. Intervals. Create a data type Interval.java for intervals on the x-axis. An interval
is the set of points in the range [left, right]. Include methods for a constructor
(including a check that the left endpoint is no greater than the right endpoint) and
a method intersects so that a.intersects(b) returns true if the intervals a
and b intersect, and false otherwise.

26. Create a data type PhoneNumber.java that represents a US phone number. The
constructor should take three string arguments, the area code (3 decimal digits),
the exchange (3 decimal digits) and the extension (4 decimal digits). Include a
toString method that prints out phone numbers of the form (800) 867-5309.
Include a method so that p.equals(q) returns true if the phone numbers p and
q are the same, and false otherwise.

27. Redo PhoneNumber.java but implement it using three integer fields. Make the
constructor take three integer arguments. Comment on the advantages and
disadvantages of this approach over the string representation.

Answer: more efficient with time and memory. More hassle to handle leading 0s
correct in constructor and toString method.

28. Write a program to draw the field lines for a uniform field. Arrange N evenly-
spaced particles with charge e in a vertical column, and arrange N particles with
charge -e in a vertical column so that each charge on one side is lined up with a
corresponding charge on the other side. This simulates the field inside a plane
capacitor. What can you say about the resulting electric field? A. Almost uniform.

Creative Exercises

1. IP addresses. Create a data type for IPv4 (Internet Protocol, version 4)
addresses. An IP address is a 32-bit integer.

2. Dates. Create a data type Date that represents a date. You should be able to
create a new Date by specifying the month, day, and year. It should supports
methods to compute the number of days between two dates, return the day of the
week that a day falls on, etc.

3. Time bombs. UNIX represents the date with a signed integer measuring the
number of seconds since January 1, 1970. Write a client program to calculate
when this date will occur. Add a static method add(Date d, int days) to your
date data type that returns a new date which is the specified number of days after
the date d. Note that there are 86,400 seconds in a day.

4. Qubits. In quantum computing, a qubit plays the role of a bit. It is a complex
number a + bi such that |a + bi| = 1. Once we measure a qubit, it "decides" to be
a 1 with probability a2 and a 0 with probability b2. Any subsequent observations
will always yield the same value. Implement a data type Qubit that has a
constructor Qubit(a, b) and a boolean method observe that returns true or
false with the proscribed probabilities.

5. Biorhythms. A biorhythm is a pseudo-scientific profile of the three natural cycles
of your body: physical (23 days), emotional (28 days), and intellectual (31 days).
Write a program that takes six command line inputs M, D, Y, m, d, and y where
(M, D, Y) is the month (1-12), day (1-31), and year (1900-2100) of your birthday
and (m, d, y) is today's month, day, and year. It should then print out your
biorhythm on a scale of -1.0 to 1.0 according to the formula: sin (2 π age / cycle
length). Use the date data type created in the previous exercise.

6. Particle. Create a data type for elementary or composite particles (electron,
proton, quark, photon, atom, molecule). Each particle should have an instance
variable to store its name, its mass, its charge, and its spin (multiple of 1/2).

7. Quark. Quarks are the smallest known building blocks of matter. Create a data
type for quarks. Include a field for its type (up, down, charm, strange, top, or
bottom) and its color (red, green, or blue). The charges are +2/3, -1/3, +2/3,
-1/3, +2/3, -1/3, respectively. All have spin 1/2.

Diffusion of particles in a fluid. Simulate diffusion of particles in a fluid. See
BrownianParticle.java in Section 9.8.

8. Biorhythms. Plot your biorhythm in turtle graphics over a 6 week interval.
Identify critical days when your rhythm goes from positive to negative - according
to biorhythm theory, this is when you are most prone to accident, instability, and
error.

9. Vector3. Include normal vector operations for 3-vectors, including cross product.
The cross product of two vectors is another vector. a cross b = ||a|| ||b||
sin(theta) n, where theta is angle between a and b, and n is unit normal vector
perpendicular to both a and b. (a1, a2, a3) cross (b1, b2, b3) = (a2 b3 - a3 b2, a3
b1 - a1 b3, a1 b2 - a2 b1). Note that |a cross b| = area of the parallelogram with
sides a and b. Cross product arises in definition of torque, angular momentum and
vector operator curl.

10. Four-vector. Create a data type for four-vectors. A four-vector is a four-
dimensional vector (t, x, y, z) subject to Lorentz transformations. Useful in special
relativity.

11. Euclidean points. Create a data type EuclideanPoint.java that represents a
d-dimensional point. Include a method so that p.distanceTo(q) returns the
Euclidean distance between points p and q.

12. Vector field. A vector field associates a vector with every point in a Euclidean
space. Widely used in physics to model speed and direction of a moving object or
or strength and direction of a Newtonian force.

13. Soda machine. Create a data type SodaMachine that has methods
insertCoin(), getChange(), buy(), etc.

14. Months. Write a data type Month that represents one of the twelve months of the
year. It should have fields for the name of the month, the number of days in the
month, and the birthstone.

MONTH DAYS BIRTHSTONE

January 31 Garnet

February 28 Amethyst

March 31 Aquamarine

April 30 Diamond

May 31 Emerald

June 30 Alexandrite

July 31 Ruby

August 31 Peridot

September 30 Sapphires

October 31 Opal

November 30 Topaz

December 31 Blue Zircon

15. Chaos with Newton's method. The polynomial f(z) = z4 - 1 as 4 roots at 1, -1,
i, and -i. We can find the roots using Newton's method over the complex plane:
z_k+1 = z_k - f(z_k)/f'(z_k). Here f(z) = z4 - 1 and f'(z) = 4z3. The method
converges to one of the 4 roots depending on the starting point z_0. Choose each
point in the complex plane with coordinates between -1 and 1 and determine
which of the four roots it converges to, and plot the point either white, red, green,
or blue accordingly. If Newton's method doesn't converge after 100 iterations,
color the point black. Name your program NewtonChaos.java.

16. Gauss multiplication. Implement complex multiplication using only 3 floating
point multiplications (instead of 4). You may use as many as 5 floating point
additions. Answer: Gauss gave the following method to multiply (a + bi)(c + di).
Set x1 = (a + b)(c + d), x2 = ac, x3 = bd. Then the product is given by x + yi
where x = x2 - x3, y = x1 - x2 - x3.

17. Rational numbers. Create a data type Rational.java and BigRational.java for
positive rational numbers.

18. Rational numbers. Modify Rational.java to provide support for negative rationals
and zero.

19. Quaternions. In 1843, Sir William Hamilton discovered an extension to complex
numbers called quaternions. Quaternions extend the concept of rotation in three
dimensions to four dimensions. They are used in computer graphics, control
theory, signal processing, and orbital mechanics, e.g., command for spacecraft
attitude control systems. are related to Pauli spin matrices in physics. Create a
date type Quaternion.java to represent quaternions. Include operations for
adding, multiplying, inverting, conjugating, and taking the norm of quaternions.

A quaternion can be represented by a 4-tuple of real numbers (a0, a1, a2, a3),
which represents a0 + a1 i + a2 j + a3 k. The funadmental identity is i^2 = j^2 =
k^2 = ijk = -1. The quaternion conjugate is (a0, -a1, -a2, -a3). The quaternion
norm is sqrt(a02 + a12 + a22 + a32). The inverse of a quaternion is (a0/d, -a1/d,
-a2/d, -a3/d) where d is the square of the quaternion norm. The sum of two
quaternions (a0, a1, a2, a3) and (b0, b1, b2, b3) is (a0+b0, a1+b1, a2+b2,
a3+b3), the product is (a0b0 - a1b1 - a2b2 - a3b3, a0b1 + a1b0 + a2b3 - a3b2,
a0b2 - a1b3 + a2b0 + a3b1, a0b3 + a1b2 - a2b1 + a3b0), and the quotient is the
product of the inverse of (a0, a1, a2, a3) and (b0, b1, b2, b3). Note that ab
doesn't equal ba in general.

20. Equipotential surfaces. An equipotential surface is the set of all points that
have the same electric potential V. Given a group of N point charges, it is useful
to visualize the electric potential by plotting equipotential surfaces (aka countour
plots). Program Equipotential.java draws a line every 5V by computing the
potential at each gridpoint and checking whether the potential is within 1 pixel of
a multiple of 5V. Since the electric field E measures how much the potential
changes, E * eps is the range that the potential changes in a distance of 1 pixel.

It is also interesting to plot the field lines and the equipotential lines
simultaneously. The field lines are always perpendicular the the equipotential
lines.

21. Tensors. Create a data type for tensors.
22. UN Countries. Create a data type Countryfor UN countries. Include fields for 3

digit UN Code, 3 letter ISO abbreviation, country name, and capital. Write a
program Country.java that reads in a list of countries and stores them in an array
of type Country. Use the method String.split to help parse the input file.

23. Area codes. Create a data type for telephone area codes in North America.
Include fields for the area code, the city, and state, and the two letter state
abbreviation. Or for international phone codes. Include a field for zone, code, and
country.

24. Congressional districts. Create a data type for places, counties, and
congressional districts. Include fields for place name, county name, county code,
zip code, congressional district, etc. Use the data sets from the 1998 FIPS55-DC3
Index: Pennsylvania (2MB) or all 50 states plus DC and 9 outlying areas (30MB).

25. Latitudes and longitudes. For USA latitudes and longitudes, use the TIGER
database or www.bcca.org or gazetteer. For the rest of the world, use earth-info.

26. Astronomy. Data for asteroids, meteors, and comets.
27. Fortune 1000 companies. Create a data type the for Fortune 1000. Include

fields for company name and sales revenue in millions of dollars. Data taken from
April 15, 2002 issue of Fortune. Note: currently need to parse data.

28. Elements. Create a data type Element.java for the Periodic Table of Elements.
Include fields for element, atomic number, symbol, and atomic weight. (Ignore
fields for boiling point, melting point, density (kg/m3), Heat vapour (kJ/mol), heat
fusion (kJ/mol), thermal conductivity (W/m/K), and specific heat capacity (J/kg/K)
since it's not know for all elements). The file is in CSV format (fields separated by
commas).

29. Molecular weight. Write a program so that the user enters a molecule H2 O and
the program calculates its molecular weight.

30. Some potentially useful datafiles: aroma therapies, nutritional information,
meteorological glossary, psychiatric disorders, words translated in 15 languages,
dictionary of emoticons, meanings of common names, World Almanac facts about
countries.

31. Student records. Create a data type Student.java to represent students in an
introductory computer science course. Each student record object is comprised of
four instance variables representing the first name, last name, email address, and
section number. Include a toString() method. Also include a method less() to
compare students by section.

32. Impedance. Impedance is the generalization of resistance from DC circuits to AC
circuits. In an AC circuit, the impedance of a component measures its opposition
to the flow of electrons at a given frequency ω. The impedance has two
components: the resistance and the reactance. The resistance R of a circuit
component measures its opposition to the movement of electrons (friction against
motion of electrons) when a given voltage is applied. The reactance X of a circuit
component measures its ability to store and release energy as the current and
voltage fluctuate (inertia against motion of electrons).

In circuits with resistors only, the current is directly proportional to the voltage.
However, with capacitors and inductors, there is a +- 90 degree "phase shift"
between the current and voltage. This means that when the voltage wave is at its
maximum, the current is 0, and when the current is at its maximum the voltage is
0. To unify the treatment of resistors (R), inductors (L), and capacitors (C) it is
convenient to treat the impedance as the complex quantity Z = R + iX. the
impedance of an inductor is iwL and the impedance of a capacitor is 1/iwC. To
determine the impedance of a sequence of circuit elements in series, we simply
add up their individual impedances. Two important quantities in electrical
engineering are themagnitude of the impedance and the phase angle. The
magnitude is the ratio of the RMS voltage to the RMS current - it equals the
magnitude of the complex impedance. The phase angle is the amount by which
the voltage leads or lags the current - it is the phase of the complex impedance.
Program CircuitRLC.java does a computation involving complex numbers and
impedance of circuits with resistors, inductors, and capacitors in series.

Exercise: RLC circuit in parallel. 1/Z = 1/Z1 + 1/Z2 + ... 1/Zn.

Exercise (for objects): repeat series-parallel network for RLC circuits with
impedances instead of resistance

33. Diffusion of particles in a fluid. Simulate diffusion of particles in a fluid. See
BrownianParticle.java in Section 9.8.

34. Electric field lines. Michael Faraday introduced an abstraction called electric field
lines to visualize the electric field. By Coulombs law, the electric field at a point
induced by a point charge qi is given by Ei = k qi / r2, and the direction points to
qi if qi is negative and away from qi it is negative. If there are a group of n point
charges, the electric field at a point is the vector sum of the electric fields induced
by the n individual point charges. We can compute it by summing up the
components in the x- and y- directions. The figure below illustrates the field lines
for two equal positive point charges (left) and two point charges of opposite signs
(right). The second configuration is called an electric dipole: the charges cancel
each other out, and the electric field weakens very quickly as you move away
from the charges. Examples of dipoles can be found in molecules where charge is
not evenly distributed. Oscillating dipoles can be used to produce electromagnetic
waves to transmit radio and television signals.

Program FieldLines.java draws 10 electric field lines coming out of each charge.
(We take some liberties since traditionally the number of field lines per unit area
should be proportional to the magnitude of the field strength.) Each line starts on
a 1-pixel circle around the charge, at twelve equally spaced angles. The electric
field at a point (x, y) from a point charge qi is given by Ei = k qi / r2, where qi is
the magnitude of the charge i and r is the radial distance from it. The field due to
several charges is the vector sum of the field due to each, and can be found by
adding the x- and y-components. After calculating the electric field strength, we
move in the direction of the vector field and draws a spot. We repeat this process
until we reach the boundary of the region or another point charge. The figures
below illustrate the electric potential and field lines for several random charges of
equal magnitude.

35. Koch snowflake with rainbow of colors.

The Koch snowflake of order n consists of three copies of the Koch curve of over
n. We draw the three Koch curves one after the other, but rotate 120° clockwise
in between. Below are the Koch snowflakes of order 0, 1, 2, and 3. Write a
program KochRainbow.java that plotsthe Koch snowflake in a continuous
spectrum of colors from red, to orange, yellow, green, blue, and indigo, and
violet.

36. Anti-Koch snowflakes. The anti-Koch snowflake is generated exactly like the
Koch snowflake, except that clockwise and counterclockwise are interchanged.
Write a program AntiKoch.java that takes a command line parameter N and
plots the anti-Koch snowflake of order N using Turtle graphics.

37. Randomized Koch snowflakes. A randomized Koch snowflake is generated
exactly like the Koch snowflake, except that we flip a coin to generate the
clockwise and counterclockwise direction at each step.

38. Turtle graphics.
a. Minkowski sausage. (Sausage.java)

b. Gosper island.

c. Cesaro broken square.

39. More turtle graphics. Write a program to produce each of the following
recursive patterns.

a. Levy tapestry. (Levy.java)

b. Fudgeflake.

40. Turtle graphics (hard). Write a program to produce each of the following
recursive patterns without lifting the pen or tracing over the same line segment
more than once.

a. Hilbert space-filling curve. (Hilbert.java or SingleHilbert.java) Informally, a
space-filling curve is a continuous curve in the unit square that passes
through every point. In 1890, Giuseppe Peano discovered the first such
space-filling curve. In 1891, David Hilbert discovered a simpler version,
which came to be known as the Hilbert curve.

b. Sierpinski arrowhead.

c. Sierpinski curve.

41. Dragon curve. Write a program Dragon.java that reads in a command-line
parameter N and plots the order N dragon curve using turtle graphics. The dragon
curve was first discovered by three NASA physicists (John E. Heighway, Bruce A.
Banks, and William G. Harter) and later popularized by Martin Gardner in
Scientific American (March and April 1967) and Michael Crichton in Jurassic Park.

This is a sophisticated program that uses two mutually recursive functions.

Program SequentialDragon.java is an iterative version of the dragon curve. It is a
hacker's paradise.

42. Mandelbrot trajectory. Write an interactive program Trajectory.java that plots
the sequence of points in the Mandelbrot iteration in the complex plane. If the
user clicks on (x, y), plot the sequence of iterates for z = x + iy.

43. Faster Mandelbrot. Speed up Mandelbrot by performing the computation directly
instead of using Complex. Compare. Incorporate periodicity checking or boundary
tracing for further improvements. Use divide-and-conquer: choose 4 corners of a
rectangle and a few random points inside; if they're all the same color, color the
whole rectangle that color; otherwise divide into 4 rectangles and recur.

44. More Complex methods. Add methods to Complex.java to support trigonometric
and exponential functions on complex numbers.

exp(a + ib) = e^a cos(b) + i e^a sin(b)
sin(a + ib) = sin(a) cosh(b) + i cos(a) sinh(b)
cos(a + ib) = cos(a) cosh(b) - i sin(a) sinh(b)
tan(a + ib) = sin(a + ib) / cos(a + ib)

45. Add a method power to Complex so that a.power(b) returns the result of taking
the complex number a and taking it to the complex power b.

46. What is the principle value of ii?

Answer: e-Π/2 = 0.207879576....
47. Random walker. Write a data type RandomWalker that simulates the motion of

a random walker in the plane that starts at the origin and makes a random step
(left, right, up, or down) at each step. Include a method step() that moves the
random walker one step and a method distance() that returns the distance the
random walker is from the origin. Use this data type to formulate a hypothesis as
to how far (as a function of N) the random walker is from the origin after N steps.
(See also Exercise 1.x.)

48. Turtle graphics. Extend Turtle in various ways. Make DeluxeTurtle that adds
color, etc. Add a version that supports error checking. For example, throw a
TurtleOutOfBounds exception if turtle goes outside designated boundary.

Last modified on October 23, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

3.3 DESIGNING DATA TYPES

This section under major construction.

Designing data types

Designing APIs
Encapsulation (use private for information hiding)

Immutability (use final to to help enforce)

Design-by-contract (use assert to check pre-conditions and post-conditions)

Theme = limit what you, the programmer, can do. Emphasize encapsulation and immutability.

Designing APIs. Often the most important and most challenging step in building software is designing the
APIs. In many ways, designing good programs is more challenging that writing the code itself. Takes
practice, careful deliberation, and many iterations.

Specification problem. Document the API in English. Clearly articulate behavior for all possible inputs,
including side effects. "Write to specification." Difficult problem. Many bugs introduced because
programmer didn't correctly understand description of API. See booksite for information on automatic
documentation using Javadoc.
Wide interfaces. "API should do one thing and do it well." "APIs should be as small as possible, but no
smaller." "When in doubt, leave it out." (It's easy to add methods to an existing API, but you can
never remove them without breaking existing clients.) APIs with lots of bloat are known as wide
interfaces. Supply all necessary operations, but no more. Try to make methods orthogonal in
functionality. No need for a method in Complex that adds three complex numbers since there is a
method that adds two. The Math library includes methods for sin(), cos(), and tan(), but not
sec().

Java libraries tend to have wide interfaces (some designed by pros, some by committee). Sometimes
this seems to be the right thing, e.g., String. Although, sometimes you end up with poorly designed
APIs that you have to live with forever.
Deprecated methods. Sometimes you end up with deprecated methods that are no longer fully
supported, but you still need to keep them or break backward compatibility. Once Java included a
method Character.isSpace(), programmers wrote programs that relied on its behavior. Later,
they wanted to change the method to support additional Unicode whitespace characters. Can't
change the behavior of isSpace() or that would break many programs. Instead, add a new method
Character.isWhiteSpace() and "deprecate" the old method. The API is now more confusing than
needed.

Almost all methods in java.util.Date are deprecated in favor of java.util.GregorianCalendar.

Backward compatibility. The need for backward compatibility shapes much of the way things are done
today (from operating systems to programming languages to ...). [Insert a story.]

Standards. It is easy to understand why writing to an API is so important by considering other
domains. Fax machines, radio, MPEG-4, MP3 files, PDF files, HTML, etc. Simpler to use a common
standard. Lack of incompatibilities enables business opportunities that would otherwise be impossible.
One of the challenges of writing software is making it portable so that it works on a variety of
operating systems including Windows, OS X, and Linux. Java Virtual Machine enables portability of
Java across platforms.

Encapsulation. Designing reusable data types requires great care. The API is a contract between the client
and the implementation that specifies the set of permissible operations and what is their required behavior.
Encapsulation is the process of separating and compartmentalizing the client from the implementation by
hiding how the data type is implemented. This enable you to change the "how" as the program evolves. "A
nut and bolt are compatible if they have the same diameter and threads per inch." This is the interface.
However, "they may be made of carbon steel, steel, bronze, nylon, titanium, whatever."

Encapsulation enables us to:

Keep instance variables in a consistent state, e.g., nonnegative integer.
Do error-checking on instance variables to monitor when they change their value. This can help
debugging since you can check when a value unexpectedly changes state since it can only happen by
calling a function within that class.
Reduce dependencies between different modules. This enables us to debug and test one module
independently from others.
Improve resiliency of software systems by limiting and localizing the effects of changing the internal
representation of a data type as the program evolves.
Substitute different implementations of the same data type to improve performance, accuracy, or
memory footprint.

For example, although we've been using the String data type since our first program, we have not
specified how Java implements it. This is perfectly fine because we only need to know what operations it
supports in the API, not the underlying representation.

Some mottos.

Abstraction and information hiding are nice for small programs and absolutely necessary for big ones.
Brian Kernighan.

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Limit scope. The tighter the scope, the easier a program is to maintain.
Principle of least privilege. Each part of the program should know as much as it needs, but no more.
Ask don't touch. Client shouldn't directly manipulate the instance variables. Instead it should ask the
data type to do the work.

Zip codes and time bombs. There are many examples of programmers making assumptions about the
internal representation of a data type, and later having to pay a big price to fix their mistakes.

ZIP codes. In 1963, The United States Postal Service (USPS) began using a 5 digit ZIP code (Zoning
Improvement Plan) to improve the sorting and delivery of mail. Programmers wrote lots of software
that assumed zip codes would remain 5 digits forever, and represented them in their programs using
a single 32-bit integer. In 1983, the USPS introduced an expanded ZIP code called ZIP+4 which
consists of the original 5 digit ZIP code plus 4 extra digits to assist in delivery. This broke hundreds of
fragile programs and required millions of dollars to fix.
Y2K. The much publicized Y2K bug resulted from many programmers encoding years using two digits
(years since 1900) to save memory (back in the 1960s when saving two characters per date field was
more significant). As the year 2000 approached, programmers had to scavenge through millions of
lines of code to find all those places that relied on a two digit year. Some of these programs
controlled nuclear power plants, financial markets, commercial air traffic, and military warships. The
cost for fixing all of these problems was estimated to be around $300 billion.
IPv4 vs. IPv6. The Internet protocol is a standard used by electronic devices to exchange data over
the Internet. Each device is assigned a unique integer or address. IPv4 uses 32-bit addresses and
supports about 4.3 billion addresses. IPv6 uses 128-bit addresses and supports 2^128 addresses
(over 340 decillion!). This will increase network traffic since each network packet contains the source
and destination address. The total cost of the transition in the US might reach $500 billlion!
Vehicle identification numbers. In 1981, The Society of Automotive Engineers established a unique
17-character naming scheme for vehicles known as the Vehicle Identification Number (or VIN for
short). The VIN describes the make, model, year, and other attributes of cars, trucks, buses, and
other vehicles in the United States. Automakers expect to run out by 2010. One solution is to
increase the length of the VIN. Another is to reuse existing VINs. Both would require major logistical
changes to supporting software systems, estimates in the billions of dollars. Moral: whenever a
unique number is needed, don't skimp!

One of the lessons we should learn from this is to use encapsulated data types. If we must change the data
representation, the effects are localized to one ADT and we don't need to search through millions of lines of
code to find all of the places where we assumed one particular data representation.

Encapsulation in Java. Java provides language support for information hiding. When we declare an
instance variable (or method) as private, this means that the client (code written in another module)
cannot directly access that instance variable (or method). The client can only access the API through the
public methods and constructors. Programmer can modify the implementation of private methods (or
use different instance variables) with the comfort that no client will be directly affected.

Program Counter.java implements a counter, e.g., for an electronic voting machine. It encapsulates a
single integer to ensure that it can only get incremented by one at at time and to ensure that it never goes
negative. The goal of data abstraction is to restrict which operations you can perform. Can ensure that data
type value always remains in a consistent state. Can add logging capability to hit(), e.g., to print
timestamp of each vote. In the 2000 presidential election, Al Gore received negative 16,022 votes on an
electronic voting machine in Volusia County, Florida. The counter variable was not properly encapsulated in
the voting machine software!

non-encapsulated data type encapsulated data type
-------------------------------------- --------------------------------------
public class Counter { public class Counter {
 public final String name; private final String name;
 public int count; private int count;
 public Counter(String name) { public Counter(String name) {
 count = 0; count = 0;
 this.name = name; this.name = name;
 } }
 public void hit() { count++; } public void hit() { count++; }
 public int get() { return count; } public int get() { return count; }
} }

client client
-------------------------------------- ---------------------------------------
Counter c = new Counter("Volusia"); Counter c = new Counter("Volusia");
c.count = -16022; // legal c.count = -16022; // compile-time error

Access control. Java provides a mechanism for access control to prevent the use of some variable or
method in one part of a program from direct access in another. We have been careful to define all of
our instance variables with the private access modifier. This means that they cannot be directly
accessed from another class, thereby encapsulating the data type. For this reason, we always use
private as the access modifier for our instance variables and recommend that you do the same. If
you use public then you will greatly limit any opportunity to modify the class over time. Client
programs may rely on your public variable in thousands of places, and you will not be able to
remove it without breaking dependent code.

Getters and setters. A data type should not have public instance variables. You should obey this
rule not just in letter, but also in spirit. Novice programmers are often tempted to include get() and

set() methods for each instance variable, to read and write its value.

Complex a = new Complex(1.0, 2.0);
Complex b = new Complex(3.0, 4.0);

// violates spirit of encapsulation
Complex c = new Complex(0.0, 0.0);
c.setRe(a.re() + b.re());
c.setIm(a.im() + b.im());

// better design
Complex a = new Complex(1.0, 2.0);
Complex b = new Complex(3.0, 4.0);
Complex c = a.plus(b);

The purpose of encapsulation is not just to hide the data, but to hide design decisions which are
subject to change. In other words, the client should tell an object what to do, rather than asking an
object about its state (get()), making a decision, and then telling it how to do it (set()). Usually
it's better design to not have the get() and set() methods. When a get() method is warranted,
try to avoid including a set() method.

Data representation changes in scientific applications. Simple example: represent a point using
Cartesian or polar coordinates. Polynomials (coefficents vs. point-value), matrices (sparse vs. dense).

Immutability. An immutable data type is a data type such that the value of an object never changes once
constructed. Examples: Complex and String. When you pass a String to a method, you don't have to
worry about that method changing the sequence of characters in the String. On the other hand, when you
pass an array to a method, the method is free to change the elements of the array.

Immutable data types have numerous advantages. they are easier to use, harder to misuse, easier to
debug code that uses immutable types, easier to guarantee that the class variables remain in a consistent
state (since they never change after construction), no need for copy constructor, are thread-safe, work well
as keys in symbol table, don't need to be defensively copied when used as an instance variable in another
class. Disadvantage: separate object for each value.

Josh Block, a Java API architect, advises that "Classes should be immutable unless there's a very good
reason to make them mutable....If a class cannot be made immutable, you should still limit its mutability as
much as possible."

Give example where function changes value of some Complex object, which leaves the invoking function
with a variable whose value it cannot rely upon.

mutable immutable

Counter Complex
MovingCharge Charge
Draw String
array Vector
java.util.Date primitive types
Picture wrapper types

Final. Java provides language support to enforce immutability. When you declare a variable to be
final, you are promising to assign it a value only once, either in an initializer or in the constructor.
It is a compile-time error to modify the value of a final variable.

public class Complex {
 private final double re;
 private final double im;

 public Complex(double real, double imag) {
 re = real;
 im = imag;
 }

 // compile-time error
 public void plus(Complex b) {
 re = this.re + b.re; // oops, overwrites invoking object's value
 im = this.im + b.re; // compile-time error since re and im are final
 return new Complex(re, im);
 }
}

It is good style to use the modifier final with instance variables whose values never change.

Serves as documentation that the value does not change.
Prevents accidental changes.

Makes programs easier to debug, since it's easier to keep track of the state: initialized at
construction time and never changes.

Mutable instance variables. If the value of a final instance variable is mutable, the value of that
instance variable (the reference to an object) will never change - it will always refer to the same
object. However, the value of the object itself can change. For example, in Java, arrays are mutable
objects: if you have an final instance variable that is an array, you can't change the array (e.g., to
change its length), but you can change the individual array elements.

This creates a potential mutable hole in an otherwise immutable data type. For example, the
following implementation of a Vector is mutable.

public final class Vector {
 private final int N;
 private final double[] coords;

 public Vector(double[] a) {
 N = a.length;
 coords = a;
 }

 ...
}

A client program can create a Vector by specifying the entries in an array, and then change the
elements of the Vector from (3, 4) to (0, 4) after construction (thereby bypassing the public API).

double[] a = { 3.0, 4.0 };
Vector vector = new Vector(a);
StdOut.println(vector.magnitude()); // 5.0
a[0] = 0.0; // bypassing the public API
StdOut.println(vector.magnitude()); // 4.0

Defensive copy. To guarantee immutability of a data type that includes an instance variable of a
mutable type, we perform a defensive copy. By creating a local copy of the array, we ensure that any
change the client makes to the original array has no effect on the object.

public final class Vector {
 private final int N;
 private final double[] coords;

 public Vector(double[] a) {
 N = a.length;

 // defensive copy
 coords = new double[N];
 for (int i = 0; i < N; i++) {
 coords[i] = a[i];
 }
 }

 ...
}

Program Vector.java encapsulates an immutable array.
Global constants. The final modifier is also widely used to specify local or global constants. For
example, the following appears in Java's Math library.

public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

If the variables were declared public and not final, a client could wreak havoc by re-assigning
Math.PI = 1.0; Since Math.PI is declared to be final, such an attempt would be flagged as a
compile-time error.

Design-by-contract. Language mechanism that enables you to verify assumptions about your program as
it is running. For example, if you have a data type that represents a particle, you might assert that its mass
is positive and its spped is less than the speed of light. Or if you have a method to add two vectors of the
same length, you might assert that the length of the resulting vector also has the same length. Design-by-
contract model of programming.

Precondition. A condition that the client promises to satisfy when calling a method.

Postcondition. A condition that the implementation promises to achieve when returning from a
method.
Invariant. A condition that should always be true when a certain statement is executing.
Side effects. Always document the side effects of a method, including I/O and exceptions.

Transition to exceptions and assertions.

Exceptions. An exception is a disruptive event that occurs while a program is running, often to signal
an error. Action is known as throwing an exception. We have seen several exceptions:
StackOverflowException, DivideByZeroException, NullPointerException and
ArrayOutOfBoundsException. You can also create your own. The simplest kind is a
RuntimeException that terminates execution of the program and print out an error message.

throw new RuntimeException("Error message here");

Assertions. An assertion is a boolean expression that you are affirming is true at that point in the
program. If it is not, the program will terminate and report and error message. Assertions are widely
used by programmers to detect bugs and gain confidence in the correctness of programs. They also
serve to document the programmer's intent.

// check that a given boolean condition is true
assert distance >= 0.0;

// with optional detail message
assert distance >= 0.0 : "distance can't be negative";

By default, assertions are disabled. To enable, execute with the -enableassertions flag (-ea for
short).

% java -ea Date

The result will be a message like

Exception in thread "main" java.lang.AssertionError at Date.next(Date.java:42)

Do not use assertions to check arguments in a public method: your program should not rely on
assertions for normal operation since they may be disabled.

Date. A culminating example that illustrates use of final, assert, exceptions, immutability, and private
helper methods. Would make a nice anatomy diagram. Also could be a set-up for Comparable in the next
section.

Application: commercial transaction system. Want to know 3 (business days) from today.

Exercise: add a method daysUntil() and use this to implement compareTo() in next section. Add a
method day() that returns a String representing the day of the week (e.g., Sunday, Monday).

Program Date.java is an immutable data type that represents a date. Internally, it uses three integers for
the month, day, and year. It includes a constructor, toString(), next(), isAfter().

By accessing the data only through the interface, our data type can perform range checking (e.g., no such
thing as January 0 or February 30). For simplicity, we ignore leap years. (See Exercise XYZ.) By declaring
all instance variables as final, we ensure that they can only be initialized in the constructor. This makes it
easy to check the invariant that the values are always in a consistent state. The time invested in
performing routine error-checking more than pays off as we start writing more complex programs. Using
encapsulation enables us to isolate to a few places where an object can change state.

Vectors. As second example of a mathematical abstraction, we now consider the vector data type. Like
Complex, the basic definition of the vector abstraction is familiar because it has played a central role in
applied mathematics for over 100 years. The field of mathematics known as linear algebra is concerned
with properties of vectors. Linear algebra is a rich and successful theory with numerous applications that
plays an important role in all fields of social and natural science.

A spatial vector is an abstract entity that has a magnitude and a direction.
Vectors provide a natural way to describe properties of the physical world,
such as force, velocity, momentum, or acceleration. One standard way to
specify a vector is as an arrow from the origin to a point in a Cartesian
coordinate system: the direction is the ray from the origin to the point and
the magnitude is the length of the arrow (distance from the origin to the
point). To specify the vector it suffices to specify the point.

The concept extends to any number of dimensions: an ordered list of N real numbers (the coordinates of an
N-dimensional point) suffices to specify a vector in N-dimensional space. By convention, we use a boldface
letter to refer to a vector and numbers or indexed variable names (the same letter in italics) separated by

commas within square brackets to denote its value. For example, we might use x to denote (x[0], x[1], ...,
x[N-1]) and y to denote (y[0], y[1], ..., y[N-1]). In Java, this decision implies that we can represent each
Vectors data type value as an array of double values.

The basic operations on vectors are to add two vectors, multiply a vector by a scalar, compute the dot
product of two vectors, and to com- pute the magnitude and direction, as follows:

addition: x + y = (x[0] + y[0], x[1] + y[1], ..., x[N-1] + y[N-1])
scalar multiplication: t x = (t x[0], t x[1], ..., t x[N-1])
dot product: x dot y = x[0]y[0] + x[1]y[1] + ... + x[N-1]y[N-1]
magnitude: |x| = (x[0]^2 + x[1]^2 + ... + x[N-1]^2)^1/2
direction: x / |x| = (x[0] / |x|, x[1] / |x|, ..., x[N-1] / |x|)

The result of addition and scalar multiplication and the direction are vectors, but the magnitude and the dot
product are scalar quantities (real numbers). For example, if x = (0, 3, 4, 0), and y = (0, -3, 1, -4), then x
+ y = (0, 0, 5, -4), 3x = (0, 9, 12, 0), x dot y = -5, |x| = 5, and x / |x| = (0, .6, .8, 0). The direction
vector is a unit vector: its magnitude is 1. These basic mathematical definitions lead immediately to an API:

Program Vector.java is an immutable class that implements this API. Note that the instance variable is not
a primitive type, but rather an array.

The this reference. The magnitude() and direction() methods in Vector make use of the name this.
Java provides the this keyword to give us a way to refer to an instance method to the object whose name
was used to invoke this method. You can use this in code in the same way you use any other name. For
example, some Java programmers would prefer to code plus() in Complex as follows:

public Complex plus(Complex b) {
 Complex a = this;
 return new Complex(a.re + b.re, a.im + b.im);
}

to emphasize that a and b play an equal role in the operation. Some Java programmers always use this to
refer to instance variables. Their scope is so large (the whole class) that this policy is easy to defend.
However, it does result in a surfeit of this keywords, so we take the opposite tack and use this sparingly in
our code. If a method has no parameters, or parameters whose names do not conflict with instance
variable names, we normally refer directly to instance variables instead of using this.

Similarity search. Reference: Gauging Similarity via N-Grams. CompareAll.java performs similarity
search. It relies on the data type Document.java that uses hashCode().

Q + A

Q. What happens if I try to acccess a private instance variable or method from another file?

A. A compile-time error that says the given instance variable or method has private access in the
given class.

Q. Does Java have other access modifiers besides public and private? Yes, although we restrict
attention in this book to public and private. Here's a table.

Access modifier Class Package Subclass Any Class
private Y N N N
[no specifier] Y Y N N
protected Y Y Y N
public Y Y Y Y

Q. The instance variable x in type Complex is declared with access modifier private. How come in the
plus method I can access both this.x and b.x?

A. The granularity of private access is at the class level, not the instance level. Declaring an instance

variable as private means that it is not directly accessible from any other class. Methods within the
Complex class can access (read or write) the instance variables of any instance in that class. It might be
nice to have a more restrictive access modifier, say superprivate, that would make the granularity at the
instance level so that only the invoking object can access its instance variables.

Q. How would I add a constructor to the Complex data type that takes r and θ as arguments?

A. It's a problem since you already have one constructor that takes two real arguments. Instead, you
should probably create two methods createRect(x, y) and createPolar(r, theta) that create and
return new objects. This style will also help remind the client to pass in arguments of the correct form.

Q. Is it possible to defeat Java's type safety features?

A. If there are no bugs in the Java implementation, an untrusted program should not have access to the
private data of a trusted program. This guarantee assumes that "the computer faithfully executes its
specified instruction set." If a cosmic ray strikes the computer's memory, it can flip a bit, thereby
invalidating this axiom. Appel and Govindavajhala showed how to craft a program so that when executed,
any single bit error would yield a 70% chance of the program gaining unfettered access to the JVM. They
also demonstrated that such errors could be induced by shining a 50 watt spotlight bulb at the memory for
one minute. Smartcards are particularly susceptible since the attacker has physical access to the computer.

Also reflection can defeat the type safety features, but this requires that the user permit such actions.

Exercises

1. Modify Date to handle leap years. Hint: change 28 to 29, add a helper method isLeapYear(), and
add one line to next().

2. Add a method daysUntil() to Date that takes a Date b as an argument and returns the number of
days between b and the invoking date.

3. Create an implementation Date2.java that represents a date a single integer that counts the number
of days since January 1, 1970. Compare to Date.java.

4. Represent a point in time by using an int to store the number of seconds since January 1, 1970.
When will programs that use this representation face a time bomb? How should you proceed when
that happens?

5. Create a data type GeographicCoordinate that represents a geographic coordinate either in
(degrees, minutes, seconds, sign) or in floating point.

6. Create a data type Location for dealing with locations on Earth using spherical coordinates
(latitude/longitude). Include methods to generate a random location on the surface of the Earth,
parse a location "25.344 N, 63.5532 W" and compute the great circle distance between two locations.

7. Create a Rectangle ADT that represents a rectangle. Represent a rectangle by two points. Include a
constructor, a toString method, a method for computing the area, and a method for drawing using
our graphics library.

8. Repeat the previous exercise, but this time represent a Rectangle as the lower left endpoint and the
width and height.

9. Repeat the previous exercise, but this time represent a Rectangle as the center and the width and
height.

10. Particle. Create a data type for a 3D particle with position (rx, ry, rz), mass (m), and velocity (vx,
vy, vz). Include a method to return its kinetic energy = 1/2 m (vx^2 + vy^2 + vz^2).

Alternate representionation: position (rx, ry, rz), mass (m), and momentum (px, py, pz). In this case
vx = px / mass, vy = py / mass, vz = pz / mass. kinetic energy = 1/2 (px^2 + py^2 + pz^2) /
mass.

11. Generating random numbers. Different methods to generate a random number from the standard
Gaussian distribution. Here, encapsulation enables us to replace one version with another that is
more accurate or efficient. Trigonometric method is simple, but may be slow due to calling several
transcendental functions. More importantly, it suffers from numerical stability problems when x1 is
close to 0. Better method is alternate form of Box-Muller method. reference. Both methods require
two values from a uniform distribution and produce two values from the Gaussian distribution with
mean 0 and standard deviation 1. Can save work by remembering the second value for the next call.
(This is how it is implemented in java.util.Random.) Their implementation is the polar method of
Box-Muller, saving the second random number for a subsequent call. (See Knuth, ACP, Section 3.4.1
Algorithm C.)

12. LAX aiport shutdown. On September 14, 2004 Los Angeles airport was shut down due to software
breakdown of a radio system used by air traffic controllers to communicate with pilots. The program
used a Windows API function call GetTickCount() which returns the number of milliseconds since
the system was last rebooted. The value is returned as a 32 bit integer, so after approximately 49.7
days it "wraps around." The software developers were aware of the bug, and instituted a policy that a
technician would reboot the machine every month so that it would never exceed 31 days of uptime.
Oops. LA Times blamed the technician, but the developers are more to blame for shoddy design.

Creative Exercises

1. International bank account (depositDollars, depositEuros, withdrawDollars, withdrawEuros). How to
represent money (cents, BigDecimal, precision, etc.)

2. Turtle graphics. Turtle location starting at origin (forward, rotate, draw) Use polar and Cartesian
coordinates.

3. Polar representation of points. Point.java and PointPolar.java implement the following point

interface using rectangular and polar coordinates, respectively.

Point()
Point(double, double)
double x()
double y()
double r()
double theta()
double distance(Point)
public String toString()

4. Spherical coordinates. Represent a point in 3D space using Cartesian coordinates (x, y, z) or
spherical coordinates (r, θ φ). To convert from one to the other, use

5. Colors. Can represent in RGB, CMYK, or HSV formats. Natural to have different implementations of
same interface.

6. Time. Implement an ADT that represents the time of day, say with seconds, minutes, and hours.
Representation 1: three fields for hours, minutes, and seconds. Representation 2: number of seconds
since 12 midnight. Include compareTo, plus.

7. ZIP codes. Implement an ADT that represents a USPS ZIP code. Support both the original 5 digit
format and the newer (but optional) ZIP+4 format.

8. VIN number. Read in a VIN number and report back all relevant information.
9. Vector fields. Write a data type for force vectors in two dimensions. You should be able to add

vectors using the usual rules from physics using x sin(theta) and x cos (theta)....

10. Complex numbers. In Section 3.2, we considered program Complex.java, which is an ADT for
complex numbers. Internally, it stores a complex number c = x + iy as its real and imaginary parts
(x, y). This is called the rectangular representation. Write a new implementation that represents a
complex number as c = r (cos θ + i sin θ). This is known as the polar representation, and we refer to
r as the modulus and θ as the angle. This representation is especially useful if we are multiplying or
dividing complex numbers. Program Complex.java implements the same complex number data type
as Complex.java, but stores the polar representation (r, θ) instead of the the rectangular
representation (x, y). Since it has exactly the same public methods and public constructor as the
version with rectangular coordinates, we can use it interchangeably with the other version of
Complex.java. The main difference to the client is in different performance properties. For example,
implementing an exponentiation method becomes much easier with the polar representation,
especially if the power is a negative integer or if the power itself is complex! Other operations
become more cumbersome to implement and expensive to compute, e.g., addition and subtraction.
There is one minor caveat that makes these two implementations not completely interchangeable:
floating point precision may influence the two implementations in different ways. For example, the
rectangular implementation represents 3 + 4i exactly, whereas the polar implementation must store
an approximation to the angle θ since it is an irrational number. Such difference should not effect a
well-behaved client, but we should be aware of any places where an encapsulated data type leaks
information.

11. Statistics. Encapsulation enables us to easily replace one implementation with another. This is
desirable when we anticipate creating an improved implementation with better performance or
accuracy properties. We consider a simple, but representative example below. Our goal is to store
statistics for a set of real values, say the sample mean x bar and the sample variance s2.

We want our data type to support the following methods: add, size, mean, stddev, variance.
OnePass.java stores n, the sum, and the sum of squares. TwoPass.java stores n, the sum, and all of
the data values in an array. The one pass algorithm is faster and uses substantially less space, but is
susceptible to roundoff error. StableOnePass.java is a well-engineered alternative.

It is numerically stable and does not require an array to store the elements.

public void add(double x) {
 n++;
 s = s + 1.0 * (n-1) / n * (x - m) * (x - m);
 m = m + (x - m) / n;
}

public double mean() { return m; }
public double variance() { return s / (n - 1); }

12. Encapsulation. Why does the following break encapsulation, even though all instance variables are
declared private.

public class Appointment {
 private Date date;
 private String customer;
 public Appointment(Date date) {
 // check that date is in some legal range
 this.date = date;
 }
 public Date getDate() { return date; }

Answer: The reason is that the class Date is mutable. The method setDate(seconds) changes the
value of the invoking date to the number of milliseconds since January 1, 1970, 00:00:00 GMT. This
has the unfortunate consequence that when the function d = getDate() returns the date, the client
program can invoke d.setDate() and change the date in an Appointment object type, perhaps
setting it to an illegal value for a member of Appointment. Must not let references to mutable
objects escape since caller can then modify its state. One solution is to create a defensive copy of the
Date before returning it using new Date(date.getTime()); also need to do a defensive copy when
storing it via this.date = new Date(date.getTime()). Many programmers regard the mutability
of Date as a design flaw. (GregorianCalendar is a more modern Java library for storing dates; but
it is mutable too.)

13. Sparse vector. Create a data type for sparse vectors. Represent a sparse vector by an array of
indices (of nonzeros) and a parallel array of the corresponding nonzero values. Assume the indices
are in ascending order. Implement the dot product operation.

14. Genome. Implement a data type to store the genome of an organism. Biologists often abstract away
the genome to a sequence of nucleotides (A, C, G, or T). The data type should support the method
addNucleotide, nucleotideAt(int i), and doSomeComputation. Perhaps change to addCodon.
Advantages of encapsulation: can check that only legal nucleotides are added, can change to more
time or memory efficient implementation without affecting client.

StringGenome.java has one instance variable of type String. It implements addNucleotide
with string concatenation. Each method call takes time proportional to the size of the current
genome. Not practical spacewise either for large genomes since nucleotide is stored as a 16-bit
char.

Genome.java implements a genome as an array of characters. The size of the array is doubled
when the array fills up. The method addNucleotide is now constant time. Space consumption
is still 16 bits per nucleotide.
CompactGenome.java implements a genome as boolean array. We need to use two bits per
nucleotide since there are 4 different nucleotides. As in the previous implementation, we use a
dynamic array with repeated doubling. Now, each nucleotide consumes 2 bits of storage
(instead of 16).

15. Given a Genome Include a method to return the reverse-complemented genome. Include a method
for testing for equality.

16. Add methods to Date to check which season (Spring, Summer, Fall, Winter) or astrological sign
(Pisces, Libra, ...) a given date lies. Be careful about events that span December to January.

17. Copy constructor. Only needed if data type is mutable. Otherwise, assignment statement works as
desired.

public Counter(Counter x) {
 count = x.count;
}

Counter counter1 = new Counter();
counter1.hit();
counter1.hit();
counter1.hit();
Counter counter2 = new Counter(counter1);
counter2.hit();
counter2.hit();
StdOut.println(counter1.get() + " " + counter2.get()); // 3 5

Engineering. Engineering involves the design, implementation, and analysis of a useful solution to a

practical problem. The design is limited by resource constraints including time, money, usability, flexibility
for future modification, maintainability, safety, esthetics, marketing, and ethics. The analysis models how
well the design will perform and whether it will be the project constraints. Prototyping, testing, simulation
are all components of a proper analysis. Designing quality software is similar in many ways to designing
bridges. "A good scientist is a person with original ideas. A good engineer is a person who makes a design
that works with as few original ideas as possible." -- Freeman Dyson. When programming, use the principle
of least surprise.

Software engineering. Programming is a form of engineering: apply computer science to the benefit of
humankind. Unlike other forms of engineering (which have been around for hundreds of years), software
engineering is very young (~30 years) and no widespread consensus on best practice and engineering
standards. Nevertheless, some key ideas have emerged (modular programming, data abstraction,
encapsulation). OOP is one of the main tools for building complex programs. We will also consider other
software engineering aspects that complement OOP including specification, design, coding, and testing. a
computer program to solve a problem. Testing, unit tests (testing smallest compilable element in isolation),
integration tests (testing several interacting modules), functional tests tests, regression testing... Test
characteristics: functional (does it do what it should do, and not do what it should not), performance,
usability, security, etc.) Test detail: unit test (one xxx), integration (several interacting modules), system
(the whole thing). Test access: black box (treat module as a black box), white box (use internal structure
to determine test cases). Each test should return true or false. Specification is often the biggest source of
errors. Compile-time, run-time, and logic errors. Compiler error messages can be cryptic, but usually can
be resolved after a few minutes. On the other hand logic errors are the bane of programming. Can take
hours to days to discover the error, even if it was just a simple typo. We should be thankful of all the errors
that the compiler discovers, and it is a blessing to use a language and compiler that facilitate discovering
errors at compile time.

In practice, companies hire employees to solely perform testing. Ratio of testers to programmers can range
from 10:1 to 1:10.

Fred Brooks hypothesizes that the number of lines of code a programmer writes per day is about the same,
regardless of which language they use (Java, C, machine language). One of main goals of using a higher
level programming language (e.g., Java) and OOP is so that we can write 10 lines of Java code that
replaces 1,000 lines of machine language code. Another goal is to write programs that are easier to debug
than machine language programs. OOP helps address both goals.

Software life-cycle. Analysis and specification, design, construction, testing, operation, maintenance.
Waterfall model: do all of the tasks in sequence, reaching decisive milestones along the way. (Inflexible,
especially if design is wrong.) Prototype model: build quick prototype, evaluate, and redesign if needed.
(harder to manage and throw away previous designs)

Testing. Design good test cases (especially at boundaries), test coverage (use computer to generate test
inputs), unit tests, regression testing. Program should always either complete successfully or output a
useful error message. Bugs in computer-aided design (CAD) program nuclear reactor control system,
guided missile, spacecraft environmental control can be disastrous. Validation = checking that the software
does what the customer specified (producing the right product). Verification = checking that the software
has been written according to design spec (producing the product right).

Often, it's convenient to write the tests before the code. If you can't write the tests, you might need to
change the interface or specs. If you still can't, you need to spend more time thinking before you begin to
write code.

Bugs. CMU study of 30,000 programs: 5-6 defects per 1,000 lines of code in production software. New
programs: 100 defects per 1,000 lines of code. $60 million bug (misused break statement in C program) in
ATT long distance system - 114 switching nodes crashed on January 15, 1990 collection of software bugs.

Last modified on August 30, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

3.4 CASE STUDY: N-BODY SIMULATION

This section under major construction.

Bouncing balls. The data type Ball.java represents a ball that
moves with a fixed velocity in the box with coordinates between -1
and +1. When it collides with the boundary, it bounces according
to the law of elastic collision. Each ball has a position (rx, ry) and
a velocity (vx, vy). The client program BouncingBalls.java takes a
command-line argument N and creates N bouncing balls.
(ColoredBall.java and BouncingColoredBalls.java are variants that
associate a color with each ball.)

N-body simulation. The bouncing ball simulation is based on
Newton's first law of motion: a body in motion remains in motion
at the same velocity unless acted on by an outside force.
Embellishing that example to include Newton's second law of
motion (which explains how outside forces affect velocity) leads us
to a basic problem that has fascinated scientists for ages. Given a
system of N bodies, mutually affected by gravitational forces, the
problem is to describe their motion.

The data type Body.java represents a body with a given position
(rx, ry), velocity (vx, vy), and mass (m): it uses the Vector.java
data type to represent displacement, velocity, and force as vector
quantities.

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

The client program Universe.java takes a command-line parameter
dt, reads in a universe from standard input, and simulates the
universe using time quantum dt. The data file body4.txt
represents a 4-body system.

Q + A

Exercises

1. Write an object-oriented version Ball.java off
BouncingBall.java. Include a constructor that starts each ball
moving a random direction at a random velocity (within
reasonable limits) and a test client BouncingBalls.java that
takes an integer N from the command line and simulates the
motion of N bouncing balls.

2. What happens in a universe where Newton's second law
does not apply? This situation would correspond to
forceTo() in Body always returning the zero vector.

3. Write a client Universe3D and develop a data file to
simulate the motion of the planets in our solar system
around the sun.

4. Modify Universe so that its constructor takes an In object
and a Draw object as arguments. Write a test client that
simulates the motion of two different universes (defined by
two different files and appearing in two different Draw
windows). You also need to modify the draw() method in
Body.

5. Implement a class RandomBody that initializes its instance
variables with (carefully chosen) random values instead of
using a constructor and a client RandomUniverse that takes
a single parameter N from the command line and simulates
motion in a random universe with N bodies.

Creative Exercises

1. New universe. Design a new universe with interesting
properties and simulate its motion with Universe. This
exercise is truly an opportunity to be creative!

Web Exercises

1. Generative music based on a gravity simulator.
Generate music based on an N-body simulation where
bodies makes notes when they collide. Simran Gleason's
website describes the process and includes example videos.

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

4. ALGORITHMS AND DATA STRUCTURES

Overview. In this chapter we describe and implement some of the
most important algorithms and data structures in use on
computers today. (For a more in-depth treatment, we recommend
the companion textbook Algorithms, 4th Edition.) We begin by
considering a powerful framework for measuring and analyzing the
efficiency of our programs. This enables us to compare algorithms
and accurately predict performance. Next, we consider several
novel algorithms for the classic problem of sorting. Then, we build
the most important higher level data structures, including stacks,
queues, and symbol tables.

4.1 Performance outlines a scientific method and powerful
theory for understanding the performance and resource
consumption of the program that we write.
4.2 Sorting and Searching describes two classical algorithms
- mergesort and binary search - along with several
applications where their efficiency plays a critical role.
4.3 Stacks and Queues introduces two closely related data
structures for manipulating arbitrary large collections of
data.
4.4 Symbol Tables considers a quintessential data structure
known as the symbol table for storing information, and an
efficient implementation known as the binary search tree.
4.5 Small World Phenomenon presents a case study to
investigate the small world phenomenon - the principle that
we are all linked by short chains of acquaintances.

Java programs in this chapter. Below is a list of Java programs
in this chapter. Click on the program name to access the Java
code; click on the reference number for a brief description; read
the textbook for a full discussion.

REF PROGRAM DESCRIPTION

4.1.2 DoublingTest.java validating a doubling
hypothesis

4.2.2 Gaussian.java bisection search (function
inversion)

4.2.4 Insertion.java insertion sort

4.2.6 Merge.java mergesort

4.2.8 LRS.java longest repeated substring

4.3.2 LinkedStackOfStrings.java stack of strings (linked list)

4.3.4 Stack.java stack data type

4.3.6 Queue.java queue data type

4.3.8 LoadBalance.java load balancing simulation

4.4.2 Index.java indexing

4.4.4 DeDup.java dedup filter

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

4.5.2 IndexGraph.java using a graph to invert an
index

4.5.4 PathFinder.java shortest-paths
implementation

Exercises. Include a link.

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

4.1 ANALYSIS OF ALGORITHMS

This section under construction.

In this section, you will learn to respect a principle whenever you program: Pay attention
to the cost. To study the cost of running them, we study our programs themselves via
the scientific method, the commonly accepted body of techniques universally used by
scientists to develop knowledge about the natural world. We also apply mathematical
analysis to derive concise models of the cost.

Scientific method. Our approach is the scientific method, and it involves the following
5 step approach.

Observe some feature of the natural world.
Hypothesize a model that is consistent with the observations.
Predict events using the hypothesis.
Verify the predictions by making further observations.
Validate by repeating until the hypothesis and observations agree.

One of the key tenets of the scientific method is that the experiments we design must be
reproducible, so that others can convince themselves of the validity of the hypothesis. In
addition, the hypotheses we formulate must be falsifiable, so that we can know for sure
when a hypothesis is wrong (and thus needs revision).

Observations. Our first challenge is to make quantitative measurements of the running
time of our programs. Although measuring the exact running time of our program is
difficult, usually we are happy with approximate estimates. There are a number of tools
available to help us make quantitative measurements of the running time of our
programs. Perhaps the simplest is a physical stopwatch or the Stopwatch.java data type
(from Section 3.2). We can simply run a program on various inputs, measuring the
amount of time to process each input.

Our first qualitative observation about most programs is that there is a problem size that
characterizes the difficulty of the computational task. Normally, the problem size is
either the size of the input or the value of a command-line argument. Intuitively, the
running time should increase with the problem size, but the question of how much it
increases naturally arises every time we develop and run a program.

A concrete example. To illustrate the approach, we start with ThreeSum.java which
counts the number of triples in a set of N numbers that sums to 0. What is the
relationship between the problem size N and running time for ThreeSum?

Doubling hypothesis. For a great many programs, we can quickly formulate a
hypothesis for the following question: What is the effect on the running time of
doubling the size of the input?
Empirical analysis. One simple way to develop a doubling hypothesis is to double
the size of the input and observe the effect on the running time. DoublingTest.java
generates a sequence of random input arrays for ThreeSum, doubling the array
size at each step, and prints the ratio of running times of ThreeSum.count() for
each input over the previous (which was one-half the size). If you run this
program, you will find that the elapsed time increases by about a factor of eight to
print each line. This leads immediately to the hypothesis that the running time
increases by a factor of eight when the input size doubles. We might also plot the
running times, either on a standard plot (left), which clearly shows that the rate of
increase of the running time increases with input size, or on a log-log plot. The
log-log plot is a straight line with slope 3, clearly suggesting the hypothesis that
the running time satisfies a power law of the form cN^3.
Mathematical analysis. The total running time is determined by two primary
factors:

The cost of executing each statement.
The frequency of execution of each statement.

The former is a property of the system, and the latter is a property of the
algorithm. If we know both for all instructions in the program, we can multiply
them together and sum for all instructions in the program to get the running time.
The primary challenge is to determine the frequency of execution of the
statements. Some statements are easy to analyze: for example, the statement
that sets cnt to 0 in ThreeSum.count() is executed only once. Others require

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

higher-level reasoning: for example, the if statement in ThreeSum.count() is
executed precisely N(N-1)(N-2)/6 times (See Exercise 4.1.4).

Tilde notation. We use tilde notation to develop simpler approximate expressions. First,
we work with the leading term of mathematical expressions by using a mathematical
device known as the tilde notation. We write ~ f(N) to represent any quantity that, when
divided by f(N), approaches 1 as N grows. We also write g(N) ~ f(N) to indicate that
g(N) / f(N) approaches 1 as N grows. With this notation, we can ignore complicated
parts of an expression that represent small values. For example, the if statement in
ThreeSum.count() is executed ~ N^3 / 6 times because N(N-1)(N-2) / 6 = N^3/6 -
N^2/2 + N/3, which, when divided by N^3/6, approaches 1 as N grows.

We focus on the instructions that are executed most frequently, sometimes referred to
as the inner loop of the program. In this program it is reasonable to assume that the
time devoted to the instructions outside the inner loop is relatively insignificant.

Order of growth. The key point in analyzing the running time of a program is this: for
a great many programs, the running time satisfies the relationship T(N) ~ c f(N) where c
is a constant and f(N) a function known as the order of growth of the running time. For
typical programs, f(N) is a function such as log N, N, N log N, N^2, or N^3.

The order of growth of the running time of ThreeSum is N^3. The value of the constant
c depends both on the cost of executing instructions and on details of the frequency
analysis, but we normally do not need to work out the value. Knowing the order of
growth typically leads immediately to a doubling hypothesis. In the case of ThreeSum,
knowing that the order of growth is N^3 tells us to expect the running time to increase
by a factor of eight when we double the size of the problem because

T(2N) /T(N) -> c (2N)^3 / c (N)^3 = 8

Order of growth classifications. We use just a few structural primitives (statements,
conditionals, loops, and method calls) to build Java programs, so very often the order of
growth of our programs is one of just a few functions of the problem size, summarized in
the table below.

Complexity Description Examples

1
Constant algorithm does not depend
on the input size. Execute one
instruction a fixed number of times

Arithmetic operations (+, -, *, /,
%)
Comparison operators (<, >, ==,
!=)
Variable declaration
Assignment statement
Invoking a method or function

log N

Logarithmic algorithm gets slightly
slower as N grows. Whenever N
doubles, the running time increases
by a constant.

Bits in binary representation of N
Binary search
Insert, delete into heap or BST

N

Linear algorithm is optimal if you
need to process N inputs. Whenever
N doubles, then so does the running
time.

Iterate over N elements
Allocate array of size N
Concatenate two string of length N

N log N

Linearithmic algorithm scales
to huge problems. Whenever N
doubles, the running time more
(but not much more) than doubles.

Quicksort
Mergesort
FFT

N2

Quadratic algorithm practical for use
only on relatively small problems.
Whenever N doubles, the running
time increases fourfold.

All pairs of N elements
Allocate N-by-N array

N3

Cubic algorithm is practical for use on
only small problems. Whenever N
doubles, the running time increases
eightfold.

All triples of N elements
N-by-N matrix multiplication

2N
Exponential algorithm is not usually
appropriate for practical use. Whenever
N doubles, the running time squares!

Number of N-bit integers
All subsets of N elements
Discs moved in Towers of Hanoi

N!

Factorial algorithm is worse than
exponential. Whenever N increases
by 1, the running time increases
by a factor of N

All permutations of N elements

Estimating memory usage. To pay attention to the cost, you need to be aware of
memory usage. You probably are aware of limits on memory usage on your computer
(even more so than for time) because you probably have paid extra money to get more
memory. Memory usage is well-defined for Java on your computer (every value will
require precisely the same amount of memory each time that you run your program),
but Java is implemented on a very wide range of computational devices, and memory
consumption is implementation-dependent. For primitive types, it is not difficult to
estimate memory usage: We can count up the number of variables and weight them by
the number of bytes according to their type.

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

type bytes

byte[] 16 + N

boolean[] 16 + N

char[] 16 + 2N

int[] 16 + 4N

double[] 16 + 8N

int[][] 4N^2 + 20N + 16

double[][] 8N^2 + 20N + 16

type bytes

object reference 4

String 40 + 2N

Charge 32

Charge[] 36N + 16

Complex 24

Color 12

Primitive types. For example, since the Java int data type is the set of integer
values between -2,147,483,648 and 2,147,483,647, a grand total of 2^32
different values, it is reasonable to expect implementations to use 32 bits to
represent int values.

Objects. To determine the memory consumption of an object, we add the amount
of memory used by each instance variable to the overhead associated with each
object, typically 8 bytes. For example, a Charge.java object uses 32 bytes (8 bytes
of overhead, plus 8 bytes for each of its three double instance variables). A
reference to an object typically uses 4 bytes of memory. When a data type
contains a reference to an object, we have to account separately for the 4 bytes
for the reference and the 8 bytes overhead for each object, plus the memory
needed for the object's instance variables.
Arrays. Arrays in Java are implemented as objects, typically with two instance
variables (a pointer to the memory location of the first array element and the
length). For primitive types, an array of N elements uses 16 bytes of header
information, plus N times the number of bytes needed to store an element.
Two-dimensional arrays. A two-dimensional array in Java is an array of arrays. For
example, the two-dimensional array in Markov.java uses 16 bytes (overhead for
the array of arrays) plus 4N bytes (references to the row arrays) plus N times 16
bytes (overhead from the row arrays) plus N times N times 8 bytes (for the N
double values in each of the N rows) for a grand total of 8N^2 + 20N + 16 ~
8N^2 bytes.
Strings. A String uses a total of 40 + 2N bytes: object overhead (8 bytes), a
reference to a character array (4 bytes), three int values (4 bytes each), plus a
character array of size N (16 + 2N bytes). Note that when working with
substrings, two strings may share the same underlying character array.

Typically the JVM allocates memory in 8 byte blocks so a string of size 1, 2, 3, or 4
would consume the same amount of memory (48 bytes). Float and Double each use
16 bytes, as would a user-defined data type just containing a single double instance
variable.

Perspective. Good performance is important. An impossibly slow program is almost as
useless as an incorrect one. In particular, it is always wise to have some idea of which
code constitutes the inner loop of your programs. Perhaps the most common mistake
made in programming is to pay too much attention to performance characteristics. Your
first priority is to make your code clear and correct. Modifying a program for the sole
purpose of speeding it up is best left for experts. Indeed, doing so is often
counterproductive, as it tends to create code that is complicated and difficult to
understand. C. A. R. Hoare (a leading proponent of writing clear and correct code) once
summarized this idea by saying that "premature optimization is the root of all evil," to

which D. Knuth added the qualifier "(or at least most of it) in programming."

Perhaps the second most common mistake made in developing an algorithm is to ignore
performance characteristics. Users of a surprising number of computer systems lose
substantial time waiting for simple quadratic algorithms to finish solving a problem, even
though linear or linearithmic algorithms are available that are only slightly more
complicated and could therefore solve the problem in a fraction of the time. When we
are dealing with huge problem sizes, we often have no choice but to seek better
algorithms.

Improving a program to make it clearer, more efficient, and elegant should be your goal
every time that you work on it. If you pay attention to the cost all the way through the
development of a program, you will reap the benefits every time you use it.

Q + A

Q. How do I find out how long it takes to add or multiply two double values on my
computer?

A. Run some experiments! The program TimePrimitives.java tests the execution time of
various arithmetic operations on primitive types. On our system division is slower than
addition and multiplication and trigonometric operations are substantially slower than
arithmetic operations. This technique measures the actual elapsed time as would be
observed on a wall clock. If your system is not running many other applications, this can
produce accurate results. Also, the JIT compiler needs to get warmed up, so we
disregard the first bunch of output.

Q. Q. How much time do functions such as Math.sqrt(), Math.log(), and
Math.sin() take?

A. Run some experiments! Stopwatch.java makes it easy to write programs to answer
questions of this sort for yourself, and you will be able to use your computer much more
effectively if you get in the habit of doing so.

Q. How much time do string operations take?

A. Run some experiments! (Have you gotten the message yet?) The standard
implementation is written to allow the methods length(), charAt(), and
substring() to run in constant time. Methods such as toLowerCase() and
replace() are linear ear in the string size. The methods compareTo(), and
startsWith() take time proportional to the number of characters needed to resolve
the answer (constant in the best case and linear in the worst case), but indexOf() can
be slow. String concatenation takes time proportional to the total number of characters
in the result.

Q. Why does allocating an array of size N take time proportional to N?

A. In Java, all array elements are automatically initialized to default values (0, false, or
null). In principle, this could be a constant time operation if the system would defer
initialization of each element until just before the program accesses that element for the
first time, but most Java implementations go through the whole array to initialize each
value.

Q. How do I find out how much memory is available for my Java programs?

A. Since Java will tell you when it runs out of memory, it is not difficult to run some
experiments. For example, if you use PrimeSieve.java by typing

% java PrimeSieve 100000000
5761455

% java PrimeSieve 1000000000
Exception in thread "main"
java.lang.OutOfMemoryError: Java heap space

then you can figure that you have enough room for an array of 100 million boolean
values but not for an array of 1 billion boolean values. You can increase the amount of
memory allotted to Java with command-line flags.

% java PrimeSieve -Xmx1100m 1000000000
50847534

The 1100MB is the amount of memory you are requesting from the system.

Q. What does it mean when someone says that the running time of an algorithm is O(N
log N)?

A. That is an example of a notation known as big-Oh notation. We write f(N) is O(g(N))
if there exists a constant c such that f (N) <= cg (N) for all N. We also say that the
running time of an algorithm is O(g(N)) if the running time is O(g(N)) for all possible
inputs. This notation is widely used by theoretical computer scientists to prove theorems
about algorithms, so you are sure to see it if you take a course in algorithms and data
structures. It provides a worst-case performance guarantee.

Q. So can I use the fact that the running time of an algorithm is O(N log N) or O(N^2)
to predict performance?

A. No, because the actual running time might be much less. Perhaps there is some input
for which the running time is proportional to the given function, but perhaps the that
input is not found among those expected in practice. Mathematically, big-Oh notation is
less precise than the tilde notation we use: if f (N) ~ g (N), then f(N) is O(g(N)), but not
necessarily vice versa. Consequently, big-Oh notation cannot be used to predict
performance. For example, knowledge that the running time of one algorithm is O(N log
N) and the running time of another algorithm is O(N^2) does not tell you which will be
faster when you run implementations of them. Generally, hypotheses that use big-Oh
notation are not useful in the context of the scientific method because they are not
falsifiable.

Q. Is the loop for (int i = N-1; i >= 0; i--) more efficient than for (int i =
0; i < N; i++)?

A. Some programmers think so (because it simplifies the loop continuation expression),
but in many cases it is actually less efficient. Don't do it unless you have a good reason
for doing so.

Q. Any automated tools for profiling a program?

A. If you execute with the -Xprof option, you will obtain all kinds of information.

% java -Xprof TwoSum < input5000.txt
Flat profile of 3.18 secs (163 total ticks): main

 Interpreted + native Method
 0.6% 0 + 1 sun.misc.URLClassPath$JarLoader.getJarFile
 0.6% 0 + 1 sun.nio.cs.StreamEncoder$CharsetSE.writeBytes
 0.6% 0 + 1 sun.misc.Resource.getBytes
 0.6% 0 + 1 java.util.jar.JarFile.initializeVerifier
 0.6% 0 + 1 sun.nio.cs.UTF_8.newDecoder
 0.6% 1 + 0 java.lang.String.toLowerCase
 3.7% 1 + 5 Total interpreted

 Compiled + native Method
 88.3% 144 + 0 TwoSum.main
 1.2% 2 + 0 StdIn.readString
 0.6% 1 + 0 java.lang.String.charAt
 0.6% 1 + 0 java.io.BufferedInputStream.read
 0.6% 1 + 0 java.lang.StringBuffer.length
 0.6% 1 + 0 java.lang.Integer.parseInt
 92.0% 150 + 0 Total compiled

For our purposes, the most important piece of information is the number of seconds
listed in the "flat profile." In this case, the profiler says our program took 3.18 seconds.
Running it a second times may yield an answer of 3.28 or 3.16 since the measurement is
not perfectly accurate.

Q. Any peformance tips?

Q. Here is a huge list of Java performance tips.

Exercises

1. Implement the method printAll() for ThreeSum.java, which prints all of the

triples that sum to zero.
2. Modify ThreeSum.java to take a command-line argument x and find a triple of

numbers on standard input whose sum is closest to x.
3. Write a program FourSum.java that takes an integer N from standard input, then

reads N long values from standard input, and counts the number of 4-tuples that
sum to zero. Use a quadruple loop. What is the order of growth of the running
time of your program? Estimate the largest N that your program can handle in an
hour. Then, run your program to validate your hypothesis.

4. Prove by induction that the number of distinct pairs of integers between 0 and N-1
is N(N-1)/2, and then prove by induction that the number of distinct triples of
integers between 0 N-1 is N(N-1)(N-2)/6.

5. Show by approximating with integrals that the number of distinct triples of
integers between 0 and N is about N^3/6.

6. What is the value of x after running the following code fragment?

int x = 0;
for (int i = 0; i < N; i++)
 for (int j = i + 1; j < N; j++)
 for (int k = j + 1; k < N; k++)
 x++;

Answer: N choose 3 = N (N-1) (N-2) / 6.
7. Use tilde notation to simplify each of the following formulas, and give the order of

growth of each:
a. N (N-1) (N-2) (N-3) /24
b. (N-2) (lg N - 2) (lg N + 2)
c. N (N+1) - N^2
d. N (N+1) / 2 + N lg N
e. ln ((N-1) (N-2) (N-3))^2

8. Determine the order of growth of the running time of the input loop of ThreeSum:

int N = Integer.parseInt(args[0]);
int[] a = new int[N];
for (int i = 0; i < N; i++) {
 a[i] = StdIn.readInt();
}
String s = sb.toString();

Answer: Linear. The bottlenecks are the array initialization and the input loop.
Depending on your system and the implementation, the readInt() statement
might lead to inconsistent timings for small values of N. The cost of an input loop
like this might dominate in a linearithmic or even a quadratic program with N that
is not too large.

9. Determine whether the following code fragment is linear, quadratic, or cubic (as a
function of N).

for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 if (i == j) c[i][j] = 1.0;
 else c[i][j] = 0.0;
 }
}
String s = sb.toString();

10. Suppose the running time of an algorithm on inputs of size one thousand, two
thousand, three thousand, and four thousand is 5 seconds, 20 seconds, 45
seconds, and 80 seconds, respectively. Estimate how long it will take to solve a
problem of size 5,000. Is the algorithm linear, linearithmic, quadratic, cubic, or
exponential?

11. Which would you prefer: a quadratic, linearithmic, or linear algorithm?

Answer: While it is tempting to make a quick decision based on the order of
growth, it is very easy to be misled by doing so. You need to have some idea of
the problem size and of the relative value of the leading coefficients of the running
time. For example, suppose that the running times are N 2 seconds, 100 N lg N
seconds, and 10000 N seconds. The quadratic algorithm will be fastest for N up to
about 1000, and the linear algorithm will never be faster than the linearithmic one
(N would have to be greater than 2100, far too large to bother considering).

12. Apply the scientific method to develop and validate a hypothesis about order of
growth of the running time of the following code fragment, as a function of the
input argument n.

public static int f(int n) {
 if (n == 0) return 1;
 return f(n-1) + f(n-1);
}

13. Apply the scientific method to develop and validate a hypothesis about order of
growth of the running time of the Coupon.collect() as a function of the input
argument N. Note: Doubling is not effective for distinguishing between the linear
and linearithmic hypotheses - you might try squaring the size of the input.

14. Apply the scientific method to develop and validate a hypothesis about order of
growth of the running time of Markov.java as a function of the input parameters T
and N.

15. Apply the scientific method to develop and validate a hypothesis about order of
growth of the running time of each of the following two code fragments as a
function of N.

String s = "";
for (int i = 0; i < N; i++) {
 if (StdRandom.bernoulli(0.5)) s += "0";
 else s += "1";
}

StringBuilder sb = new StringBuilder();
for (int i = 0; i < N; i++) {
 if (StdRandom.bernoulli(0.5)) sb.append("0");
 else sb.append("1");
}
String s = sb.toString();

Answer: The first is quadratic; the second is linear.
16. Each of the four Java functions below returns a string of length N whose

characters are all x. Determine the order of growth of the running time of each
function. Recall that concatenating two strings in Java takes time proportional to
the sum of their lengths.

public static String method1(int N) {
 if (N == 0) return "";
 String temp = method1(N / 2);
 if (N % 2 == 0) return temp + temp;
 else return temp + temp + "x";
}

public static String method2(int N) {
 String s = "";
 for (int i = 0; i < N; i++)
 s = s + "x";
 return s;
}

public static String method3(int N) {
 if (N == 0) return "";
 if (N == 1) return "x";

 return method3(N/2) + method3(N - N/2);
}

public static String method4(int N) {
 char[] temp = new char[N];
 for (int i = 0; i < N; i++)
 temp[i] = 'x';
 return new String(temp);
}

Program Repeat.java contains the four functions.
17. The following code fragment (adapted from a Java programming book) creates a

random permutation of the integers from 0 to N-1. Determine the order of growth
of its running time as a function of N. Compare its order of growth with
Shuffle.java from Section 1.4.

int[] a = new int[N];
boolean[] taken = new boolean[N];
int count = 0;
while (count < N)
{
 int r = StdRandom.uniform(N);
 if (!taken[r])
 {
 a[r] = count;
 taken[r] = true;
 count++;
 }
}

18. What is order of growth of the running time of the following function, which
reverses a string s of length N?

public static String reverse(String s) {
 int N = s.length();
 String reverse = "";
 for (int i = 0; i < N; i++)
 reverse = s.charAt(i) + reverse;
 return reverse;
}

19. What is order of growth of the running time of the following function, which
reverses a string s of length N?

public static String reverse(String s) {
 int N = s.length();
 if (N <= 1) return s;
 String left = s.substring(0, N/2);
 String right = s.substring(N/2, N);
 return reverse(right) + reverse(left);
}

20. Give a linear algorithm for reversing a string.

Answer:

public static String reverse(String s) {
 int N = s.length();
 char[] a = new char[N];
 for (int i = 0; i < N; i++)
 a[i] = s.charAt(N-i-1);
 String reverse = new String(a);

 return reverse;
}

21. Write a program MooresLaw that takes a command-line argument N and outputs
the increase in processor speed over a decade if microprocessors double every N
months. How much will processor speed increase over the next decade if speeds
double every N = 15 months? 24 months?

22. Using the model in the text, give the memory requirements for each object of the
following data types from Chapter 3:

a. Stopwatch

b. Turtle

c. Vector

d. Body

e. Universe

23. Estimate, as a function of the grid size N, the amount of space used by
Visualize.java with the vertical percolation detection (Program 2.4.2).

Extra credit: Answer the same question for the case where the recursive
percolation detection method in Program 2.4.5 is used.

24. Estimate the size of the biggest two-dimensional array of int values that your
computer can hold, and then try to allocate such an array.

25. Estimate, as a function of the number of documents N and the dimension d, the
amount of space used by CompareAll.java.

26. Write a version of PrimeSieve.java that uses a byte array instead of a boolean
array and uses all the bits in each byte, to raise the largest value of N that it can
handle by a factor of 8.

27. The following table gives running times for various programs for various values of
N. Fill in the blanks with estimates that you think are reasonable on the basis of
the information given.

program 1,000 10,000 100,000 1,000,000
 A .001 seconds .012 seconds .16 seconds ? seconds
 B 1 minute 10 minutes 1.7 hours ? hours
 C 1 second 1.7 minutes 2.8 hours ? days

Give hypotheses for the order of growth of the running time of each program.

Creative Exercises

1. Closest pair. Design a quadratic algorithm that finds the pair of integers that are
closest to each other. (In the next section you will be asked to find a linearithmic
algorithm.)

2. Sum furthest from zero. Design an algorithm that finds the pair of integers
whose sum is furthest from zero. Can you discover an algorithm that linear
running time?

3. The "beck" exploit. In the Apache 1.2 web server, there is a function called
no2slash whose purpose is to collapse multiple '/'s. For example
/d1///d2////d3/test.html becomes /d1/d2/d3/test.html. The original
algorithm was to repeatedly search for a '/' and copy the remainder of the string
over.

void no2slash(char *name) {
 int x, y;
 for(x = 0; name[x];)
 if(x && (name[x-1] == '/') && (name[x] == '/'))
 for(y = x+1; name[y-1]; y++)
 name[y-1] = name[y];
 else x++;
}

Unfortunately, it's running time is quadratic in the number of '/'s in the input. By
sending multiple simultaneous requests with large numbers of '/'s, you can
deluge a server and starve other processes for CPU time, thereby creating a denial
of service attack. Fix the version of no2slash so that it runs in linear time and
does not allow for the above attack.

offset = 0
for i = 2 to n do
 if a[i-1] = '/' and a[i] = '/' then
 offset = offset + 1
 else
 a[i-offset] = a[i]
end for

4. Young tableaux. Suppose you have in memory an N-by-N grid of integers a such
that a[i][j] < a[i+1][j] and a[i][j] < a[i][j+1] for all i and j like the
table below.

 5 23 54 67 89
 6 69 73 74 90
10 71 83 84 91
60 73 84 86 92
99 91 92 93 94

Devise an O(N) time algorithm to determine whether or not a given integer x is in
a Young tableaux.

Answer: Start at the upper right corner. If element = x, done. If element > x, go
left. Otherwise go down. If you reach bottom left corner, then it's not in table.
O(N) since can go left at most N times and down at most N times.

5. 3-D searching. Repeat the previous question, but assume the grid is N-by-N-by-
N and a[i][j][k] < a[i+1][j][k], a[i][j][k] < a[i][j+1][k], and a[i]
[j][k] < a[i][j][k+1] for all i, j,and k. Devise an algorithm that can
determine whether or not a given integer x is in the 3-d table in time better than
N2 log N. Hint: treat the problem as N independent Young table queries.

6. Moore's Law. This problem investigates the ramifications of exponential growth.
Moore's Law (named after Intel co-founder Gordon Moore) states that
microprocessor power doubles every 18 months. See this article which argues
against this conventional wisdom. Write a program MooresLaw.java that takes an
integer parameter N and outputs the increase in processor speed over a decade if
microprocessors double every N months.

a. How much will processor speed increase over the next decade in speeds
double every N = 18 months?

b. The true value may be closer to speeds doubling every two years. Repeat
(a) with N = 24.

Subset sum. Write a program Exponential.java that takes a command line integer
N, reads in N long integer from standard input, and finds the subset whose sum is
closest to 0. Give the order of growth of your algorithm.

7. String reversal. Given an array of N elements, give a linear time algorithm to
reverse its elements. Use at most a constant amount of extra space (array indices
and array values).

8. String rotation. Given an array of N elements, give a linear time algorithm to
rotate the string k positions. That is, if the array contains a1, a2, ..., aN, the
rotated array is ak, ak+1, ..., aN, a1, ..., ak-1. Use at most a constant amount of
extra space (array indices and array values). This operation is a primitive in some
programming languages like APL. Also, arises in the implementation of a text
editor (Kernighan and Plauger). Hint: reverse three sub-arrays as in the previous
exercise.

9. Finding a duplicated integer. Given an array of n integers from 1 to n with one
integer repeated twice and one missing. Find the missing integer using O(n) time
and O(1) extra space. No overflow allowed.

10. Finding a duplicated integer. Given a read-only array of n integers, where each
integer from 1 to n-1 occurs once and one occurs twice, design an O(n) time

algorithm to find the duplicated integer. Use only O(1) space.
11. Finding a duplicated integer. Given a read-only array of n integers between 1

and n-1, design an O(n) time algorithm to find a duplicated integer. Use only O(1)
space. Hint: equivalent to finding a loop in a singly linked structure.

12. Finding the missing integer. (Bentley's Programming Pearls.) Given a list of 1
million 20-bit integers, given an efficient algorithm for finding a 20-bit integer that
is not on the list

a. given as much random access memory as you like
b. given as many tapes as you like (but no random access) and a few dozen

words of memory
c. (Blum) given only a few dozen words of memory

Solutions. (a) allocate a boolean array of 220 bits. (b) copy all numbers starting
with 0 to one tape and 1 to the other. Choose leading bit of missing number to be
whichever tape has fewer entries (breaking ties arbitrarily). Recur on the smaller
half. (c) Pick twenty 20-bit integers at random and search list sequentially to see if
they're missing. There are 48,576 missing integers, so you'll have at least a (1 -
(1 - 48576/220)20) > 0.5 chance of getting one. If you get unlucky, repeat.

13. Pattern matching. Given an N-by-N array of black (1) and white (0) pixels, find
the largest contiguous subarray that consists of entirely black pixels. In the
example below there is a 6-by-2 subarray.

1 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 1 0
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 0
0 0 0 1 1 1 1 0

14. Factorial. Compute 1000000! as fast as you can. You may use the BigInteger
class.

15. Longest increasing subsequence. Given a sequence of N 64-bit integers, find
the longest strictly increasing subsequence. For example, if the input is 56, 23, 33,
22, 34, 78, 11, 35, 44, then the longest increasing subsequence is 23, 33, 34, 35,
44. Your algorithm should run in N log N time.

16. Maximum sum. Given a sequence of N 64-bit integers, find a sequence of at
most U consecutive integers that has the highest sum.

17. Maximum average. Given a sequence of N 64-bit integers, find a sequence of at
least L consecutive integers that has the highest average. O(N^2) not too hard;
O(N) possible but much harder. O(NL) follows since there must exist an optimal
interval between L and 2L. Hint: can compute average from i to j in O(1) time with
O(N) preprocessing by precomputing prefix[i] = a[0] + ... + a[i] for each i. Then
the average of the interval from i to j is (prefix[j] - prefix[i]) / (j - i + 1).

18. Knuth's parking problem. N cars arrive at an initially empty lot with N parking
space, arranged in a one-way circle. Car i uniformly chooses a spot at random,
independent of previous cars. If spot j is taken, try j+1, j+2, and so on. Write a
program to estimate how many tries are made (total displacement) as a function
of N.

Answer. N^3/2.
19. Amdahl's law. Limits how much you can speed up a computation by improving

one of its two constituent parts.
20. Sieve of Eratosthenes. Estimate running time of sieve of Eratoshthenes for

finding all primes less than or equal to N as a function of N.

Answer: in theory, the answer is proportional to N log log N. Follows from Mertens'
theorem in number theory.

Web Exercises

1. Suppose the running time of an algorithm on inputs of size 1,000, 2,000, 3,000,
and 4,000 is 5 seconds, 20 seconds, 45 seconds, 80 seconds, and 125 seconds,
respectively. Estimate how long it will take to solve a problem of size 5,000. Is the

algorithm have linear, linearithmic, quadratic, cubic, or exponential?
2. Write a program OneSum.java that takes a command-line argument N, reads in N

integers from standard input, and finds the value that is closest to 0. How many
instructions are executed in the data processing loop?

3. Write a program TwoSum.java that takes a command-line argument N, reads in N
integers from standard input, and finds the pair of values whose sum is closest to
0. How many instructions are executed in the data processing loop?

4. Analyze the following code fragment mathematically and determine whether the
running time is linear, quadratic, or cubic as a function of N.

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

5. The following function returns a random string of length N. How long does it take?

public static String random(int N) {
 if (N == 0) return "";
 int r = (int) (26 * Math.random()); // between 0 and 25
 char c = 'a' + r; // between 'a' and 'z'
 return random(N/2) + c + random(N - N/2 - 1);
}

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

4.2 SORTING AND SEARCHING

This section under construction.

The sorting problem is to rearrange a set of items in ascending order. One reason
that it is so useful is that it is much easier to search for something in a sorted list
than an unsorted one. In this section, we will consider in detail two classical
algorithms for sorting and searching, along with several applications where their
efficiency plays a critical role.

Binary search. In the game
of "twenty questions", your
task is to guess the value of a
hidden number that is one of
the N integers between 0 and
N-1. (For simplicity, we will
assume that N is a power of
two.) Each time that you
make a guess, you are told
whether your guess is too
high or too low. An effective
strategy is to maintain an
interval that contains the
hidden number, guess the
number in the middle of the
interval, and then use the
answer to halve the interval
size. TwentyQuestions.java
implements this strategy,
which is an example of the
general problem-solving method known as binary search.

Correctness proof. First, we have to convince ourselves that the method is
correct: that it always leads us to the hidden number. We do so by
establishing the following facts:

The interval always contains the hidden number.
The interval sizes are the powers of two, decreasing from N.

The first of these facts is enforced by the code; the second follows by noting
that if the interval size (hi-lo) is a power of two, then the next interval size is
(hi-lo)/2, which is the next smaller power of two. These facts are the basis of
an induction proof that the method operates as intended. Eventually, the
interval size becomes 1, so we are guaranteed to find the number.
Running time analysis. Since the size of the interval decreases by a factor of
2 at each iteration (and the base case is reached when N = 1), the running
time of binary search is lg N.
Linear-logarithm chasm. The alternative to using binary search is to guess 0,
then 1, then 2, then 3, and so forth, until hitting the hidden number. We
refer to such an algorithm as a brute-force algorithm: it seems to get the job
done, but without much regard to the cost (which might prevent it from
actually getting the job done for large problems). In this case, the running
time of the brute-force algorithm is sensitive to the input value, but could be
as much as N and has expected value N/2 if the input value is chosen at
random. Meanwhile, binary search is guaranteed to use no more than lg N
steps.
Binary representation. If you look back to Program 1.3.7, you will recognize
that binary search is nearly the same computation as converting a number
to binary! Each guess determines one bit of the answer. In our example, the
information that the number is between 0 and 127 says that the number of
bits in its binary representation is 7, the answer to the first question (is the
number less than 64?) tells us the value of the leading bit, the answer to the
second question tells us the value of the next bit, and so forth. For example,
if the number is 77, the sequence of answers no yes yes no no yes no
immediately yields 1001101, the binary representation of 77.

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Inverting a function.
As an example of the
utility of binary search
in scientific
computing, we revisit
a problem that we
consider the problem
of inverting an
increasing function.
To fix ideas, we refer
to the Gaussian
distribution Φ when
describing the
method. Given a
value y, our task is to
find a value x such
that Φ(x) = y. In this
situation, we use real
numbers as the
endpoints of our interval, not integers, but we use the same essential
method as for guessing a hidden integer: we halve the size of the interval at
each step, keeping x in the interval, until the interval is sufficiently small
that we know the value of x to within a desired precision δ. We start with an
interval (lo, hi) known to contain x and use the following recursive strategy:

Compute m = lo + (hi - lo) / 2
Base case: If (hi - lo) is less than δ, then returm m as an estimate of x
Recursive step: otherwise, test whether Φ(m) < y. If so look for x in
(lo, m); if not look for x in (m, hi)

The key to this method is the idea that the function is increasing - for any
values a and b, knowing that Φ(a) < &Phi(b) tells us that a < b, and vice
versa. In this context, binary search is often called bisection search because
we bisect the interval at each stage.
Binary search in a sorted array. During much of the last century people
would use a publication known as a phone book to look up a person's phone
number. Entries appears in order, sorted by a key that identifies it (the
person's name) n both cases). A brute-force solution would be to start at the
beginning, examine each entry one at a time, and continue until you find the
name. No one uses that method: instead, you open the book to some
interior page and look for the name on that page. If it is there, you are
done; otherwise, you eliminate either the part of the book before the current
page or the part of the book after the current page from consideration and
repeat.
Exception filter. We now use binary search to solve the existence problem: is
a given key in a sorted database of keys? For example, when checking the
spelling of a word, you need only know whether your word is in the
dictionary and are not interested in the definition. In a computer search, we
keep the information in an array, sorted in order of the key. The binary
search code in BinarySearch.java differs from our other applications in two
details. First, the file size N need not be a power of two. Second, it has to
allow the possibility that the item sought is not in the array. The client
program implements an exception filter: it reads a sorted list of strings from
a file (which we refer to as the whitelist) and an arbitrary sequence of strings
from standard input and prints those in the sequence that are not in the
whitelist.

Insertion sort. Insertion sort is a brute-force sorting algorithm that is based on a
simple method that people often use to arrange hands of playing cards. Consider
the cards one at a time and insert each into its proper place among those already
considered (keeping them sorted). The following code mimics this process in a
Java method that sorts strings in an array:

public static void sort(String[] a) {
 int N = a.length;
 for (int i = 1; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j-1].compareTo(a[j]) > 0)

 exch(a, j, j-1);
 else break;
}

The outer for loop sorts the first i entries in the array; the inner for loop can
complete the sort by putting a[i] into its proper position in the array.

Mathematical analysis. The inner loop of the insertion sort code is within a
double for loop, which suggests that the running time is quadratic, but we
cannot immediately draw this conclusion because of the break.

Best case. When the input array is already in sorted order, the inner
for loop amounts to nothing more than a comparison (to learn that
a[j-1] is less than a[j]) and the break, so the total running time is
linear.
Worst case. When the input is reverse sorted, the inner loop fully
completes without a break, so the frequency of execution of the
instructions in the inner loop is 1 + 2 + ... + N-1 ~ N^2 and the
running time is quadratic.
Average case. When the input is randomly ordered To understand the
performance of insertion sort for randomly ordered, we expect that
each new element to be inserted is equally likely to fall into any
position, so that element will move halfway to the left on average.
Thus, we expect the running time to be 1/2 + 2/2 + ... + (N-1)/2 ~
N^2 / 2.

Sorting other types of data. We want to be able to sort all types of data, not
just strings. For sorting objects in an array, we need only assume that we
can compare two elements to see whether the first is bigger than, smaller
than, or equal to the second. Java provides the Comparable interface for
precisely this purpose. Simply put, a class that implements the Comparable
interface promises to implement a method compareTo() for objects of its
type so that that a.compareTo(b) returns a negative integer if a is less
than b, a positive integer if a is greater than b, and 0 if a is equal to b. The
precise meanings of less than, greater than, and equal to are up to the data
type, though implementations that do not respect the natural laws of
mathematics surrounding these concepts will yield unpredictable results.
With this convention, Insertion.java implements insertion sort so that it sorts
arrays of Comparable objects.

Empirical analysis. Program InsertionTest.java tests our hypothesis that
insertion sort is quadratic for randomly ordered files. It relies on the helper
data type Stopwatch.java.
Sensitivity to input. Note that InsertionTest.java takes a command-line
parameter M and runs M experiments for each array size, not just one. One
reason for doing so is that the running time of insertion sort is sensitive to
its input values. It is not correct to flatly predict that the running time of
insertion sort will be quadratic, because your application might involve input
for which the running time is linear.

Mergesort. To develop a faster sorting method, we use a divide-and-conquer
approach to algorithm design that every programmer needs to understand. This
nomenclature refers to the idea that one way to solve a problem is to divide it into
independent parts, conquer them independently, and then use the solutions for the
parts to develop a solution for the full problem. To sort an array with this strategy,
we divide it into two halves, sort the two halves independently, and then merge
the results to sort the full array. This method is known as mergesort. To sort a[lo,
hi), we use the following recursive strategy:

base case: If the subarray size is 0 or 1, it is already sorted.
recursive step: Otherwise, compute m = lo + (hi - lo)/2, sort (recursively)
the two subarrays a[lo, m) and a[m, hi), and merge them to produce a
sorted result.

Merge.java is an implementation. As usual, the easiest way to understand the
merge process is to study a trace of the contents of the array during the merge.

Mathematical analysis. The inner loop of mergesort is centered on the
auxiliary array. The two for loops involve N iterations (and creating the
array takes time proportional to N), so the frequency of execution of the
instructions in the inner loop is proportional to the sum of the subarray sizes
for all calls to the recursive function. The value of this quantity emerges
when we arrange the calls on levels according to their size. On the first level,
we have 1 call for size N, on the second level, we have 2 calls for size N/2,
on the third level, we have 4 calls for size N/4, and so forth, down to the last
level with N/2 calls of size 2. There are precisely lg N levels, giving the grand
total N lg N for the frequency of execution of the instructions in the inner
loop of mergesort. This equation justifies a hypothesis that the running time
of mergesort is linearithmic.

Quadratic-linearithmic chasm. The difference between N^2 and N lg N
makes a huge difference in practical applications. Understanding the
enormousness of this difference is another critical step to understanding the
importance of the design and analysis of algorithms. For a great many
important computational problems, a speedup from quadratic to linearithmic
makes the difference between being able to solve a problem involving a
huge amount of data and not being able to effectively address it at all.
Divide-and-conquer algorithms. The same basic approach is effective for
many important problems, as you will learn if you take a course on algorithm
design.
Reduction to sorting. A problem A reduces to a problem B if we can use a
solution to B to solve A. Designing a new divide-and-conquer algorithm from
scratch is sometimes akin to solving a puzzle that requires some experience
and ingenuity, so you may not feel confident that you can do so at first. But
it is often the case that a simpler approach is effective: given a new problem
that lends itself to a quadratic brute-force solution, ask yourself how you
would solve it if the data were sorted in some way. For example, consider
the problem of determining whether the elements in an array are all
different. This problem reduces to sorting because we can sort the array, the
make a linear pass through the sorted array to check whether any entry is
equal to the next (if not, the elements are all different.)

Frequency counts. FrequencyCount.java reads a sequence of strings from
standard input and then prints a table of the distinct values found and the number
of times each was found, in decreasing order of the frequencies. We accomplish
this by two sorts.

Computing the frequencies. Our first step is to sort the strings on standard
input. In this case, we are not so much interested in the fact that the strings
are put into sorted order, but in the fact that sorting brings equal strings
together. If the input is

to be or not to be to

then the result of the sort is

be be not or to to to

with equal strings like the three occurrences of to brought together in the
array. Now, with equal strings all together in the array, we can make a
single pass through the array to compute all the frequencies. The
Counter.java data type that we considered in Section 3.x is the perfect tool
for the job.
Sorting the frequencies. Next, we sort the Counter objects. We can do so in
client code without any special arrangements because Counter implements
the Comparable interface.

Zipf's law. The application highlighted in FrequencyCount is elementary
linguistic analysis: which words appear most frequently in a text? A
phenomenon known as Zipf's law says that the frequency of the ith most
frequent word in a text of M distinct words is proportional to 1/i.

Longest repeated substring. Another important computational task that reduces
to sorting is the problem of finding the longest repeated substring in a given string.
This problem is simple to state and has many important applications, including
computer-assisted music analysis, cryptography, and data compression. Think
briefly about how you might solve it. Could you find the longest repeated substring
in a string that has millions of characters? Program LRS.java is a clever solution
that uses suffix sorting.

Quicksort. Quicksort is a divide-and-conquer method for sorting. It works by
partitioning an array of elements into two parts, then sorting the parts
independently. As we shall see, the precise position of the partition depends on the
initial order of the elements in the input file. The crux of the method is the

partitioning process, which rearranges the array to make the following three
conditions hold:

The element a[i] is in its final place in the array for i.

None of the elements a[left], ..., a[i-1] is greater than a[i].

None of the elements in a[i+1], ..., a[right] is less than a[i].

We achieve a complete sort by partitioning, then recursively applying the method
to the subfiles.

We use the following general strategy to implement partitioning. First, we
arbitrarily choose a[right] to be the partitioning element - the one that will go
into its final position. Next, we scan from the left end of the array until we find an
element greater than the partitioning element, and we scan from the right end of
the array until we find an element less than the partitioning element. The two
elements that stopped the scans are obviously out of place in the final partitioned
array, so we exchange them. Continuing in this way, we ensure that no array
elements to the left of the left index are greater than the partitioning element, and
no array elements to the right of the right index are less than the partitioning
element, as depicted in the following diagram.

When the scan indices cross, all that we need to do to complete the partitioning
process is to exchange a[right] with the leftmost element of the right subfile
(the element pointed to by the left index i).

Program QuickSort.java implements this algorithm.

Q + A

Q. Why do we need to go to such lengths to prove a program correct?

A. To spare ourselves considerable pain. Binary search is a notable example. For
example, you now understand binary search; a classic programming exercise is to
write a version that uses a while loop instead of recursion. Try solving Exercise
4.2.2 without looking back at the code in the book. In a famous experiment, J.
Bentley once asked several professional programmers to do so, and most of their
solutions were not correct. According to Knuth, the first binary search algorithm
was published in 1946, but the first published binary search without bugs did not
appear until 1962.

Q. Are there implementations for sorting and searching in the Java libarary?

A. Yes. The Java library java.util.Arrays contains the methods
Arrays.sort() and Arrays.binarySearch() that implement mergesort and
binary search for Comparable types and a sorting implementation for primitive
types based on a version of the quicksort algorithm, which is faster than mergesort
and also sorts an array in place (without using any extra space). SystemSort.java
illustrates how to use Arrays.sort().

Q. So why not just use them?

A. Feel free to do so. As with many topics we have studied, you will be able to use
such tools more effectively if you understand the background behind them.

Q. Why doesn't the Java library use a randomized version of quicksort?

A. Good question. At the very least, the library should cutoff to some guaranteed N
log N algorithm if it "realizes" it is in trouble. Perhaps to avoid side effects.
Programmers may want their libraries to be deterministic for debugging. But the
library only uses quicksort for primitive types when stability is not an issue, so the
programmer probably wouldn't notice the randomness, except in running time.

Exercises

1. Develop an implementation of TwentyQuestions.java that takes the
maximum number N as command-line input. Prove that your implementation
is correct.

2. Add code to Insertion to produce the trace given in the text.

3. Add code to Merge to produce the trace given in the text.

4. Give traces of insertion sort and mergesort in the style of the traces in the
text, for the input

it was the best of times it was

5. Describe why it is desirable to use immutable keys with binary search.
6. Explain why we use lo + (hi - lo) / 2 to compute the index midway

between lo and hi instead of using (lo + hi) / 2. This can happen if the
array contains around a billion elements.

Solution. The latter fails when lo + hi overflows an int. Joshua Bloch
reports that Sun's Java 1.5 implementation contained this bug. Here is
another correct version using bit-shifting.

int mid = lo + (hi - lo) / 2;
int mid = (lo + hi) >>> 1;

7. Modify BinarySearch.java so that if the search key is in the array, it returns
the smallest index i for which a[i] is equal to key, and otherwise, it returns
-i, where i is the smallest index such that a[i] is greater than key.

8. Describe what happens if you apply binary search to an unorderd array. Why
shouldn't you check whether the array is sorted before each call to binary
search? Could you check that the elements binary search examines are in
ascending order?

9. Write a program Dedup.java that reads strings from standard input and
prints them on standard output with all duplicates removed (in sorted order).

10. Find the frequency distribution of words in your favorite book. Does it obey
Zipf's law?

11. Find the longest repeated substring in your favorite book.
12. Add code to LRS.java to make it print indices in the original string where the

longest repeated substring occurs.
13. Find a pathological input for which LRS.java runs in quadratic time (or

worse).
14. Show that binary search in a sorted array is logarithmic as long as it

eliminates at least a constant fraction of the array at each step.
15. Modify BinarySearch.java so that if the search key is not in the array, it

returns the largest index i for which a[i] is smaller than key (or -1 if no
such index exists).

16. Analyze mergesort mathematically when N is a power of 2, as we did for
binary search.

17. Analyze mergesort for the case when N is not a power of two.

Creative Exercises

This list of exercises is intended to give you experience in developing fast solutions
to typical problems. Think about using binary search, mergesort, or devising your
own divide-and-conquer algorithm. Implement and test your algorithm.

18. Median. Add to StdStats.java a method median() that computes in
linearithmic time the median of a sequence of N integers.

Hint: reduce to sorting.

19. Mode. Add to StdStats.java a method mode() that computes in linearithmic
time the mode (value that occurs most frequently) of a sequence of N
integers.

Hint: reduce to sorting.
20. Integer sort. Write a linear-time filter IntegerSort.java that takes from

from standard input a sequence of integers that are between 0 and 99 and
prints the same integers in sorted order on standard output. For example,
presented with the input sequence

98 2 3 1 0 0 0 3 98 98 2 2 2 0 0 0 2

your program should print the output sequence

0 0 0 0 0 0 1 2 2 2 2 2 3 3 98 98 98

21. Floor and ceiling. Given a sorted array of Comparable items, write
methods floor() and ceil() that returns the index of the largest (or
smallest) item not larger (or smaller) than an argument item in logarithmic
time.

22. Closest pair. Given an array of N real numbers, write a static method to
find in linearithmic time the pair of integers that are closest in value.

23. Farthest pair. Given an array of N real numbers, write a static method to
find in linear time the pair of integers that are farthest apart in value.

24. Two sum. Write a static method that takes as argument an array of N int
values and determines in linearithmic time whether any two of them sum to
0.

25. Three sum. Write a static method that takes as argument an array of N int
values and determines whether any three of them sum to 0. Your program
should run in time proportional to N^2 log N. Extra credit: develop a
program that solves the problem in quadratic time.

26. Majority. An element is a majority if it appears more than N/2 times. Write
a static method that takes an array of N strings as argument and identifies a
majority (if it exists) in linear time.

27. Common element. Write a static method that takes as argument three
arrays of strings, determines whether there is any string common to all three
arrays, and if so, returns one such string. The running time of your method
should be linearithmic in the total number of strings.

Hint: sort each of the three lists, then describe how to do a "3-way" merge.
28. Prefix-free codes. In data compression, a set of strings is prefix free if no

string is a prefix of another. For example, the set of strings 01, 10, 0010,
1010 is not prefix free because 10 is a prefix of 1010. Write a program that
reads in a set of strings from standard input and determines whether the set
is prefix free.

29. Longest common substring. Write a static method that finds the longest
common substring of two given strings s and t.

Hint: Suffix sort each string. Then merge the two sorted suffixes together.
30. Longest repeated, non-overlapping string. Modify LRS.java to find the

longest repeated substring that does not overlap.
31. Partitioning. Write a static method that sorts a Comparable array that is

known to have at most two different values.

Hint: Maintain two pointers, one starting at the left end and moving right,
the other starting at the right end and moving left. Maintain the invariant
that all elements to the left of the left pointer are equal to the smaller of the
two values and all elements to the right of the right pointer are equal to the
larger of the two values.

32. Dutch national flag problem. Write a static method that sorts a
Comparable array that is known to have at most three different values.

(Edsger Dijkstra named this the Dutch-national-flag problem because the
result is three "stripes" of values like the three stripes in the flag.)

33. Quicksort. Write a recursive program QuickSort.java that sorts an array of
randomly ordered distinct Comparable elements.

Hint: Use a method like the one described in the previous exercise. First,
partition the array into a left part with all elements less than v, followed by
v, followed by a right part with all elements greater than v. Then, recursively
sort the two parts.

Extra credit: Modify your method (if necessary) to work properly when the
elements are not necessarily distinct.

34. Reverse domain. Write a program to read in a list of domain names from
standard input, and print the reverse domain names in sorted order. For
example, the reverse domain of cs.princeton.edu is edu.princeton.cs.
This computation is useful for web log analysis. To do so, create a data type
Domain.java that implements the Comparable interface, using reverse
domain name order.

35. Local minimum in an array. Given an array of N real numbers, write a
static method to find in logarithmic time a local minimum (an index i such
that a[i-1] < a[i] < a[i+1]).

Solution. Query middle value a[n/2], and two neighbors a[n/2 - 1] and a[n/2
+ 1]. If a[n/2] is local minimum, stop; otherwise search in half with smaller
neighbor.

36. Discrete distribution. Design a fast algorithm to repeatedly generate
numbers from the discrete distribution: Given an array a[] of nonnegative
real numbers that sum to 1, the goal is to return index i with probability
a[i]. Form an array s[] of cumulated sums such that s[i] is the sum of
the first i elements of a[]. Now, generate a random real number r between
0 and 1, and use binary search to return the index i for which s[i] ≤
s[i+1].

37. Rhyming words. Write a program Rhymer.java that tabulates a list that
you can use to find words that rhyme. Use the following approach:

Read in a dictionary of words into an array of strings.
Reverse the letters in each word (confound becomes dnuofnoc, for
example).
Sort the resulting array.
Reverse the letters in each word back to their original order.

For example, confound is adjacent to words such as astound and
surround in the resulting list.

Web Exercises

1. Union of intervals. Given N intervals on the real line, determine the length
of their union in O(N log N) time. For example the union of the four intervals
[1, 3], [2, 4.5], [6, 9], and [7, 8] is 6.5.

2. Coffee can problem. (David Gries). Suppose you have a coffee can which
contains an unknown number of black beans and an unknown number of
white beans. Repeat the following process until exactly one bean remains:
Select two beans from the can at random. If they are both the same color,
throw them both out, but insert another black bean. If they are different
colors, throw the black one away, but return the white one. Prove that this
process terminates with exactly one bean left. What can you deduce about
the color of the last bean as a function of the initial number of black and
white beans? Hint: find a useful invariant maintained by the process.

3. Spam campaign. To initiate an illegal spam campaign, you have a list of
email addresses from various domains (the part of the email address that
follows the @ symbol). To better forge the return addresses, you want to
send the email from another user at the same domain. For example, you
might want to forge an email from nobody@princeton.edu to
somebody@princeton.edu. How would you process the email list to make

this an efficient task?
4. Order statistics. Given an array of N elements, not necessarily in ascending

order, devised an algorithm to find the kth largest one. It should run in O(N)
time on random inputs.

5. Kendall's tau distance. Given two permutations, Kendall's tau distance is
the number of pairs out of position. "Bubblesort metric." Give an O(N log N)
algorithm to compute the Kendall tau distance between two permutations of
size N. Useful in top-k lists, social choice and voting theory, comparing genes
using expression profiles, and ranking search engine results.

6. Antipodal points. Given N points on a circle, centered at the origin, design
an algorithm that determines whether there are two points that are
antipodal, i.e., the line connecting the two points goes through the origin.
Your algorithm should run in time proportional to N log N.

7. Antipodal points. Repeat the previous question, but assume the points are
given in clockwise order. Your algorithm should run in time proportional to N.

8. Identity. Given an array a[] of N distinct integers (positive or negative) in
ascending order. Devise an algorithm to find an index i such that a[i] = i
if such an index exists. Hint: binary search.

9. L1 norm. There are N circuit elements in the plane. You need to run a
special wire (parallel to the x-axis) across the circuit. Each circuit element
must be connected to the special wire. Where should you put the special
wire? Hint: median minimizes L1 norm.

10. Finding common elements. Given two arrays of N 64-bit integers, design
an algorithm to print out all elements that appear in both lists. The output
should be in sorted order. Your algorithm should run in N log N. Hint:
mergesort, mergesort, merge. Remark: not possible to do better than N log
N in comparison based model.

11. Finding common elements. Repeat the above exercise but assume the
first array has M integers and the second has N integers where M is much
less than N. Give an algorithm that runs in N log M time. Hint: sort and
binary search.

12. Anagrams. Design a O(N log N) algorithm to read in a list of words and
print out all anagrams. For example, the strings "comedian" and "demoniac"
are anagrams of each other. Assume there are N words and each word
contains at most 20 letters. Designing a O(N^2) algorithms should not be
too difficult, but getting it down to O(N log N) requires some cleverness.

13. Pattern recognition. Given a list of N points in the plane, find all subset of
3 or more points that are collinear.

14. Pattern recognition. Given a list of N points in the plane in general position
(no three are collinear), find a new point p that is not collinear with any pair
of the N original points.

15. Search in a sorted, rotated list. Given a sorted list of N integers that has
been rotated an unknown number of positions, e.g., 15 36 1 7 12 13 14,
design an O(log N) algorithm to determine if a given integer is in the list.

16. Counting inversions. Each user ranks N songs in order of preference.
Given a preference list, find the user with the closest preferences. Measure
"closest" according to the number of inversions. Devise an N log N algorithm
for the problem.

17. Throwing cats from an N-story building. Suppose that you have an N
story building and a bunch of cats. Suppose also that a cat dies if it is thrown
off floor F or higher, and lives otherwise. Devise a strategy to determine the
floor F, while killing O(log N) cats.

18. Throwing cats from a building. Repeat the previous exercise, but devise a
strategy that kills O(log F) cats. Hint: repeated doubling and binary search.

19. Throwing two cats from an N-story building. Repeat the previous
question, but now assume you only have two cats. Now your goal is to
minimize the number of throws. Devise a strategy to determine F that
involves throwing cats O(√N) times (before killing them both). This
application might occur in practice if search hits (cat surviving fall) are much
cheaper than misses (cat dying).

20. Throwing two cats from a building. Repeat the previous question, but
only throw O(√F) cats. Reference: ???.

21. Nearly sorted. Given an array of N elements, each which is at most k

positions from its target position, devise an algorithm that sorts in O(N log
k) time.

Solution 1: divide the file into N/k pieces of size k, and sort each piece in
O(k log k) time, say using mergesort. Note that this preserves the property
that no element is more than k elements out of position. Now, merge each
blocks of k elements with the block to its left.

Solution 2: insert the first k elements into a binary heap. Insert the next
element from the array into the heap, and delete the minimum element from
the heap. Repeat.

22. Merging k sorted lists. Suppose you have k sorted lists with a total of N
elements. Give an O(N log k) algorithm to produce a sorted list of all N
elements.

23. Longest common reverse complemented substring. Given two DNA
strings, find the longest substring that appears in one, and whose reverse
Watson-Crick complement appears in the other. Two strings s and t are
reverse complements if t is the reverse of s except with the following
substitutions A<->T, C<->G. For example ATTTCGG and CCGAAAT are
reverse complements of each other. Hint: suffix sort.

24. Circular string linearization. Plasmids contain DNA in a circular molecule
instead of a linear one. To facilitate search in a database of DNA strings, we
need a place to break it up to form a linear string. A natural choice is the
place that leaves the lexicographically smallest string. Devise an algorithm to
compute this canonical representation of the circular string Hint: suffix sort.

25. Find all matches. Given a text string, find all matches of the query string.
Hint: combine suffix sorting and binary search.

26. Longest repeated substring with less memory. Instead of using an
array of substrings where suffixes[i] refers to the ith sorted suffix, maintain
an array of integers so that index[i] refers to the offset of the ith sorted
suffix. To compare the substrings represented by a = index[i] and b =
index[j], compare the character s.charAt(a) against s.charAt(b),
s.charAt(a+1) against s.charAt(b+1), and so forth. How much memory
do you save? Is your program faster?

27. Idle time. Suppose that a parallel machine processes n jobs. Job j is
processed from sj to tj. Given the list of start and finish times, find the
largest interval where the machine is idle. Find the largest interval where the
machine is non-idle.

28. Local minimum of a matrix. Given an N-by-N array a of N2 distinct
integers, design an O(N) algorithm to find a local minimum: an pair of
indices i and j such that a[i][j] < a[i+1][j], a[i][j] < a[i][j+1], a[i][j] < a[i-
1][j], and a[i][j] < a[i][j-1].

29. Monotone 2d array. Give an n-by-n array of elements such that each row
is in ascending order and each column is in ascending order, devise an O(n)
algorithm to determine if a given element x in the array. You may assume all
elements in the n-by-n array are distinct.

30. 2D maxima. Given a set of n points in the plane, point (xi, yi) dominates
(xj, yj) if xi > xj and yi > yj. A maxima is a point that is not dominated by
any other point in the set. Devise an O(n log n) algorithm to find all maxima.
Application: on x-axis is space efficiency, on y-axis is time efficiency.
Maxima are useful algorithms. Hint: sort in ascending order according to x-
coordinate; scan from right to left, recording the highest y-value seen so far,
and mark these as maxima.

31. Compound words. Read in a list of words from standard input, and print
out all two-word compound words. If after, thought, and afterthought
are in the list, then afterthought is a compound word. Note: the
components in the compound word need not have the same length.

32. Smith's rule. The following problem arises in supply chain management.
You have a bunch of jobs to schedule on a single machine. (Give example.)
Job j requires p[j] units of processing time. Job j has a positive weight w[j]
which represents its relative importance - think of it as the inventory cost of
storing the raw materials for job j for 1 unit of time. If job j finishes being
processed at time t, then it costs t * w[j] dollars. The goal is to sequence the
jobs so as to minimize the sum of the weighted completion times of each
job. Write a program SmithsRule.java that reads in a command line
parameter N and a list of N jobs specified by their processing time p[j] and

their weight w[j], and output an optimal sequence in which to process their
jobs. Hint: Use Smith's rule: schedule the jobs in order of their ratio of
processing time to weight. This greedy rule turns out to be optimal.

33. Sum of four primes. The Goldbach conjecture says that all positive even
integers greater than 2 can be expressed as the sum of two primes. Given
an input parameter N (odd or even), express N as the sum of four primes
(not necessarily distinct) or report that it is impossible to do so. To make
your algorithm fast for large N, do the following steps:

a. Compute all primes less than N using the Sieve of Eratosthenes.
b. Tabulate a list of sums of two primes.
c. Sort the list.
d. Check if there are two numbers in the list that sum to N. If so, print

out the corresponding four primes.
34. Typing monkeys and power laws. (Micahel Mitzenmacher) Suppose that a

typing monkey creates random words by appending each of 26 possible
lettter with probability p to the current word, and finishes the word with
probability 1 - 26p. Write a program to estimate the frequency spectrum of
the words produced.

35. Typing monkeys and power laws. Repeat the previous exercise, but
assume that the letters a-z occur proportional to the following probabilities,
which are typical of English text.

CHAR FREQ CHAR FREQ CHAR FREQ CHAR FREQ CHAR FREQ

A 8.04 G 1.96 L 4.14 Q 0.11 V 0.99

B 1.54 H 5.49 M 2.53 R 6.12 W 1.92

C 3.06 I 7.26 N 7.09 S 6.54 X 0.19

D 3.99 J 0.16 O 7.60 T 9.25 Y 1.73

E 12.51 K 0.67 P 2.00 U 2.71 Z 0.09

F 2.30

36. Binary search. Justify why the following modified version of
binarySearch() works. Prove that if the key is in the array, it correctly
returns the smallest index i such that a[i] = key; if the key is not in the
array, it returns -i where i is the smallest index such that a[i] > key.

// precondition array a in ascending order
public static int binarySearch(long[] a, long key) {
 int bot = -1;
 int top = a.length;
 while (top - bot > 1) {
 int mid = bot + (top - bot) / 2;
 if (key > a[mid]) bot = mid;
 else top = mid;
 }
 if (a[top] == key) return top;
 else return -top - 1;
}

Answer. The while loop invariant says top >= bot + 2. This implies bot <
mid < top. Hence length of interval strictly decreases in each iteration. While
loop also maintains the invariant: a[bot] < key <= a[top], with the
contention that a[-1] is -infinity and a[N] is +infinity.

37. Range search. Given a database of all tolls collected in NJ road system in
2006, devise a scheme to answer queries of the form: extract sum of all tolls
collected in a given time interval. Use a Toll data type that implements the
Comparable interface, where the key is the time that the toll was collected.

Hint: sort by time, compute a cumulative sum of the first i tolls, then use
binary search to find the desired interval.

38. Longest repeated substrings. Modify LRS.java to find all longest repeated
substrings.

39. Non-recursive binary search. Write a non-recurisve version of binary
search.

public static int binarySearch(long[] a, long key) {
 int bot = 0;
 int top = a.length - 1;
 while (bot <= top) {
 int mid = bot + (top - bot) / 2;
 if (key < a[mid]) top = mid - 1;
 else if (key > a[mid]) bot = mid + 1;
 else return mid;
 }
 return -1;
}

40. Two sum to x. Given a sorted list of N integers and a target integer x,
determine in O(N) time whether there are any two that sum to exactly x.

Hint: maintain an index lo = 0 and hi = N-1 and compute a[lo] + a[hi]. If
the sum equals x, you are done; if the sum is less than x, decrement hi; if
the sum is greater than x, increment lo. Be careful if one (or more) of the
integers are 0.

41. Zero of a monotonic function. Let f be a monotonically increasing function
with f(0) < 0 and f(N) > 0. Find the smallest integer i such that f(i) > 0.
Devise an algorithm that makes O(log N) calls to f().

Hint: assuming we know N, maintaing an interval [lo, hi] such that f[lo] < 0
and f[hi] > 0 and apply binary search. If we don't know N, repeatedly
compute f(1), f(2), f(4), f(8), f(16), and so on until you find a value of N
such that f(N) > 0.

42. Bitonic max. Let a[] be an array that starts out increasing, reaches a
maximum, and then decreases. Design an O(log N) algorithm to find the
index of the maximum value.

43. Bitonic search. An array is bitonic if it is comprised of an increasing
sequence of integers followed immediately by a decreasing sequence of
integers. Given a bitonic array a of N distinct integers, describe how to
determine whether a given integer is in the array in O(log N) steps. Hint:
find the maximum, then binary search in each piece.

44. Median in two sorted arrays. Given two sorted arrays of size N1 and N2,
find the median of all elements in O(log N) time where N = N1 + N2. Hint:
design a more general algorithm that finds the kth largest element for any k.
Compute the median element in the large of the two lists and; throw away at
least 1/4 of the elements and recur.

45. Element distinctness. Give an array of N long integers, devise an O(N log
N) algorithm to determine if any two are equal. Hint: sorting brings equal
values together.

46. Duplicate count. Give a sorted array of N elements, possibly with
duplicates, find the index of the first and last occurrence of k in O(log N)
time. Give a sorted array of N elements, possibly with duplicates, find the
number of occurrences of element k in O(log N) time. Hint: modify binary
search.

Scientific example of sorting. Google display search results in descending order
of "importance", a spreadsheet displays columns sorted by a particular field,
Matlab sorts the real eigenvalues of a symmetric matrix in descending order.
Sorting also arises as a critical subroutine in many applications that appear to have
nothing to do with sorting at all including: data compression (see the Burrows-
Wheeler programming assignment), computer graphics (convex hull, closest pair),
computational biology (longest common substring discussed below), supply chain
management (schedule jobs to minimize weighted sum of completion times),

combinatorial optimization (Kruskal's algorithm), social choice and voting
(Kendall's tau distance), Historically, sorting was most important for commercial
applications, but sorting also plays a major role in the scientific computing
infrastructure. NASA and the fluids mechanics community use sorting to study
problems in rarefied flow; these collision detection problems are especially
challenging since they involve ten of billions of particles and can only be solved on
supercomputers in parallel. Similar sorting techniques are used in some fast N-
body simulation codes. Another important scientific application of sorting is for load
balancing the processors of a parallel supercomputers. Scientists rely on clever
sorting algorithm to perform load-balancing on such systems.

Last modified on June 07, 2012.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

4.3 STACKS AND QUEUES

This section under major construction.

Stacks and queues. In this section, we introduce two closely-related data types for manipulating
arbitrarily large collections of objects: the stack and the queue. Each is defined by two basic operations:
insert a new item, and remove an item. When we insert an item, our intent is clear. But when we remove
an item, which one do we choose? The rule used for a queue is to always remove the item that has been
in the collection the most amount of time. This policy is known as first-in-first-out or FIFO. The rule used
for a stack is to always remove the item that has been in the collection the least amount of time. This
policy is known as last-in first-out or LIFO.

Pushdown stacks. A pushdown stack (or just a stack) is a collection that is based on the last-in-first-
out (LIFO) policy. When you click a hyperlink, your browser displays the new page (and inserts it onto a
stack). You can keep clicking on hyperlinks to visit new pages. You can always revisit the previous page
by clicking the back button (remove it from a stack). The last-in-first-out policy offered by a pushdown
stack provides just the behavior that you expect.

By tradition, we name the stack insert method push() and the stack remove operation pop(). We also
include a method to test whether the stack is empty. The following API summarizes the operations:

The asterisk indicates that we will be considering more than one implementation of this API.

Array implementation. Representing stacks with arrays is a natural idea. The first problem that you
might encounter is implementing the constructor ArrayStackOfStrings(). An instance variable a[]
with an array of strings to hold the stack items is clearly needed, but how big should it be? For the
moment, We will finesse this problem by having the client provide an argument for the constructor that
gives the maximum stack size. We keep the items in reverse order of their arrival. This policy allows us
to add and remove items at the end without moving any of the other items in the stack.

We could hardly hope for a simpler implementation of ArrayStackOfStrings.java: all of the methods are
one-liners! The instance variables are an array a[] that hold the items in the stack and an integer N that
counts the number of items in the stack. To remove an item, we decrement N and then return a[N]; to
insert a new item, we set a[N] equal to the new item and then increment N. These operations preserve
the following properties: the items in the array are in their insertion order the stack is empty when the
value of N is 0 the top of the stack (if it is nonempty) is at a[N-1]

The primary characteristic of this implementation is that the push and pop operations take constant time.
The drawback of this implementation is that it requires the client to estimate the maximum size of the
stack ahead of time and always uses space proportional to that maximum, which may be unreasonable in
some situations.

Linked lists. For classes such as stacks that implement collections of objects, an important objective is
to ensure that the amount of space used is always proportional to the number of items in the collection.
Now we consider the use of a fundamental data structure known as a linked list that can provide

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

implementations of collections (and, in particular, stacks) that achieves this important objective.

A linked list is a recursive data structure defined as follows: a linked list is either empty (null) or a
reference to a node having a reference to a linked list. The node in this definition is an abstract entity
that might hold any kind of data in addition to the node reference that characterizes its role in building
linked lists. With object-oriented programming, implementing linked lists is not difficult. We start with a
simple example of a class for the node abstraction:

class Node {
 String item;
 Node next;
}

A Node has two instance variables: a String and a Node. The String is a placeholder in this example
for any data that we might want to structure with a linked list (we can use any set of instance variables);
the instance variable of type Node characterizes the linked nature of the data structure. Now, from the
recursive definition, we can represent a linked list by a variable of type Node just by ensuring that its
value is either null or a reference to a Node whose next field is a reference to a linked list.

We create an object of type Node by invoking its (no-argument) constructor. This creates a reference to
a Node object whose instance variables are both initialized to the value null. For example, to build a
linked list that contains the items "to", "be", and "or", we create a Node for each item:

Node first = new Node();
Node second = new Node();
Node third = new Node();

and set the item field in each of the nodes to the desired item
value:

first.item = "to";
second.item = "be";
third.item = "or";

and set the next fields to build the linked list:

first.next = second;
second.next = third;
third.next = null;

When tracing code that uses linked lists and other linked structures, we use a visual representation of the
changes where we draw a rectangle to represent each object we put the values of instance variables
within the rectangle we depict references as arrows that point to the referenced object This visual
representation captures the essential characteristic of linked lists and allows us to focus on the links.

Insert. Suppose that you want to insert a new node into a linked list. The easiest place to do so is
at the beginning of the list. For example, to insert the string "not" at the beginning of a given
linked list whose first node is first, we save first in oldfirst, assign to first a new Node,
assign its item field to "not" and its next field to oldfirst.

Remove. Suppose that you want to remove the first node from a list. This operation is even easier:
simply assign to first the value first.next. Normally, you would retrieve the value of the item
(by assigning it to some String variable) before doing this assignment, because once you change
the value of first, you may not have any access to the node to which it was referring. Typically,
the node object becomes an orphan, and the memory it occupies is eventually reclaimed by the
Java memory management system.

These two operations take constant time (independent of the length of the list).

Implementing stacks with linked lists. Program LinkedStackOfStrings.java uses a linked list to
implement a stack of strings. The implementation is based on a nested class Node like the one we have
been using. Java allows us to define and use other classes within class implementations in this natural
way. The class is private because clients do not need to know any of the details of the linked lists.

List traversal. One of the most common operations we perform on collections is to iterate through the
items in the collection. For example, we might wish to implement the toString() method to facilitate
debugging our stack code with traces. For ArrayStackOfStrings, this implementation is familiar:

public String toString() {
 String s = "";
 for (int i = 0; i < N; i++)
 s += a[i] + " ";
 return s;
}

As usual, this solution is intended for use only when N is small - it takes quadratic time because string
concatenation takes linear time. Our focus now is just on the process of examining every item. There is a
corresponding idiom for visiting the items in a linked list: We initialize a loop index variable x that
references the the first Node of the linked list. Then, we find the value of the item associated with x by
accessing x.item, and then update x to refer to the next Node in the linked list assigning to it the value
of x.next, repeating this process until x is null (which indicates that we have reached the end of the

linked list). This process is known as traversing the list, and is succinctly expressed in this
implementation of toString() for LinkedStackOfStrings:

public String toString() {
 String s = "";
 for (Node x = first; x != null; x = x.next)
 s += x.item + " ";
 return s;
}

Array doubling. Next, we consider an approach to accommodating arbitrary growth and shrinkage in a
data structure that is an attractive alternative to linked lists. As with linked lists, The idea is to modify the
array implementation to dynamically adjust the size of the array a[] so that it is (i) both sufficiently
large to hold all of the items and (ii) not so large as to waste an excessive amount of space. Program
DoublingStackOfStrings.java is a modification of ArrayStackOfStrings.java that achieves these objectives.

First, in push(), we check whether the array is too small. In particular, we check whether there is room
for the new item in the array by checking whether the stack size N is equal to the array size a.length. If
not, we just insert it with a[N++] = item as before; if so, we double the size of the array, by creating a
new array of twice the size, copying the stack items to the new array, and resetting the a[] instance
variable to reference the new array. Similarly, in pop(), we begin by checking whether the array is too
large, and we halve its size if that is the case.

Parameterized data types. We have developed one stack implementation that allows us to build a
stack of one particular type (String). In other applications we might need a stack of integers or a stack
of oranges or a queue of customers.

Create a stack of Objects. We could develop one stack implementation StackOfObjects.java whose
elements are of type Object. Using inheritance, we can insert an object of any type. However,
when we pop it, we must cast it back to the appropriate type. This approach can expose us to
subtle bugs in our programs that cannot be detected until runtime. For example, there is nothing to
stop a programmer from putting different types of objects on the same stack, then encountering a
runtime type-checking error, as in the following example:

StackOfObjects stack = new StackOfObjects();
Apple a = new Apple();
Orange b = new Orange();
stack.push(a);
stack.push(b);
a = (Apple) (stack.pop()); // throws a ClassCastException
b = (Orange) (stack.pop());

This toy example illustrates a basic problem. When we use type casting with an implementation
such as Stack for different types of items, we are assuming that clients will cast objects popped
from the stack to the proper type. This implicit assumption contradicts our requirement for ADTs
that operations are to be accessed only through an explicit interface. One reason that programmers
use precisely defined ADTs is to protect future clients against errors that arise from such implicit
assumptions. The code cannot be type-checked at compile time: there might be an incorrect cast
that occurs in a complex piece of code that could escape detection until some particular runtime
circumstance arises. Such an error is to be avoided at all costs because it could happen long after
an implementation is delivered to a client, who would have no way to fix it.

Java generics. We use Java generics to limit the objects on a stack or queue to all be of the same
type within a given application. The primary benefit is to discover type mismatch errors at compile-
time instead of run-time. This involves a small bit of new Java syntax. We name the generic class

Stack. It is identical to StackOfStrings except that we replace every occurrence of String with
Item and declare the class as follows:

public class Stack<Item>

Program Stack.java implements a generic stack using this approach. The client

Stack<Apple> stack = new Stack<Apple>();
Apple a = new Apple();
Orange b = new Orange();
stack.push(a);
stack.push(b); // compile-time error

Program DoublingStack.java implements a generic stack using an array. For technical reasons, one
cast is needed when allocating the array of generics.

Autoboxing. We have designed our stacks so that they can store any generic object type. We now
describe the Java language feature, known as auto-boxing and auto-unboxing, that enables us to reuse
the same code with primitive types as well. Associated with each primitive type, e.g. int, is a full blown
object type, e.g., Integer. When we assign a primitive to the corresponding object type (or vice versa),
Java automatically performs the transformation. This enables us to write code like the following.

Stack<Integer> stack = new Stack<Integer>();
stack.push(17); // auto-boxing (converts int to Integer)
int a = stack.pop(); // auto-unboxing (converts Integer to int)

The value 17 is automatically cast to be of type Integer when we pass it to the push() method. The
pop() method returns an Integer, and this value is cast to an int when we assign it to the variable a.
We should be aware of what is going on behind the scenes since this can affect performance.

Java supplies built-in wrapper types for all of the primitive types: Boolean, Byte, Character, Double,
Float, Integer, Long, and Short. These classes consist primarily of static methods (e.g.,
Integer.parseInt(), Integer.reverse()), but they also include some non-static methods
(compareTo(), equals(), doubleValue()).

Queue. A queue supports the insert and remove operations using a FIFO discipline. By convention, we
name the queue insert operation enqueue and the remove operation dequeue. Lincoln tunnel. Student
has tasks that must be completed. Put on a queue. Do the tasks in the same order that they arrive.

public class Queue<Item> {
 public boolean isEmpty();
 public void enqueue(Item item);
 public Item dequeue();
}

Linked list implementation. Program Queue.java implements a FIFO queue of strings using a linked
list. Like Stack, we maintain a reference first to the least-recently added Node on the queue.
For efficiency, we also maintain a reference last to the least-recently added Node on the queue.

Array implementation. Similar to array implementation of stack, but a little trickier since need to
wrap-around. Program DoublingQueue.java implements the queue interface. The array is
dynamically resized using repeated doubling.

Iteration. Sometimes the client needs to access all of the items of a collection, one at a time, without
deleting them. To maintain encapsulation, we do not want to reveal the internal representation of the
queue (array or linked list) to the client. "Decouple the thing that needs to traverse the list from the
details of getting each element from it." We solve this design challenge by using Java's
java.util.Iterator interface:

public interface Iterator<Item> {
 boolean hasNext();
 Item next();
 void remove(); // optional
}

That is, any data type that implements the Iterator interface promises to implement two methods:
hasNext() and next(). The client uses these methods to access the list elements one a time using the
following idiom.

Queue<String> queue = new Queue<String>();
...
Iterator<String> i = queue.iterator();
while (i.hasNext()) {
 String s = i.next();
 StdOut.println(s);
}

Queue iterator in Java. Queue.java illustrates how to implement an Iterator when the items are
stored in a linked list.

public Iterator iterator() { return new QueueIterator(); }

private class QueueIterator implements Iterator<Item> {
 Node current = first;

 public boolean hasNext() { return current != null; }

 public Item next() {
 Item item = current.item;
 current = current.next;
 return item;
 }
}

It relies on a private nested subclass QueueIterator that implements the Iterator interface.
The method iterator() creates an instance of type QueueIterator and returns it as an
Iterator. This enforces the iteration abstraction since the client will only the items through the
hasNext() and next() methods. The client has no access to the internals of the Queue or even
the QueueIterator. It is the client's responsibility to only add elements to the list when no
iterator is in action.

Enhanced for loop. Iteration is such a useful abstraction that Java provides compact syntax (known
as the enhanced for loop) to iterate over the elements of a collection (or array).

Iterator<String> i = queue.iterator();
while (i.hasNext()) {
 String s = i.next();
 StdOut.println(s);
}

for (String s : queue)
 StdOut.println(s);

To take advantage of Java's enhanced foreach syntax, the data type must implement Java's
Iterable interface.

public interface Iterable<Item> {
 Iterator<Item> iterator();
}

That is, the data type must implement a method named iterator() that returns an Iterator to
the underlying collection. Since our Queue ADT now includes such a method, we simply need to
declare it as implementing the Iterable interface and we are ready to use the foreach notation.

public class Queue<Item> implements Iterable<Item>

Stack and queue applications. Stacks and queues have numerous useful applications.

Queue applications: Computing applications: serving requests of a single shared resource (printer,
disk, CPU), transferring data asynchronously (data not necessarily received at same rate as sent)
between two processes (IO buffers), e.g., pipes, file IO, sockets. Buffers on MP3 players and
portable CD players, iPod playlist. Playlist for jukebox - add songs to the end, play from the front of
the list. Interrupt handling: When programming a real-time system that can be interrupted (e.g.,
by a mouse click or wireless connection), it is necessary to attend to the interrupts immediately,
before proceeding with the current activity. If the interrupts should be handles in the same order
they arrive, then a FIFO queue is the appropriate data structure.

Arithmetic expression evaluation. Program Evaluate.java evaluates a fully parenthesized arithmetic
expression.

An important application of stacks is in parsing. For example, a compiler must parse arithmetic
expressions written using infix notation. For example the following infix expression evaluates to
212.

(2 + ((3 + 4) * (5 * 6)))

We break the problem of parsing infix expressions into two stages. First, we convert from infix to a
different representation called postfix. Then we parse the postfix expression, which is a somewhat
easier problem than directly parsing infix.

Evaluating a postfix expression. A postfix expression is....

2 3 4 + 5 6 * * +

First, we describe how to parse and evaluate a postfix expression. We read the tokens in one
at a time. If it is an integer, push it on the stack; if it is a binary operator, pop the top two
elements from the stack, apply the operator to the two elements, and push the result back
on the stack. Program Postfix.java reads in and evaluates postfix expressions using this
algorithm.
Converting from infix to postfix. Now, we describe how to convert from infix to postfix. We
read in the tokens one at a time. If it is an operator, we push it on the stack; if it is an
integer, we print it out; if it is a right parentheses, we pop the topmost element from the
stack and print it out; if it is a left parentheses, we ignore it. Program Infix.java reads in an
infix expression, and uses a stack to output an equivalent postfix expression using the
algorithm described above. Relate back to the parse tree example in Section 4.3.

Function calls. Perhaps the most important application of stacks is to implement function calls. Most
compilers implement function calls by using a stack. This also provides a technique for eliminating
recursion from a program: instead of calling a function recursively, the programmer uses a stack to
simulate the function calls in the same way that the compiler would have done so. Conversely, we
can often use recursion instead of using an explicit stack. Some programming languages provide a

mechanism for recursion, but not for calling functions.

Programming languages have built in support for stacks (recursion), but no analogous mechanism
for dealing with queues.

Postscript and FORTH programming languages are stack based. Java bytecode is interpreted on
(virtual) stack based processor. Microsoft Intermediate Language (MSIL) that .NET applications are
compiled to.

M/M/1 queue. The Markov/Markov/Single-Server model is a fundamental queueing model in
operations research and probability theory. Tasks arrive according to a Poisson process at a certain
rate λ. This means that λ customers arrive per hour. More specifically, the arrivals follow an
exponential distribution with mean 1 / λ: the probability of k arrivals between time 0 and t is (λ
t)^k e^(-λ t) / k!. Tasks are serviced in FIFO order according to a Poisson process with rate µ. The
two M's standard for Markov: it means that the system is memoryless: the time between arrivals is
independent, and the time between departures is independent.

Analysis of M/M/1 model. We are interested in understanding the queueing system. If &lambda > µ
the queue size increases without limit. For simple models like M/M/1 we can analyze these
quantities analytically using probability theory. Assuming µ > λ, the probability of exactly n
customers in the system is (λ / µ)^n (1 - λ / &mu).

L = average number of customers in the system = λ / (µ - λ).

LQ = average number of customers in the queue = λ2 / (µ (µ - λ)).

W = average time a customer spends in the system = 1 / (µ - λ).
WQ = average time a customer spends in the queue = W - 1 / µ.

Program MM1Queue.java For more complex models we need to resort to simulation like this.
Variants: multiple queues, multiple servers, sequential multi-stage servers, using a finite queue
and measuring number of customers that are turned away. Applications: customers in McDonalds,
packets in an internet router,

Little's law asserts that the average number of customers in a (stable) queueing system equals the
average arrival rate times their average time in the system. But the variance of customer waiting
times satisfies: Var(FIFO) < Var(SIRO) < Var(LIFO).

The distribution of the number of customers in the system does not depend on the queueing
discipline (so long as it is independent of their service times). Same for expected waiting time.

M/D/1 queue. Program MD1Queue.java is similar but the service occurs at a fixed rate (rather than
random).

Load balancing. Write a program LoadBalance.java that performs a load-balancing simulation.

Q + A.

Q. When do I use new with Node?

A. Just as with any other class, you should only use new when you want to create a new Node object (a
new element in the linked list). You should not use new to create a new reference to an existing Node
object. For example, the code

Node oldfirst = new Node();
oldfirst = first;

creates a new Node object, then immediately loses track of the only reference to it. This code does not
result in an error, but it is a bit untidy to create orphans for no reason.

Q. Why declare Node as a nested class? Why private?

A. By declaring the subclass Node to be private we restrict access to methods within the enclosing
class. One characteristic of a private nested class is that its instance variables can be directly accessed
from within the enclosing class, but nowhere else, so there is no need to declare them public or private.
Note : A nested class that is not static is known as an inner class, so technically our Node classes are
inner classes, though the ones that are not generic could be static.

Q. Why does javac LinkedStackOfStrings.java creates a file
LinkedStackOfStrings$Node.class as well as LinkedStackOfStrings.class?

A. That file is for the nested class Node. Java's naming convention is to use $ to separate the name of
the outer class from the nested class.

Q. Should a client be allowed to insert null items onto a stack or queue? A. This question arises
frequently when implementing collections in Java. Our implementation (and Java's stack and queue
libraries) do permit the insertion of null values.

Q. Are there Java libraries for stacks and queues?

A. Yes and no. Java has a built in library called java.util.Stack, but you should avoid using it when
you want a stack. It has several additional operations that are not normally associated with a stack, e.g.,
getting the ith element. It also allows adding an element to the bottom of the stack (instead of the top),
so it can implement a queue! Although having such extra operations may appear to be a bonus, it is
actually a curse. We use data types not because they provide every available operation, but rather

because they allow us to precisely specify the operations we need. The prime benefit of doing so is that
the system can prevent us from performing operations that we do not actually want. The
java.util.Stack API is an example of a wide interface, which we generally strive to avoid.

Q. I want to use an array representation for a generic stack, but code like the following will not compile.
What is the problem?

private Item[] a = new Item[max];
oldfirst = first;

A. Good try. Unfortunately, creating arrays of generics is not allowed in Java 1.5. Experts still are
vigorously debating this decision. As usual, complaining too loudly about a language feature puts you on
the slippery slope towards becoming a language designer. There is a way out, using a cast: you can
write:

private Item[] a = (Item[]) new Object[max];
oldfirst = first;

The underlying cause is that arrays in Java are covariant, but generics are not. In other words, String[]
is a subtype of Object[], but Stack<String> is not a subtype of Stack<Object>. To get around this
defect, you need to perform an unchecked cast as in DoublingStack.java. Many programmers consider
covariant arrays to be a defect in Java's type system (and this resulted in the need for "reifiable types"
and "type erasure"). However, in a world without generics, covariant arrays are useful, e.g., to
implement Arrays.sort(Comparable[]) and have it be callable with an input array of type String[].

Q. Can I use the foreach construction with arrays?

A. Yes (even though arrays do not implement the Iterator interface). The following prints out the
command-line arguments:

public static void main(String[] args) {
 for (String s : args)
 StdOut.println(s);
}

Q. Is iterating over a linked list more efficient with a loop or recursion?

A. An optimizing compiler will likely translate a tail-recursive function into the equivalent loop, so there
may be no observable performance overhead of using recursion.

Q. How does auto-boxing handle the following code fragment?

Integer a = null;
int b = a;

A. It results in a run-time error. Primitive type can store every value of their corresponding wrapper type
except null.

Q. Why does the first group of statements print true, but the second two print false?

Integer a1 = 100;
Integer a2 = 100;
System.out.println(a1 == a2); // true

Integer b1 = new Integer(100);
Integer b2 = new Integer(100);
System.out.println(b1 == b2); // false

Integer c1 = 150;
Integer c2 = 150;
System.out.println(c1 == c2); // false

A. The second prints false because b1 and b2 are references to different Integer objects. The first and
third code fragments rely on autoboxing. Surprisingly the first prints true because values between -128
and 127 appear to refer to the same immutable Integer objects (presumably there is a pool of them
that are reused), while Java creates new objects for each integer outside this range. Lesson: as usual,
don't use == to compare whether two objects have the same value.

Q. Are generics solely for auto-casting?

A. No, but this will be the only thing we use them for. This is known as "pure generics" or "concrete
parameterized types." Concrete parameterized types work almost like normal types with a few exceptions
(array creation, exception handling, with instanceof, and in a class literal). More advanced uses of
generics, including "wildcards", are are useful for handling subtypes and inheritance. Here is a generics
tutorial.

Q. Why do I get an incompatible types compile-time error with the following code?

Stack stack = new Stack<String>();
stack.push("Hello");
String s = stack.pop();

A. You forgot to specify the concrete type when declaring stack. It should be Stack<String>.

Q. Why do I get a uses unchecked or unsafe operations compile-time warning with the following
code?

Stack<String> stack = new Stack();
stack.push("Hello");
String s = stack.pop();

A. You forgot to specify the concrete type when calling the constructor. It should be new
Stack<String>().

Exercises

1. Add a method isFull() to ArrayStackOfStrings.java.

2. Give the output printed by java ArrayStackOfStrings 5 for the input

it was - the best - of times - - - it was - the - -

3. Suppose that a client performs an intermixed sequence of (stack) push and pop operations. The
push operations put the integers 0 through 9 in order on to the stack; the pop operations print out
the return value. Which of the following sequence(s) could not occur?

(a) 4 3 2 1 0 9 8 7 6 5
(b) 4 6 8 7 5 3 2 9 0 1
(c) 2 5 6 7 4 8 9 3 1 0
(d) 4 3 2 1 0 5 6 7 8 9
(e) 1 2 3 4 5 6 9 8 7 0
(f) 0 4 6 5 3 8 1 7 2 9
(g) 1 4 7 9 8 6 5 3 0 2
(h) 2 1 4 3 6 5 8 7 9 0

4. Write a stack client Reverse.java that reds in strings from standard input and prints them in
reverse order.

5. Assuming that standard input has some unknown number N of double values. Write a method that
reads all the values and returns an array of length N containing them, in the other they appear on
standard input.

6. Write a stack client Parentheses.java that reads in a text stream from standard input and uses a
stack to determine whether its parentheses are properly balanced. For example, your program
should print true for [()]{}{[()()]()} and false for [(]). Hint : Use a stack.

7. What does the following code fragment print when N is 50? Give a high-level description of what
the code fragment does when presented with a positive integer N.

Stack stack = new Stack();
while (N > 0) {
 stack.push(N % 2);
 N = N / 2;
}
while (!stack.isEmpty())
 StdOut.print(stack.pop());
StdOut.println();

Answer: prints the binary representation of N (110010 when N is 50).

8. What does the following code fragment do to the queue q?

Stack stack = new Stack();
while (!q.isEmpty())
 stack.push(q.dequeue());
while (!stack.isEmpty())
 q.enqueue(stack.pop());

9. Add a method peek() to Stack.java that returns the most recently inserted element on the stack
(without popping it).

10. Give the contents and size of the array for DoublingStackOfStrings with the input

it was - the best - of times - - - it was - the - -

11. Add a method length() to Queue.java that returns the number of elements on the queue. Hint:
Make sure that your method takes constant time by maintaining an instance variable N that you
initialize to 0, increment in enqueue(), decrement in dequeue(), and return in length().

12. Draw a memory usage diagram in the style of the diagrams in Section 4.1 for the three-node
example used to introduce linked lists in this section.

13. Write a program that takes from standard input an expression without left parentheses and prints
the equivalent infix expression with the parentheses inserted. For example, given the input

 1 + 2) * 3 - 4) * 5 - 6)))

your program should print

 ((1 + 2) * ((3 - 4) * (5 - 6))

14. Write a filter InfixToPostfix.java that converts an arithmetic expression from infix to postfix.
15. Write a program EvaluatePostfix.java that takes a postfix expression from standard input,

evaluates it, and prints the value. (Piping the output of your program from the previous exercise to
this program gives equivalent behavior to Evaluate.java.)

16. Suppose that a client performs an intermixed sequence of (queue) enqueue and dequeue
operations. The enqueue operations put the integers 0 through 9 in order on to the queue; the
dequeue operations print out the return value. Which of the following sequence(s) could not occur?

(a) 0 1 2 3 4 5 6 7 8 9
(b) 4 6 8 7 5 3 2 9 0 1
(c) 2 5 6 7 4 8 9 3 1 0
(d) 4 3 2 1 0 5 6 7 8 9

17. Write an iterable Stack client that has a static methods copy() that takes a stack of strings as
argument and returns a copy of the stack. Note: This ability is a prime example of the value of
having an iterator, because it allows development of such functionality without changing the basic
API.

18. Develop a class DoublingQueueOfStrings.java that implements the queue abstraction with a fixed-
size array, and then extend your implementation to use array doubling to remove the size
restriction.

19. Write a Queue.java client that takes a command-line argument k and prints the kth from the last
string found on standard input.

20. (For the mathematically inclined.) Prove that the array in DoublingStackOfStrings.java is never less
than one-quarter full. Then prove that, for any DoublingStackOfStrings client, the total cost of
all of the stack operations divided by the number of operations is a constant.

21. Modify MD1Queue.java to make a program MM1Queue.java that simulates a queue for which both
the arrival and service times are Poisson processes. Verify Little's law for this model.

22. Develop a class StackOfInts.java that uses a linked-list representation (but no generics). Write a
client that compares the performance of your implementation withStack<Integer> to determine
the performance penalty from autoboxing on your system.

Linked List Exercises

23. Write a method delete() that takes an int argument k and deletes the kth element in a linked
list, if it exists.

Solution.

// we assume that first is a reference to the first Node in the list
public void delete(int k) {
 if (k <= 0) throw new RuntimeException("Invalid value of k");

 // degenerate case - empty linked list
 if (first == null) return;

 // special case - removing the first node
 if (k == 1) {
 first = first.next;
 return;
 }

 // general case, make temp point to the (k-1)st node
 Node temp = first;
 for (int i = 2; i < k; i++) {
 temp = temp.next;
 if (temp == null) return; // list has < k nodes
 }

 if (temp.next == null) return; // list has < k nodes

 // change temp.next to skip kth node
 temp.next = temp.next.next;
}

24. Write a method find() that takes a linked list and a string key as arguments and returns true if
some node in the list has key as its item field, false otherwise.

25. Suppose x is a linked-list node. What is the effect of the following code fragment?

x.next = x.next.next;

Answer: Deletes from the list the node immediately following x.

26. Suppose that x is a linked-list node. What is the effect of the following code fragment?

t.next = x.next;
x.next = t;

Answer: Inserts node t immediately after node x.

27. Why does the following code fragment not have the same effect as in the previous question?

x.next = t;
t.next = x.next;

Answer: When it comes time to update t.next, x.next is no longer the original node following x,
but is instead t itself!

28. Write a method removeAfter() that takes a linked-list Node as argument and removes the node
following the given one (and does nothing if the argument or the next field in the argument node is
null).

29. Write a method insertAfter() that takes two linked-list Node arguments and inserts the second
after the first on its list (and does nothing if either argument is null).

30. Write a method remove() that takes a linked list and a string key as arguments and removes all of
the nodes in the list that have key as its item field.

31. Write a method max() that a reference to the first node in a linked list as argument and returns
the value of the maximum key in the list. Assume that all keys are positive integers, and return 0 if
the list is empty.

32. Develop a recursive solution to the previous exercise.
33. Write a recursive method to print the elements of a linked list in reverse order. Do not modify any

of the links. Easy: Use quadratic time, constant extra space. Also easy: Use linear time, linear extra
space. Not so easy: Develop a divide-and-conquer algorithm that uses linearithmic time and
logarithmic extra space.

34. Write a recursive method to randomly shuffle the elements of a linked list by modifying the links.

Easy: Use quadratic time, constant extra space. Not so easy: Develop a divide-and-conquer
algorithm that uses linearithmic time and logarithmic extra space.

Creative Exercises

1. Deque A double-ended queue or deque (pronounced deck) is a combination of a stack and and a
queue. It stores a parameterized collection of items and supports the following API:

Write a data type Deque.java that implements the deque API using a singly linked list.

2. Random queue. Create an abstract data type RandomizedQueue.java that supports the
following operations: isEmpty(), insert(), random(), and removeRandom(), where the
deletion operation deletes and returns a random object. Hint: maintain an array of objects. To
delete an object, swap a random object (indexed 0 through N-1) with the last object (index N-1).
Then, delete and return the last object.

3. Listing files. A Unix directory is a list of files and directories. Program Directory.java takes the
name of a directory as a command line parameter and prints out all of the files contained in that
directory (and any subdirectories) in level-order. It uses a queue.

4. Josephus problem Program Josephus.java uses a queue to solve the Josephus problem.
5. Delete ith element. Create an ADT that supports the following operations: isEmpty, insert, and

remove(int i), where the deletion operation deletes and returns the ith least recently added
object on the queue. Do it with an array, then do it with a linked list. See Exercise XYZ for a more
efficient implementation that uses a BST.

6. Dynamic shrinking. With the array implementations of stack and queue, we doubled the size of
the array when it wasn't big enough to store the next element. If we perform a number of doubling
operations, and then delete alot of elements, we might end up with an array that is much bigger
than necessary. Implement the following strategy: whenever the array is 1/4 full or less, shrink it
to half the size. Explain why we don't shrink it to half the size when it is 1/2 full or less.

7. Ring buffer. A ring buffer or circular queue is a FIFO data structure of a fixed size N. It is useful
for transferring data between asynchronous processes or storing log files. When the buffer is
empty, the consumer waits until data is deposited; when the buffer is full, the producer waits to
deposit data. A ring buffer has the following methods: isEmpty(), isFull(), enqueue(), and
dequeue(). Write an generic data type RingBuffer using an array (with circular wrap-around for
efficiency).

8. Merging two sorted queues. Given two queues with strings in ascending order, move all of the
strings to a third queue so that the third queues ends up with the strings in ascending order.

9. Mergesort. Given N strings, create N queues, each containing one of the strings. Create a queue
of the N queues. Then repeatedly apply the sorted merging operation to the first two queues and
reinsert the merged queue at the end. Repeat until the queue of queues contains only one queue.

10. Queue with two stacks. Show how to implement a queue using two stacks. Hint: If you push
elements onto a stack and then pop them all, they appear in reverse order. If you repeat this
process, they're now back in order.

11. Move-to-front. Read in a sequence of characters from standard input and maintain the characters
in a linked list with no duplicates. When you read in a previously unseen character, insert it at the
front of the list. When you read in a duplicate character, delete it from the list and re-insert it at
the beginning. This move-to-front strategy is useful for caching and data compression (Burrows-
Wheeler) algorithms where items that have been recently accessed are more likely to be re-
accessed.

12. Text editor buffer. Implement an ADT for a buffer in a text editor. It should support the following
operations:

insert(c): insert character c at cursor
delete(): delete and return the character at the cursor
left(): move the cursor one position to the left

right(): move the cursor one position to the right
get(i): return the ith character in the buffer

Hint: use two stacks.
13. Topological sort. You have to sequence the order of N jobs on a processor. Some of the jobs

must complete before others can begin. Specifically, you are given a list of order pairs of jobs (i, j).
Find a sequence of the jobs such that for each pair (i, j) job i is scheduled before job j. Use the
following algorithm.... For each node, maintain a list of outgoing arcs using a queue. Also, maintain
the indegree of each node. Finally, maintain a queue of all nodes whose indegree is 0. Repeatedly
delete a node with zero indegree, and delete all of its outgoing arcs. Write a program
TopologicalSorter.java to accomplish this.

Alternate application: prerequisites for graduating in your major. Must take COS 126 and COS 217
before COS 341, etc. Can you graduate?

14. PERT / CPM. Modify the previous exercise to handle weights (i, j, w) means job i is scheduled at
least w units of time before job j.

15. Set of integers. Create a data type that represents a set of integers (no duplicates) between 0
and N-1. Support add(i), exists(i), remove(i), size(), intersect, difference, symmetricDifference,
union, isSubset, isSuperSet, and isDisjointFrom.

16. Indexing a book. Write a program that reads in a text file from standard input and compiles an
alphabetical index of which words appear on which lines, as in the following input. Ignore case and
punctuation. Similar to FrequencyCount, but for each word maintain a list of location on which it
appears.

Reverse a linked list. Write a function that takes the first Node in a linked list, reverse it, and
returns the first Node in the resulting linked list.

Solution. To accomplish this, we maintain references to three consecutive nodes in the linked list,
reverse, first, and second. At each iteration we extract the node first from the original linked
list and insert it at the beginning of the reversed list. We maintain the invariant that first is the
first node of what's left of the original list, second is the second node of what's left of the original
list, and reverse is the first node of the resulting reversed list.

public static Node reverse(Node list) {
 Node first = list;
 Node reverse = null;
 while (first != null) {
 Node second = first.next;
 first.next = reverse;
 reverse = first;
 first = second;
 }
 return reverse;
}

When writing code involving linked lists, we must always be careful to properly handle the
exceptional cases (when the linked list is empty, when the list has only one or two nodes) and the
boundary cases (dealing with the first or last items). This is usually the trickiest part, as opposed to
handling the normal cases.

Recursive solution. Assuming the linked list has N elements, we recursively reverse the last N-1
elements, then carefully append the first element to the end.

public Node reverse(Node first) {
 if (first == null || first.next == null) return first;
 Node second = first.next;
 Node rest = reverse(second);
 second.next = first;
 first.next = null;
 return rest;
}

Web Exercises

1. Quote. Develop a data type Quote.java that implements the following API:

public class Quote

 Quote() create an empty quote
 void addWord(String w) add w to the end of the quote
 int count() return number of words in quote
 String getWord(int i) return the ith word starting at 1
 void insertWord(int i, String w) add w after the ith word
 String toString() return the entire quote as a String

To do so, define a nested class Card that holds one word of the quote and a link to the next word:

private class Card {
 private String word;
 private Card next;

 public Card(String word) {
 this.word = word;
 this.next = null;
 }
}

2. Circular quote. Repeated the previous exercise, but write a program CircularQuote.java that use a
circular linked list.

3. Write a recursive function that takes as input a queue, and rearranges it so that it is in reverse
order. Hint: dequeue() the first element, recursively reverse the queue, and the enqueue the first
element.

4. Add a method Item[] multiPop(int k) to Stack that pops k elements from the stack and
returns them as an array of objects.

5. Add a method Item[] toArray() to Queue that returns all N elements on the queue as an array
of length N.

6. What does the following code fragment do?

IntQueue q = new IntQueue();
q.enqueue(0);
q.enqueue(1);
for (int i = 0; i < 10; i++) {
 int a = q.dequeue();
 int b = q.dequeue();
 q.enqueue(b);
 q.enqueue(a + b);
 System.out.println(a);
}

Fibonacci
7. What data type would you choose to implement an "Undo" feature in a word processor?
8. Suppose you have a single array of size N and want to implement two stacks so that you won't get

overflow until the total number of elements on both stacks is N+1. How would you proceed?
9. Suppose that you implemented push in the linked list implementation of StackList with the

following code. What is the mistake?

public void push(Object value) {
 Node second = first;
 Node first = new Node();
 first.value = value;
 first.next = second;
}

Answer: By redeclaring first, you are create a new local variable named first, which is different
from the instance variable named first.

10. Copy a queue. Create a new constructor so that LinkedQueue r = new LinkedQueue(q)
makes r reference a new and independent queue. Hint: delete all of the elements from q and add
to both q and this.

11. Copy a stack. Create a new constructor for the linked list implementation of Stack.java so that
Stack t = new Stack(s) makes t reference a new and independent copy of the stack s. You
should be able to push and pop from s or t without influencing the other.

Should it work if argument is null? Recursive solution: create a copy constructor for a Node and

use this to create the new stack.

Node(Node x) {
 item = x.item;
 if (x.next != null) next = new Node(x.next);
}

public Stack(Stack s) { first = new Node(s.first); }

Nonrecursive solution (untested):

Node(Node x, Node next) { this.x = x; this.next = next; }

public Stack(Stack s) {
 if (s.first != null) {
 first = new Node(s.first.value, s.first.next) {
 for (Node x = first; x.next != null; x = x.next)
 x.next = new Node(x.next.value, x.next.next);
 }
}

12. Stack with one queue. Show how to implement a stack using one queue. Hint: to delete an item,
get all of the elements on the queue one at a time, and put them at the end, except for the last
one which you should delete and return.

13. Listing files with a stack. Write a program that takes the name of a directory as a command line
argument, and prints out all of the files contained in this directory and any subdirectories. Also
prints out the file size (in bytes) of each file. Use a stack instead of a queue. Repeat using
recursion and name your program DirectoryR.java. Modify DirectoryR.java so that it prints out each
subdirectory and its total size. The size of a directory is equal to the sum of all of the files it
contains or that its subdirectories contain.

14. Stack + max. Create a data structure that efficiently supports the stack operations (pop and push)
and also return the maximum element. Assume the elements are integers or reals so that you can
compare them. Hint: use two stacks, one to store all of the elements and a second stack to store
the maximums.

15. Tag systems. Write a program that reads in a binary string from the command line and applies
the following (00, 1101) tag-system: if the first bit is 0, delete the first three bits and append 00; if
the first bit is 1, delete the first three bits and append 1101. Repeat as long as the string has at
least 3 bits. Try to determine whether the following inputs will halt or go into an infinite loop:
10010, 100100100100100100. Use a queue.

16. Reverse. Write a method to read in an arbitrary number of strings from standard input and print
them in reverse order.

public static void main(String[] args) {
 Stack<String> stack = new Stack<String>();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 stack.push(s);
 }
 while (!stack.isEmpty()) {
 String s = stack.pop();
 StdOut.println(s);
 }
}

17. Add a method int size() to DoublingStack.java and Stack.java that returns the number of
elements on the stack.

18. Add a method reverse() to Queue that reverses the order of the elements on the queue.

19. Add a method copy() to ArrayStackOfStrings.java

Last modified on April 11, 2012.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

4.4 SYMBOL TABLES

This section under major construction.

Symbol tables. A symbol table is a data type that we use to associate values with keys. Clients can
store (put) an entry into the symbol table by specifying a key-value pair and then can retrieve (get)
the value corresponding to a particular key from the symbol table. For example, a university might
associate information such as a student's name, home address, and grades (the value) with that
student's social security number (the key), so that each student's records can be accessed by
specifying a social security number. The same approach might be used by a scientist to organize
data, by a business to keep track of customer transactions, or by an internet search engine to
associate keywords with web pages.

API. A symbol table is a collection of key-value pairs. We use a generic type Key for keys and a
generic type Value for values: every symbol-table entry associates a Value with a Key. In most
applications, the keys have some natural ordering, so (as we did with sorting) we require the key
type Key to implement Java's Comparable interface.

public class *ST<Key extends Comparable<Key>, Value>
 *ST() // create a symbol table
 void put(Key key, Value v) // put key-value pair into the table
 Value get(Key key) // return value paired with key
 // or null if no such value
 boolean contains(Key key) // is there a value paired with key?

This API reflects several design decisions, which we now enumerate:

Comparable keys. We take advantage of key ordering to develop efficient implementations of
put and get. We also assume the keys do not change their value while in the symbol table.
The simplest and most commonly used types of keys, String and built-in wrapper types like
Integer and Double, are immutable.

Replace-the-old-value policy. If when a key-value pair is inserted into the symbol table that
already associates another value with the given key, we adopt the convention that the new
value replaces the old one (just as with an array assignment statement).
Not found. The method get() returns null if no entry with the given key has previously been
put into the table. This choice has two implications, discussed next.
Null keys and values. Clients are not permitted to use null as a key or value. This convention
enables us to implement contains() as follows:

public boolean contains(Key key) {
 return get(key) != null;
}

Remove. We do not include a method for removing keys from the symbol table. Many
applications do require such a method, but we leave implementations as an exercise or for
more advanced courses in data structures in algorithms. Since clients cannot associate null
with a key, one simple interface is to take a put command with null as the value to mean
remove.
Iterable. As with most collections, it is best to implement Iterable and to provide an
appropriate iterator that allows clients to visit the contents of the table. The natural order of
iteration is in order of the keys, so we implement Iterable<Key> and use get to get values,
if desired.
Variations. Numerous other useful operations on symbol tables have been identified, and APIs
based on various subsets of them have been widely studied. We will consider several of these
at the end of this section.

Symbol table clients. We consider two prototypical examples.

Dictionary lookup. The most basic kind of symbol-table client builds a symbol table with
successive put operations in order to be able to support get requests. The following list of
familiar examples illustrates the utility of this approach.

Application Action Key Value

phone book look up phone number person's name phone number

dictionary look up word word definition

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Internet DNS Look up website by IP address website IP address

Reverse DNS Look up IP address by web site IP address Website

genomics amino acid dictionary codon amino acid

Java compiler Find properties of variable Variable name Value and type

stock quote Look up price of stock stock symbol price

file share find song to download song name machine

file system find file on hard drive file name location on hard drive

Program Lookup.java builds a set of key-value pairs from a file of comma-separated values
and then prints out values corresponding to keys read from standard input. The command-line
arguments are the file name and two integers, one specifying the field to serve as the key and
the other specifying the field to serve as the value.

Here are some sample data files: amino.csv (codons and amino acids), DJIA.csv (Dow Jones
Industrial average by date), ip.csv (hostnames and IP addresses), morse.csv (Morse code),
elements.csv (Periodic table of elements), mktsymbols.csv (market symbols and names),
toplevel-domain.txt (top-level domain names and their country).
Indexing. Program Index.java is a prototypical example of a symbol table client that uses an
intermixed sequence of calls to get() and put(): it reads in a list of strings from standard
input and prints a sorted table of all the different strings along with a list of integers specifying
the positions where each string appeared in the input. We have a large amount of data and
want to know where certain strings of interest are found. In this case, we seem to be
associating multiple values with each key, but we actually associating just one: a queue.
Again, this approach is familiar:

Application Action Key Value

book index search for terms term page numbers

genomics find genetic markers DNA substring locations

web search find information on web keyword websites

business find transactions customer name transactions

Elementary implementations. Symbol-table implementations have been heavily studied, Many
different algorithms and data structures have been invented for this purpose. We first describe two
simple approaches.

Binary search implementation. Program BinarySearchST.java implements a symbol table by
maintaining two parallel arrays of keys and values, keeping them in key-sorted order. It uses
binary search for get. To maintain the keys in sorted order, it moves all of the larger elements
over for put. The get operation is logarithmic, but the put operation takes linear time per
operation.

Linked list implementation. Program LinkedListST.java implements a symbol table with an
(unordered) linked list. Both put and get take linear time per operation: to search for a key,
we need to traverse its links; to put a key-value pair, we need to search for the given key.

To develop a symbol-table implementation that is feasible for use with clients like Lookup and
Index, we need the flexibility of linked lists and the efficiency of binary search. Binary search trees,
which we consider next, provide just this combination.

Binary search trees. The binary tree is a mathematical
abstraction that plays a central role in the efficient
organization of information. Like arrays and linked lists, a
binary tree is a data type that stores a collection of data.
Binary trees play an important role in computer
programming because they strike an efficient balance
between flexibility and ease of implementation.

For symbol-table implementations, we use special type of
binary tree to organize the data and to provide a basis for
efficient implementations of the symbol-table put operations
and get requests. A binary search tree (BST) associates
Comparable keys with values, in a structure defined
recursively as follows: A BST is either

empty (null) or

a node having a key-value pair and two references to BSTs, a left BST with smaller keys and a
right BST with larger keys.

The key type must be Comparable, but the type of the value is not specified, so a BST node can
hold any kind of data in addition to the (characteristic) references to BSTs. To implement BSTs, we
start with a class for the node abstraction, which has references to a key, a value, and left and right
BSTs:

private class Node {
 Key key;
 Value val;
 Node left, right;

 Node(Key key, Value val) {
 this.key = key;
 this.val = val;
 }

}

This definition is like our definition of nodes for linked lists, except that it has two links, not just one.

Search in a BST. Suppose that you want to search for a node with a given key in a BST (or to
get a value with a given key in a symbol table). There are two possible outcomes: the search
might be successful (we find the key in the BST; in a symbol-table implementation we return
the associated value) or it might be unsuccessful (there is no key in the BST with the given
key; in a symbol-table implementation, we return null). A recursive algorithm is immediate:
Given a BST (a reference to a Node), first check whether the tree is empty (the reference is
null). If so, then terminate the search as unsuccessful (in a symbol-table implementation,
return null). If the tree is non-empty, check whether the key in the node is equal to the
search key. If so, then terminate the search as successful (in a symbol-table implementation,
return the value associated with the key). If not, compare the search key with the key in the
node. If it is smaller, search (recursively) in the left subtree; if it is greater, search
(recursively) in the right subtree.
Inserting into a BST. Suppose that you want to insert a new node into a BST (in a symbol-
table implementation, put a new key-value pair into the data structure). The logic is similar to
searching for a key, but the code is trickier: If the BST is empty, we create and return a new
Node containing the key-value pair; if the search key is less than the key at the root, we set
the left link to the result of inserting the key-value pair into the left subtree; if the search key
is less, we set the right link to the result of inserting the key-value pair into the right subtree;
otherwise if the search key is equal, we overwrite the existing value with the new value.
Resetting the link after the recursive call in this way is usually unnecessary, because the link
changes only if the subtree is empty, but it is as easy to set the link as to test to avoid setting
it.

Program BST.java is a symbol-table implementation based on these two recursive algorithms. Here
is a useful binary search tree application.

Performance characteristics of BST. The running times of algorithms on BSTs are dependent on
the shape of the trees, and the shape of the trees is dependent on the order in which the keys are
inserted.

Best case. In the best case, the tree is perfectly balanced (each Node has exactly two non-null
children), with lg N nodes between the root and each leaf node. In such a tree, it is easy to
see that the cost of an unsuccessful search is logarithmic, because that cost satisfies the same
recurrence relation as the cost of binary search (see Section 4.2) so that the cost of every put
operation and get request is proportional to lg N or less.

Average case. If we insert random keys, we might expect the search times to be logarithmic
as well, because the first element becomes the root of the tree and should divide the keys
roughly in half. Applying the same argument to the subtrees, we expect to get about the same

result as for the best case. This intuition is indeed validated by careful analysis: a classic
mathematical derivation shows that the time required for put and get in a tree constructed
from randomly ordered keys is logarithmic. More precisely, the expected number of key
comparisons is ~ 2 ln N for a random put or get in a key built from N randomly ordered keys.

Worst case. In the worst case, each node has exactly one null link, so the BST is like a linked
list, where put operations and get requests take linear time. Unfortunately this worst case is
not rare in practice - it arises, for example, when we insert the keys in order. Thus, good
performance of the basic BST implementation is dependent on the keys being sufficiently
similar to random keys that the tree is not likely to contain many long paths.

Remarkably, there are BST variants that eliminate this worst case and guarantee logarithmic
performance per operation, by making all trees nearly perfectly balanced. One popular variant is
known as a red-black tree. The Java library java.util.TreeMap implements a symbol table using this
approach. Our symbol-table implementation ST.java uses this data structure to implement our
symbol-table API. It is remarkably efficient: typically, it only accesses a small number of the nodes
in the BST (those on the path from the root to the node sought or to the leaf to which the new node
is attached) and it only creates one new Node and adds one new link for the put operation. Next, we
show that put operations and get requests take logarithmic time (under certain assumptions).

Traversing a BST. Perhaps the most basic tree-processing function is known as tree traversal:
Given a (reference to) a tree, we want to systematically process every key-value pair in the tree.
For linked lists, we accomplish this task by following the single link to move from one node to the
next. For trees, however, we have decisions to make, because there are generally two links to
follow. But recursion comes immediately to the rescue. To process every key in a BST:

process every key-value pair in the left subtree
process the key-value pair at the root
process every key-value pair in the right subtree

This approach not only processes every key pair in the BST, but it does so in key-sorted order. For
example, the following method prints the key-value pairs in the tree rooted at its argument in key-
sorted order.

private static void traverse(Node x) {
 if (x == null) return;
 traverse(x.left);
 StdOut.println(x.key + " " + x.val);
 traverse(x.right);
}

This remarkably simple method is worthy of careful study. It can be used as a basis for a
toString() implementation for BSTs and also a starting point for developing an iterator.

Extended symbol table operations. The flexibility of BSTs enable the implementation of many
useful additional operations beyond those dictated by the symbol table API.

Minimum and maximum. To find the smallest key in a BST, follow left links from the root until
reaching null. The last key encountered is the smallest in the BST. The same procedure
following right links lead to the largest key.
Size. To keep track of the number of nodes in a BST, keep an extra instance variable N in BST
that counts the number of nodes in the tree. Initialize it to 0 and increment it whenever
creating a new Node.

Remove. Many applications demand the ability to remove a key-value pair with a given key.
You can find explicit code for removing a node from a BST in a book on algorithms and data
structures. An easy lazy way to implement remove() relies on the fact that values cannot be
null:

public void remove(Key key) {
 if (contains(key))
 put(key, null);
}

This approach necessitates periodically cleaning out nodes in the BST with null values,
because performance will degrade unless the size of the data structure stays proportional to
the number of key-value pairs in the table.
Range search. With a recursive method like traverse(), we can count the number of keys
that fall within a given range or return all the keys falling into a given range.
Order statistics. If we maintain an instance variable in each node having the size of the
subtree rooted at each node, we can implement a recursive method that returns the kth
largest key in the BST.

Set data type. As a final example, we consider a data type that is simpler than a symbol table, still
broadly useful, and easy to implement with BSTs. A set is an (unordered) collection of distinct
comparable keys, defined by the following API:

A set is a symbol table with no values. We could use BST to implement SET, but a direct
implementation is simpler, and client code that uses SET is simpler and clearer than it would be to
use placeholder values and ignore them. Program SET.java implements the set API. Program
DeDup.java is a SET client that reads in a sequence of strings from standard input and prints out the
first occurrence of each string (thereby removing duplicates).

Perspective. The use of binary search trees to implement symbol tables is a sterling example of
exploiting the tree abstraction, which is ubiquitous and familiar. Trees lie at the basis of many
scientific topics, and are widely used in computer science. We are accustomed to many tree
structures in everyday life including family trees, sports tournaments, the organization chart of a
company, the tree of life, and parse trees in grammar. Trees also arise in numerous computational
applications including function call trees, parse trees, and file systems. Many important applications
are rooted in science and engineering, including phylogenetic trees in computational biology,
multidimensional trees in computer graphics, minimax game trees in economics, and quad trees in
molecular dynamics simulations.

Q + A.

Q. Why use immutable symbol table keys?
A. If we changed a key while it was in the BST, it would invalidate the ordering restriction.
Q. Why not use the Java library methods for symbol tables?
A. Now that you understand how a symbol table works, you are certainly welcome to use the

industrial strength versions java.util.TreeMap and java.util.HashMap. They follow the same
basic API as BST, but they allow null keys and use the names containsKey() and keySet()
instead of contains() and iterator(), respectively. They also contain additional methods
such as remove(), but they do not provide any efficient way to add some of the additional
methods that we mentioned, such as order statistics. You can also use java.util.TreeSet
and java.util.HashSet which implement an API like our SET.

Exercises

1. Modify Lookup to to make a program LookupAndPut that allows put operations to be
specified on standard input. Use the convention that a plus sign indicates that the next two
strings typed are the key-value pair to be inserted.

2. Modify Lookup to make a program LookupMultiple that handles multiple values having the
same key by putting the values on a queue, as in Index, and then printing them all out on a
get request, as follows:

% java LookupMultiple amino.csv 3 0
Leucine
TTA TTG CTT CTC CTA CTG

3. Modify Index to make a program IndexByKeyword that takes a file name from the command
line and makes an index from standard input using only the keywords in that file. Note : using
the same file for indexing and keywords should give the same result as Index.

4. Modify Index to make a program IndexLines that considers only consecutive sequences of
letters as keys and uses line numbers instead of word position as the value and to . This
functionality is useful for programs, as follows:

% java IndexLines 6 0 < Index.java
continue 12
enqueue 15
Integer 4 5 7 8 14
parseInt 4 5
println 22

5. Develop an implementation BinarySearchST.java of the symbol-table API that maintains
parallel arrays of keys and values, keeping them in key-sorted order. Use binary search for
get and move larger elements to the right one position for put (use array doubling to keep the
array size proportional to the number of key-value pairs in the table). Test your
implementation with Index, and validate the hypothesis that using such an implementation
for Index takes time proportional to the product of the number of strings and the number of
distinct strings in the input.

6. Develop an implementation LinkedListST.java of the symbol-table API that maintains a linked
list of nodes containing keys and values, keeping them in key-sorted order. Test your
implementation with Index, and validate the hypothesis that using such an implementation
for Index takes time proportional to the product of the number of strings and the number of
distinct strings in the input.

7. Draw all the different BSTs that can represent the key sequence

best of it the time was.

8. Draw the BST that results when you insert items with keys

E A S Y Q U E S T I O N

in that order into an initially empty tree.
9. Suppose we have int values between 1 and 1000 in a BST and search for 363. Which of the

following cannot be the sequence of keys examined.
a. 2 252 401 398 330 363
b. 399 387 219 266 382 381 278 363
c. 3 923 220 911 244 898 258 362 363
d. 4 924 278 347 621 299 392 358 363
e. 5 925 202 910 245 363

10. Suppose that the following 31 keys appear (in some order) in a BST of height 5:

10 15 18 21 23 24 30 30 38 41
42 45 50 55 59 60 61 63 71 77
78 83 84 85 86 88 91 92 93 94
98

Draw the top 3 nodes of the tree (the root and its two children).

11. Implement toString() for BST, using a recursive helper method like traverse(). As usual,
you can accept quadratic performance because of the cost of string concatenation. Extra credit
: Write a linear-time toString() method for BST.

12. True or false. Given a BST, let x be a leaf node, and let p be its parent. Then either (i) the key
of p is the smallest key in the BST larger than the key of x or (ii) the key of p is the largest
key in the BST smaller than the key of x. Answer: true.

13. Modify the symbol-table API to use a wrapper type STentry that holds the keys and values
(with accessor methods key() and value() to access them). Your iterator should return
STentry objects in key-sorted order. Implement BST and Index as dictated by this API.
Discuss the pros and cons of this approach versus the one given in the text.

14. Modify the symbol-table API to handle values with duplicate keys by having get() return a
iterator for the values having a given key. Implement BST and Index as dictated by this API.
Discuss the pros and cons of this approach versus the one given in the text.

15. Prove that the expected number of key comparisons for a random put or get in a BST build
from randomly ordered keys is ~ 2 ln N.

16. Prove that the number of different BSTs that can be built from N keys is ~
17. Run experiments to validate the claims in the text that the put operations and get requests for

Lookup and Index are logarithmic in the size of the table when using BST.

18. Modify BST to implement a symbol-table API where keys are arbitrary objects. Use
hashCode() to convert keys to integers and use integer keys in the BST.

19. Modify BST to add methods min() and max() that return the smallest (largest) key in the
table (or null if no such key exists).

20. Modify BST to add a method size() that returns the number of elements in the table. Use
the approach of storing within each Node the number of nodes in the subtree rooted there.

21. Modify BST to add a method rangeCount() that takes two Key arguments and returns the
number of keys in a BST between the two given keys. Your method should take time
proportional to the height of the tree. Hint : First work the previous exercise.

22. Modify SET to add methods floor(), ceil(), and nearest() that take as argument a Key
and return the largest (smallest, nearest) element in the set that is no larger than (no smaller
than, closest to) the given Key.

23. Write a ST client GPA.java that creates a symbol table mapping letter grades to numerical
scores, as in the table below, then reads from standard input a list of letter grades and
computes their average (GPA).

 A+ A A- B+ B B- C+ C C- D F
4.33 4.00 3.67 3.33 3.00 2.67 2.33 2.00 1.67 1.00 0.00

Binary Tree Exercises

This list of exercises is intended to give you experience in working with binary trees that are not
necessarily BSTs. They all assume a Node class with three instance variables: a integer value and
two Node references.

1. Implement the following methods for a binary tree that each take as argument a Node that is
the root of a binary tree.

size(): number of nodes in the tree.

leaves(): number of nodes whose links are both null

total(): sum of the key values in all nodes

Your methods should all run in linear time.
2. Implement a linear-time method height() that returns the maximum number of nodes on

any path from the root to a leaf node (the height of the null tree is 0; the height of a 1-node
tree is 1).

3. A binary tree is heap-ordered if the key at the root is larger than the keys in all of its
descendants. Implement a linear-time method heapOrdered() that returns true if the tree
is heap-ordered, false otherwise.

4. A binary tree is balanced if both its subtrees are balanced and the height of its two subtrees
differ by at most 1. Implement a linear-time method balanced() that returns true if the
tree is balanced, false otherwise.

5. Two binary trees are isomorphic if only their key values differ (they have the same shape).
Implement a linear-time static method isomorphic() that takes two tree references as
parameters and returns true if they refer to isomorphic trees, false otherwise. Then
implement a linear-time static method eq() that takes two tree references as parameters and
returns true if they refer to identical trees (isomorphic with same key values), false
otherwise.

public static boolean isomorphic(Node x, Node y) {
 if (x == null && y == null) return true; // both null
 if (x == null || y == null) return false; // exactly one null
 return isomorphic(x.left, y.left) && isomorphic(x.right, y.right);
}

6. Implement a linear-time method isBST() that returns true if the tree is a BST, false
otherwise.

Solution : This task is a bit more difficult than it might seem. We use an overloaded recursive
method isBST() that takes two additional arguments min and max and returns true if the
tree is a BST and all its values are between min and max.

public static boolean isBST() {
 return isBST(root, Integer.MIN_VALUE, Integer.MAX_VALUE);
}

private boolean isBST(Node x, int min, int max) {
 if (x == null) return true;
 if (x.val < min || x.val > max) return false;
 return isBST(x.left, min, x.val) && isBST(x.right, x.val, max);
}

7. Write a method levelOrder() that prints BST keys in level order: First print the root, then
the nodes one level below the root, left to right, then the nodes two levels below the root (left
to right), and so forth. Hint : Use a Queue<Node>.

8. Compute the value returned by mystery() on some sample binary trees, then formulate an
hypothesis about its behavior and prove it.

public int mystery(Node x) {
 if (x == null) return 0;
 else return mystery(x.left) + mystery(x.right);
}

Answer: Returns 0 for any binary tree.

Creative Exercises

1. Spell checking. Write a SET client SpellChecker.java that takes as command-line argument
the name of a file containing a dictionary of words, and then reads strings from standard input
and prints out any string that is not in the dictionary. Use the 600,000+ word dictionary
words.utf-8.txt.

2. Spell correction. Write an ST client SpellCorrector.java that serves as a filter that replaces
commonly misspelled words on standard input with a suggested replacement, printing the
result to standard output. Take as command-line argument a file that contains common
misspellings and corrections. Use the file misspellings.txt, which contains many common
misspellings.

3. Web filter. Write a SET client WebBlocker that takes as command-line argument the name
of a file containing a list of objectionable websites and then reads strings from standard input
and prints out only those websites that should not be filtered.

4. Set operations. Add methods union() and intersection() to the set ADT. Do not worry
about efficient BST implementations.

5. Frequency symbol table. Develop a data type FrequencyTable.java that supports the
following operations: click() and count(), both of which take String arguments. The
data-type value is an integer that keeps track of the number of times the click() operation
is been called with the given String as argument. The click() operation increments the
count by one, and the count() operation returns the value, possibly 0. Clients of this data
type might include a web traffic analyzer, a music player that counts the number of times
each song has been played, phone software for counting calls, and so forth.

6. 1D range searching. Develop a data type that supports the following operations: insert a
date, search for a date, and count the number of dates in the data structure that lie in a
particular interval. Use either Java's java.util.Date data type or java.util.GregorianCalendar
data type to represent the date.

7. Non-overlapping interval search. Given a list of non-overlapping intervals of integers,
write a function that takes an integer argument and determines in which if any interval that
values lies, e.g., if the intervals are 1643-2033, 5532-7643, 8999-10332, 5666653-5669321,
then the query point 9122 lies in the third interval and 8122 lies in no interval.

8. IP lookup by country. Write a BST client that uses the data file the data file ip-to-
country.csv to determine what country a given IP address is coming from. The data file has
five fields (beginning of IP address range, ending of IP address range, two character country
code, three character country code, and country name. The IP addresses are non-overlapping.
Such a database tool can be used for: credit card fraud detection, spam filtering, auto-
selection of language on a web site, and web server log analysis.

See also GeoIPCountryWhois.csv, the IP-to-country website or MaxMind GeoIP.
9. Inverted index of web. Given a list of web pages, create a symbol table of words contained

in those web pages. Associate with each word a set of web pages in which that word appears.
Program InvertedIndex.java takes a list of filenames as command-line inputs, reads in the
text files, creates a symbol table of sets, and supports single-word queries by returning the
set of web pages in which that query word appears.

10. Inverted index of web. Extend the previous exercise so that it supports multi-word queries.
In this case, output the list of web pages that contain at least one occurrence of each of the
query words.

11. Multiple word search. Write a program that takes k words from the command-line, reads in
sequence of words from standard input, and identifies the smallest subsequence of text that
contains all of the k words (not necessarily in the same order). Don???t consider partial
words.

Hint: for each index i, find the smallest subsequence [i, j] that contains the k query words.
Keep a count of the number of times each of the k query words appear. Given [i, j], compute
[i+1, j'] by decrementing the counter for word i. Then gradually increase j until the
subsequence contains at least one copy of each of the k words.

12. Repetition draw in chess. In the game of chess, if a board position is repeated three times
with the same side to move, the side to move can declare a draw. Describe how you could test
this condition using a computer program.

13. Registrar scheduling. The Registrar at a prominent northeastern University recently
scheduled an instructor to teach two different classes at the same exact time. Help the
Registrar prevent future mistakes by describing a method to check for such conflicts. For
simplicity, assume all classes run for 50 minutes starting at 9, 10, 11, 1, 2, or 3.

14. Entropy. We define the relative entropy of a text corpus with N words, k of which are distinct
as

E = 1 / (N lg N) (p1 lg(k / p1) + ... + pk lg(k / pk))

where pi is the fraction of times that word i appears. Write a program that reads in a text
corpus and prints out the relative entropy. Convert all letters to lowercase and treat
punctuation marks as whitespace.

15. Order statistics. Add to BST a method select() that takes an integer argument k and
returns the kth largest key in the BST. Assume that the subtree sizes are maintained in each
node. The running time should be proportional to the height of the tree.

16. Delete ith element. Create an ADT that supports the following operations: isEmpty(),
insert(), and delete(int i), where the deletion operation deletes and returns the ith
least recently added object. Use a BST with a counter that records the total number of
elements n inserted and give the nth element inserted the key n. Each BST node should also
maintain the total number of nodes in the subtree rooted at that node. To find the ith least
recently added item, search for the ith smallest element in the BST.

17. Mutable string. Create an ADT that supports the following operations on a string: get(int
i), insert(int i, char c), and delete(int i), where get returns the ith character of
the string, insert() inserts the character c and makes it the ith character, and delete()
deletes the ith character. Use a BST to implement operations in logarithmic time.

18. Sparse vectors and matrices. An N-by-N matrix is sparse if its number of nonzeros is
proportional to N (or less). Goal: represent sparse matrix with space proportional to N by only
implicitly storing the zero entries. Add two sparse vectors/matrices in time proportional to the
number of nonzeros. Design ADTs SparseVector.java and SparseMatrix.java that support the
following APIs.

public class SparseVector
 public SparseVector(int N) // 0-vector of length N
 public void (put i, double value) // a[i] = val
 public double get(int i) // return a[i]
 public double dot(SparseVector b) // vector dot product
 public SparseVector plus(SparseVector b) // vector addition

public class SparseMatrix
 public SparseMatrix(int N)
 public void put(int i, int j, double val) // a[i][j] = val
 public double get(int i, int j) // return a[i][j]
 public SparseMatrix times(SparseMatrix b) // matrix product
 public SparseMatrix plus(SparseMatrix b) // matrix addition

19. Expression parser. Write a program to parse and evaluate expressions of the following form.
Store the variable names in a symbol table.

A = 5
B = 10
C = A + B
D = C * C
Result: A = 5, B = 10, C = 15, D = 225

Consider adding more complicated expressions, e.g., E = 7 * (B + C * D).
20. Actor and actress aliases. Given this 10MB file containing a list of actors (with canonical

name) and their aliases, write a program that reads in the name of an actor from standard
input and prints out his canonical name.

21. Database joins. Given two tables, an inner join finds the "intersection" between the two
tables.

Name Dept ID Dept Dept ID
----------------- ----------------
Smith 34 Sales 31
Jones 33 Engineering 33
Robinson 34 Clerical 34
Jasper 36 Marketing 35
Steinberg 33
Rafferty 31

The inner join on department ID is as follows.

Name Dept ID Dept

Smith 34 Clerical
Jones 33 Engineering
Robinson 34 Clerical
Steinberg 33 Engineering
Rafferty 31 Sales

22. Molecular weight calculator. Write a program MolecularWeight.java that reads in a list of
elements and their molecular weights, and then prompts the user for the molecular
description of a chemical compound (e.g., CO.2 or Na.Cl or N.H4.N.O3 = ammonium nitrate)
and prints out its molecular weight.

Web Exercises

1. Codon usage table. Describe how to hash codons (3 consecutive nucleotides) to an integer
between 0 and 63. Print out summary statistics for each codon, e.g.,

UUU 13.2(724) UCU 19.6(1079) UAU 16.5(909) UGU 12.4(680)
UUC 23.5(1290) UCC 10.6(583) UAC 14.7(808) UGC 8.0(438)
UUA 5.8(317) UCA 16.1(884) UAA 0.7(38) UGA 0.3(15)
UUG 17.6(965) UCG 11.8(648) UAG 0.2(13) UGG 9.5(522)

CUU 21.2(1166) CCU 10.4(571) CAU 13.3(733) CGU 10.5(578)
CUC 13.5(739) CCC 4.9(267) CAC 8.2(448) CGC 4.2(233)
CUA 6.5(357) CCA 41.0(2251) CAA 24.9(1370) CGA 10.7(588)
CUG 10.7(590) CCG 10.1(553) CAG 11.4(625) CGG 3.7(201)

AUU 27.1(1491) ACU 25.6(1405) AAU 27.2(1495) AGU 11.9(653)
AUC 23.3(1279) ACC 13.3(728) AAC 21.0(1151) AGC 6.8(374)
AUA 5.9(324) ACA 17.1(940) AAA 32.7(1794) AGA 14.2(782)
AUG 22.3(1223) ACG 9.2(505) AAG 23.9(1311) AGG 2.8(156)

GUU 25.7(1412) GCU 24.2(1328) GAU 49.4(2714) GGU 11.8(650)
GUC 15.3(843) GCC 12.6(691) GAC 22.1(1212) GGC 7.0(384)
GUA 8.7(478) GCA 16.8(922) GAA 39.8(2185) GGA 47.2(2592)

2. Functions on trees. Write a function count() that takes a Node x as an argument returns
the number of nodes in the subtree rooted at x (including x). The number of elements in an
empty binary tree is 0 (base case), and the number of elements in a non-empty binary tree is
equal to one plus the number of elements in the left subtree plus the number of elements in
the right subtree.

public static int count(TwoNode x) {
 if (x == null) return 0;
 return 1 + count(x.left) + count(x.right);
}

3. Random element. Add a symbol table function random to a BST that returns a random
element. Assume that the nodes of your BST have integer size fields that contain the number
of elements in the subtree rooted at that node. The running time should be proportional to the
length of the path from the root to the node returned.

4. Markov language model. Create a data type that supports the following two operations:
add and random. The add method should insert a new item into the data structure if it doesn't
yet exists; if it already exists, it should increase its frequency count by one. The random
method should return an element at random, where the probabilities are weighted by the
frequency of each element.

5. Queue with no duplicates. Create a data type that is a queue, except that an element may
only appear on the queue at most once at any given time. Ignore requests to insert an item if
it is already on the queue.

6. Bayesian spam filter. Follow the ideas in A Plan for Spam. Here is a place to get test data.
7. Symbol table with random access. Create a data type that supports inserting a key-value

pair, searching for a key and returning the associated value, and deleting and returning a
random value. Hint: combine a symbol table and a randomized queue.

8. Random phone numbers. Write a program that takes a command line input N and prints N
random phone numbers of the form (xxx) xxx-xxxx. Use a symbol table to avoid choosing the
same number more than once. Use this list of area codes to avoid printing out bogus area
codes.

9. Unique substrings of length L. Write a program that reads in text from standard input and
calculate the number of unique substrings of length L that it contains. For example, if the
input is cgcgggcgcg then there are 5 unique substrings of length 3: cgc, cgg, gcg, ggc, and
ggg. Applications to data compression. Hint: use the string method substring(i, i + L)
to extract ith substring and insert into a symbol table. Test it out on the first million digits of
π. or 10 million digits of π.

10. The great tree-list recursion problem. A binary search tree and a circular doubly linked list
are conceptually built from the same type of nodes - a data field and two references to other
nodes. Given a binary search tree, rearrange the references so that it becomes a circular
doubly-linked list (in sorted order). Nick Parlante describes this as one of the neatest recursive
pointer problems ever devised. Hint: create a circularly linked list A from the left subtree, a
circularly linked list B from the right subtree, and make the root a one node circularly linked
list. Them merge the three lists.

11. Optimal BST.
12. Password checker. Write a program that reads in a string from the command line and a

dictionary of words from standard input, and checks whether it is a "good" password. Here,
assume "good" means that it (i) is at least 8 characters long, (ii) is not a word in the
dictionary, (iii) is not a word in the dictionary followed by a digit 0-9 (e.g., hello5), (iv) is not
two words separated by a digit (e.g., hello2world)

13. Reverse password checker. Modify the previous problem so that (ii) - (v) are also satisfied
for reverses of words in the dictionary (e.g., olleh and olleh2world). Simple solution: insert
each word and its reverse into the symbol table.

14. Cryptograms. Write a program to read in a cryptogram and solve it. A cryptogram is ancient
form of encryption known as a substitution cipher in which each letter in the original message
is replaced by another letter. Assuming we use only lowercase letters, there are 26!
possibilities, and your goal is to find one that results in a message where each word is a valid
word in the dictionary. Use Permutations.java and backtracking.

15. Frequency counter. Write a program FrequencyCounter.java that reads in a sequence of
strings from standard input and counts the number of times each string appears.

16. Unordered array symbol table. Write a program SequentialSearchST.java that implements
a symbol-table using (unordered) parallel arrays.

17. Exception filter. The client program ExceptionFilter.java reads in a sequence of strings from
a whitelist file specified as a command-line argument, then it prints out all words from
standard input not in the whitelist.

18. Give the preorder traversal of some BST (not including null nodes). Ask the reader to
reconstruct the tree.

19. Write an ADT IterativeBST.java that implements a symbol table using a BST, but uses
iterative versions of get() and put().

20. Largest absolute value.

21. Tree reconstruction. Given the following traversals of a binary tree (only the elements, not
the null nodes), can you can you reconstruct the tree?

a. Preorder and inorder.
b. Postorder and inorder.
c. Level order and inorder.
d. Preorder and level order.
e. Preorder and postorder.

Answers
a. Yes. Scan the preorder from left to right, and use the inorder traversal to identify the

left and right subtrees.
b. Yes. Scan the postorder from right to left.
c. Yes. Scan the level order from left to right.
d. No. Consider two trees with A as the root and B as either the left or right child. The

preorder traversal of both is AB and the level order traversal of both is AB.
e. No. Same counterexample as above.

22. Highlighting browser hyperlinks. Browsers typically denote hyperlinks in blue, unless
they've already been visited, in which case they're depicted in purple Write a program
HyperLinkColorer.java that reads in a list of web addresses from standard input and
output blue if it's the first time reading in that string, and purple otherwise.

23. Spam blacklist. Insert known spam email addresses into a SET.java ADT, and use to blacklist
spam.

24. Inverted index of a book. Write a program that reads in a text file from standard input and
compiles an alphabetical index of which words appear on which lines, as in the following input.
Ignore case and punctuation.

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,

age 3-4
best 1
foolishness 4
it 1-4
of 1-4
the 1-4
times 1-2
was 1-4
wisdom 4
worst 2

Hint: create a symbol table whose key is a String that represents a word and whose value is
a Sequence<Integer> that represents the list of pages on which the word appears.

25. Randomly generated identities. The files names20k.csv and The file names20k-2.csv each
contain 20,000 randomly generated identities (number, gender, first name, middle initial, last
name, street address, city, state, zip code, country, email address, telephone number,
mother's maiden name, birthday, credit card type, credit card number, credit card expiration
date, Social security number) from fakenamegenerator.com.

26. Distance between zip codes. Write a data type Location.java that represents a named
location on the surface of the earth (a name, latitude, and longitude). Then, write a client
program that takes the name of a ZIP code file (such as zips.txt) as a command-line
argument, reads the data from the file, and stores it in a symbol table. Then, repeatedly read
in pairs of ZIP codes from standard input and output the great-circle distance between them
(in statute miles). This distance is used by the post office to calculate shipping rates.

Last modified on August 05, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

 Search booksite...

4.5 A CASE STUDY: SMALL WORLD PHENOMENON

This section under major construction.

Small world phenomenon. The mathematical model that we use for studying the
nature of pairwise connections among entities is known as the graph. Some graphs
exhibit a specific property known as the small-world phenomenon. You may be familiar
with this property, which is sometimes known as six degrees of separation. It is the
basic idea that, even though each of us has relatively few acquaintances, there is a
relatively short chain of acquaintances (the six degrees of separation) separating us
from one another.

Graphs. A graph is comprised of a set of vertices and a set of edges. Each edge
represents a connection between two vertices. The list below suggests the diverse range
of systems where graphs are appropriate starting points for understanding structure.

GRAPH VERTICES EDGES

Communication telephones, computers fiber optic cable

Circuits gates, registers,
processors wires

Mechanical joints rods, beams, springs

Hydraulic reservoirs, pumping
stations pipelines

Financial stocks, currency transactions

Transportation street intersections,
airports highways, air routes

Scheduling tasks precedence constraints

Software systems functions function calls

Internet web pages hyperlinks

Games board positions legal moves

Social networks people, actors, terrorists friendships, movie casts,
associations

Protein interaction
networks proteins protein-protein interactions

Genetic regulatory
networks genes regulatory interactions

Neural networks neurons synapses

Infectious disease people infections

Electrical power grid transmission stations cable

Chemical compounds molecules chemical bonds

Graph data type. The following API supports graph processing:

INTRO TO PROGRAMMING

1. Elements of
Programming

2. Functions

3. OOP

4. Data Structures

INTRO TO CS
0. Prologue

5. A Computing Machine

6. Building a Computer

7. Theory of Computation

8. Systems

9. Scientific Computation

ALGORITHMS, 4TH EDITION

WEB RESOURCES

FAQ

Data

Code

Errata

Appendices

Lecture Slides

Programming Assignments

Graph implementation. Program Graph.java
implements this API. Its internal representation
is a symbol table of sets: the keys are vertices
and the values are the sets of neighbors (the
vertices adjacent to the key) This
representation uses the two data types ST.java
and SET.java that we introduced in Section 4.4.
Our implementation has three important
properties:

Clients can efficiently iterate through the
graph vertices.

Clients can efficiently iterate through a
vertex's neighbors.

Space usage is proportional to the
number of edges.

Performer-movie graphs. The performer-movie graph includes a vertex for each
performer and movie and an edge between a performer and a movie if the performer
appeared in the movie.

We provide a number of sample data files. Each line in a file consists of a movie,
followed by a list of peformers that appeared in the movie, separated by the / delimiter.

FILE DESCRIPTION MOVIES ACTORS EDGES

cast.06.txt movies release in 2006 8780 84236 103815

cast.00-06.txt movies release since 2000 52195 348497 606531

cast.G.txt movies rated G by MPAA 1288 21177 28485

cast.PG.txt movies rated PG by MPAA 3687 74724 116715

cast.PG13.txt movies rated PG-13 by MPAA 2538 70325 103265

cast.mpaa.txt movies rated by MPAA 21861 280624 627061

cast.action.txt action movies 14938 139861 266485

cast.rated.txt popular movies 4527 122406 217603

cast.all.txt over 250,000 movies 285462 933864 3317266

These input files are as of November 2, 2006. The data is taken from the Internet Movie Database.

Program IndexGraph.java takes a query which is the name of a movie (in which case it
prints the list of performers that appear in that movie) or the name of a performer (in
which case it prints the lst of movies in which that performer has appeared).

Shortest paths in graphs. Given two vertices in a graph, a path is a sequence of
edges connecting them. A shortest path is one with minimal length over all such paths
(there typically are multiple shortest paths).

We use the following API.

PathFinder.java implements the API using a classic algorithm known as breadth-first
search.

Degrees of separation. One of the classic applications of shortest-paths algorithms is
to find the degrees of separation of individuals in social networks. To fix ideas, we
discuss this application in terms of a recently popularized pastime known as the Kevin
Bacon game, which uses the movie-performer graph that we just considered. Kevin
Bacon is a prolific actor who appeared in many movies. We assign every performer who
has appeared in a movie a Bacon number: Bacon himself is 0, any performer who has
been in the same cast as Bacon has a Kevin Bacon number of 1, any other performer
(except Bacon) who has been in the same cast as a performer whose number is 1 has a
Kevin Bacon number of 2, and so forth. For example, Meryl Streep has a Kevin Bacon

number of 1 because she appeared in The River Wild with Kevin Bacon. Nicole Kidman's
number is 2: although she did not appear in any movie with Kevin Bacon, she was in
Cold Mountain with Donald Sutherland, and Sutherland appeared in Animal House with
Kevin Bacon.

Given the name of a performer, the simplest version of the game is to find some
alternating sequence of movies and performers that lead back to Kevin Bacon.
Remarkably, PathFinder.java is precisely the program that you need to find a shortest
path that establishes the Bacon number of any performer in movies.txt.

% java PathFinder movies.txt "/" "Bacon, Kevin"
Kidman, Nicole
 Bacon, Kevin
 Animal House (1978)
 Sutherland, Donald (I)
 Cold Mountain (2003)
 Kidman, Nicole
Delpy, Julia
 Bacon, Kevin
 The Air I Breathe (2007)
 Delpy, Julia

The six degrees of separation rule suggests that most actors will have a Kevin Bacon
number of 6 or less. In fact, most have a Kevin Bacon number of 3 or less!

Q + A

Q. What is formally meant by a small world network?

A. High local clustering and short global separation. Local clustering means that two
vertices are more likely to be adjacent if they share a neighbor. Short global separation
means that all (or most) pairs of vertices are connected by "short" paths. Here short
means the length of chain scales logarithmic (or polylogarithmic) with the number of
vertices. For example, empirically, any two documents on the Web are around 19 clicks
away (directed) on average. Empirical estimate = .3 + 2.06 log10 N, where N = 1
billion. If web grows by factor of 1,000, only 21 clicks according to model.

Q. Other small world applications.

A. The small world phenomenon has numerous applications in the natural and social
sciences. The domain of the Kevin Bacon is actor-movie relationships, but we can ask
the same questions with mathematicians and papers (Erdös number), musicians and
rock groups, baseball players and teams, or people and online social network groups.
Sociology: looking for a job via connections, marketing products or ideas, formation and
spread of fame and fads, train of thought followed in a conversation, and defining
representative-ness of political bodies. Science: synchronization of neurons, analysis of
World Wide Web, secure peer-to-peer networks, routing algorithms for ad hoc wireless
networks, design of electrical power grids, processing of information in the human
brain, phase transitions in coupled Kuramoto oscillators, spread of infectious diseases
and computer viruses, and evolution of cooperation in multi-player iterated Prisoner's
Dilemma.

In The Small-World Phenomenon: An Algorithmic Perspective.

Q. Other applications and extensions.

A. Another important application of breadth first search is crawling the web. Or routing
packets on the Internet. An important generalization is when each edge has an
associated distance or time and the goal is to find a path that minimizes the sum of the
edge lengths. More sophisticated algorithm known as Dijkstra's algorithm solves that
problem in linearithmic time. Basis for map routing applications on the web and in GPS-
equipped automobiles.

Exercises

1. Wikipedia graph - a nice dataset.
2. Add methods vertices() and edges() to Graph that returns the number of

vertices and edges in the graph, respectively.
3. Add a boolean method exists(String v) that returns true if v is a vertex in

the graph, and false otherwise.

4. Add a boolean method exists(String v, String w) that returns true if v-w
is an edge in the graph, and false otherwise.

5. Suppose you use a stack instead of a queue when running breadth first in
PathFinder.java. Does it still compute Kevin Bacon numbers correctly?

6. Suppose you use a queue instead of a stack when forming the shortest path in
path(). What is the effect?

7. Add a method isReachable(v) to PathFinder.java that returns true if v can
reach s via some path, and false otherwise.

8. The degree of a vertex is the number of incident edges. Add a method degree()
to Graph that takes a Vertex as input and returns the degree of that vertex. Use
this method to find the actor node in the Kevin Bacon graph with the highest
degree, i.e., the actor that has appeared in the most movies.

public int degree(String v) {
 if (st.contains(v)) return st.get(v).size();
 else return 0;
}

9. Write a program MovieStats.java that reads in a movie data set and prints out the
number of distinct actors and movies.

10. Modify Bacon.java so that the user types two actors (one per line) and the
program prints a shortest chain between the two actors.

11. Create a copy constructor for Graph that takes as input a graph G, and creates
and initializes a new, independent, copy of the graph. Any changes you make to G
should not affect the newly created graph.

12. Array of PathFinder's to save away previous queries?
13. Modify Graph.java to include a method iterator() that returns an Iterator

to the graph's vertices. Also, make Graph implement the Iterable<String>
interface so that you can use it with foreach to iterate over the graph's vertices.

public Iterator<String> iterator() {
 return st.iterator();
}

14. True or false. At some point during breadth first search the queue can contain two
vertices, one whose distance from the source is 7 and one whose distance is 9.
Answer: False. The queue can contain vertices of at most two distinct distances d
and d+1. Breadth first search examines the vertices in increasing order of
distance from the source. When examining a vertex at distance d, only vertices of
distance d+1 can be enqueued.

Creative Exercises

1. Histogram. Write a program Histogram.java to print a histogram of Kevin Bacon
numbers, indicating how many actors have a Bacon number of 0, 1, 2, 3, etc.

 # Freq

 0 1
 1 2083
 2 187072
 3 515582
 4 113741
 5 8269
 6 772
 7 93
 8 7

Inf 28942

2. Large Bacon numbers. Find the actors in cast.txt with the largest, but finite,
Kevin Bacon number. Answer: here are a few actors whose number is 8: Ozra
Esmaili, Gabriela Pereyra, Yamil Turk, Alejandro Zain.

3. Actor graph. An alternate way to compute Kevin Bacon numbers is to build a
graph where there is a vertex for each actor (but not for each movie). Instead,
two actors are connected by an edge if they appear in a movie together. Calculate
Kevin Bacon numbers by running BFS on the actor graph. Compare the running
time versus the algorithm described in the text. Explain why this approach is so
much slower (and more difficult to reconstructor the movies along the path).

4. Connected components. Given an undirected graph, a connected component is
a maximal set of vertices that are mutually reachable. Write a program
CCFinder.java that computes the connected components of a graph. Include a
constructor that takes a Graph as an argument and computes all of the connected
components using breadth first search. Also, include a method isReachable(v,
w) that returns true if v and w are in the same connected component, and
false otherwise. Also include a method components() that returns the number
of of connected components. Note: need a way to iterate over the vertices in the
symbol table. Then run BFS from each vertex that hasn't yet been visited.

5. Flood fill / image procesing. Blob = collection of neighboring pixels of the
same color. How many blobs in picture? Given N-by-N image of color pixels,
identify all clusters of pixels of the same color that are connected. Find connected
components.

6. Word ladder. Write a program WordLadder.java that takes two 5 letter strings as
command-line arguments, and reads in a list of 5 letter words from standard
input, and prints out a shortest (or word ladder connecting the two strings (if it
exists). This word game was invented by Lewis Carroll and was orignally known as
a doublet. Two words can be connected in a word ladder chain if they differ in
exactly one letter. As an example, the following word ladder connects green and
brown.

green greet great groat groan grown brown

You can also try out your program on this list of 6 letter words.
7. All paths. Given an undirected graph and two vertices s and t, write a program

AllPaths.java that can be used to count or print out all simple paths from s to t. A
simple path does not revisit any vertex more than once. In two-dimensional grids,
such paths are referred to as self-avoiding walks. It is a fundamental problem in
in statistical physics and theoretical chemistry, e.g., to model the spatial
arrangement of linear polymer molecules in a solution. Warning: there might be
exponentially paths, so don't run this on large graphs. Reference.

8. Garbage collection. Reference counting vs. mark-and-sweep. Automatic
memory management in languages like Java is a challenging problem. Allocating
memory is easy, but discovering when a program is finished with memory (and
reclaiming it) is more difficult. Reference counting: doesn't work with circular
linked structure. Mark-and-sweep algorithm. Root = local variables and static
variables. Run DFS from roots, marking all variables references from roots, and so
on. Then, make second pass: free all unmarked objects and unmark all marked
objects. Or a copying GC would then move all of the marked objects to a single
memory area. Uses one extra bit per object. JVM must pause while garbage
collection occurs. Fragments memory.

9. Directed graph. Create a data type Digraph.java for directed graph. It is almost
identical to our Graph ADT, except that when we insert an edge v-w, we only
insert w on the adjacently list of v, but not v onto the adjacency list of w. Include
a method outdegree(String v).

10. Shortest path in a digraph. Write a directed version of PathFinder that finds
the shortest path from s to every other vertex in a directed graph. Hint: breadth
search first works in digraphs.

11. Transitive closure. Write an ADT TransitiveClosure.java whose constructor
takes a Digraph as an argument, and whose method isReachable(v, w) true
if w is reachable from v along a directed path in G, and false otherwise. Note:
need a way to iterate over the vertices in the symbol table. Then run BFS from
each vertex. Might need to store an V-by-V table or compute queries on the fly.

12. Topological order and cycle detection. Given a directed graph, determine if
there is a directed cycle. If so, print one out. Otherwise print out a topological
order. Given a list of pairs of variables of the form x < y, find an ordering that is
consistent with the partial order. For example, if x < z, y < z, z < v, and v < w,
then x < y < z < v < w is one possible solution. Print that the input is inconsistent
if there is a cycle, e.g., x < y, y < z, z < x.

13. Cover time. Given a connected, undirected graph G, a random walk moves from
vertex v to w with probability equal to 1 / degree(v) if (v, w) is an edge (and 0
otherwise). Write a program to simulate how many steps it takes to visit every
vertex in the graph. Find an infinite sequence graph where the cover time grows
proportional to V, proportional to V^2. Can you find one where it grows
proportional to V^3 or 2^V?

14. Center of the Hollywood universe. We can measure how good of a center that
Kevin Bacon is by computing their Hollywood number or average path length. The
Hollywood number of Kevin Bacon is the average Bacon number of all the actors
(in its connected component). The Hollywood number of another actor is
computed the same way, but we make them be the source instead of Kevin
Bacon. Compute Kevin Bacon's Hollywood number and find an actor and actress
with better Hollywood numbers than Kevin Bacon. Find the actor or actress (in the
same connected component as Kevin Bacon) with the worst Hollywood number.

15. Diameter. The distance between two vertices is the length of the shortest path
between them. The eccentricity of a vertex is the greatest distance between it and
any other vertex. The diameter of a graph is the greatest distance between any
two vertices (the maximum eccentricity of any vertex). Write a program
Diameter.java to compute the eccentricity of a vertex and the diameter of a
graph. Use it to find the diameter of the Kevin Bacon graph.

16. Parallel edges. Modify Graph to allow parallel edges, i.e., two or more edges
connecting the same pair of vertices. Hint: use a Queue for the adjacency list
instead of a SET.

17. Erdos-Renyi graph model. Graph on V vertices. Edge possible edge is included
independently with probability p. Verify the following properties.

Connectivity threshholds. If p < 1/n and n is large, then most of connected
components are small, with largest having O(log n) vertices. If p > 1/n then
there is almost surely a giant component containing Theta(n) vertices. If p
< ln n / n, the graph is disconnected with high probability; if p > ln n / n
the graph is connected with high probability.
Distribution of degrees. Distribution of degrees follows a binomial
distribution. Most vertices have similar degrees. Called exponential since
the probability that a vertex is connected to k other vertices decreases
exponentially in k.
No hubs. Maximum degree if p is a constant is O(log n).
Not many triangles. Random graph model doesn't capture social networks.
Typically the neighbors of a vertex are also neighbors of each other.
Small diameter. If p > log n / n, then diameter is O(log n).

18. Power law of web links. (Micahel Mitzenmacher) The indegrees and outdegrees
of World Wide Web obey a power law. Can be modeled by preferred attachment
process. Suppose that each web page has exactly one outgoing link. Each page is
created one at a time, starting with a single page that points to itself. With
probability p < 1, it links to one of the existing pages, chosen uniformly at
random. With probability 1-p it links to an existing page with probability
proportional to the number of incoming links of that page. This rule reflects the
common tendency for new web pages to point to popular pages. Write a program
to simulate this process and plot a histogram of the number of incoming links.
Answer: you should observe that the fraction of pages with indegree k is
proportional to k^(-1 / (1 - p)).

Web Exercises

1. All shortest pairs. Write a program AllShortestPaths.java that builds a graph
from a file, and reads source-destination requests from standard input and prints
a shortest path in the graph from the source to the destination.

2. Faster word ladders. To speed things up (if the word list is very large), don't
write a nested loop to try all pairs of words to see if they are adjacent. To handle
5 letter words, first sort the word list. Words that only differ in their last letter will
appear consecutively in the sorted list. Sort 4 more times, but cyclically shift the
letters one position to the right so that words that differ in the ith letter will
appear consecutively in one of the sorted lists.

Try out this approach using a larger word list with words of different sizes. Two
words of different lengths are neighbors if the smaller word is the same as the
bigger word, minus the last letter, e.g., brow and brown.

3. Checkers. Extend the rules of checkers to an N-by-N checkerboard. Show how to
determine whether a checker can become in king in the current move. (Use BFS
or DFS.) Show how to determine whether black has a winning move. (Find an
Euler path.)

4. Combinational circuits. Determining the truth value of a combinational circuit
given its inputs is a graph reachability problem (on a directed acyclic graph).

5. Hex. The game of Hex is played on a trapezoidal grid of hexagons....
Describe how to detect whether white or black has one the game using
breadth first search.
Prove that the game cannot end in a tie. Hint: consider the set of cells
reachable from the left side of the board.
Prove that the first player in Hex can always win if they play optimally.
Hint: if the second player had a winning strategy, you could choose a
random cell initially, and then just copy the second players winning
strategy. This is called strategy stealing.

6. Explain the design flaw in the following implementation of a ring graph.

public class RingGraph extends Graph {
 public RingGraph(int V) {
 for (int i = 0; i < V; i++) {
 String v = "" + i;
 String w = "" + (i + 1) % V;
 addEdge(v, w);
 }
 }
}

The client can create a ring graph on V vertices, then invoke the addEdge()
method, which would result in something other than a ring graph.

Topological robustness. "Scale-free networks are robust to random damage, but
vulernable to malicious attack." In a power law distributed small world network, deletion
of random node rarely has much effect on length of shortest paths (since most shortest
paths are routed through hubs). This is in constrast to random network. However, small
world networks can catastrophically fail if the hub is deleted or attacked (whereas
random networks have no central point of failure). Random 95% of Internet links (6209
vertices an 24401 links) can be removed and graph stays connected, but destroying
2.3% of hubs would disconnect it. Scale-free networks are also vulnerable to spreading
viruses. We should immunize the hubs. Barabasi hypothesized that biological systems
may be evolutionarily predisposed to prefer small world networks since they are more
robust to perturbations (mutation, viral infection). Viruses do adapt to attack the hubs.
Internet will still function if we randomly delete 80% of vertices. Scale-free networks
are topologically robust if gamma <= 3. "promiscuous individuals are the vulnerable
nodes to target in safe-sex campaigns." Liljeros.

Power laws and scale-free networks. Create a histogram of the the degrees of
vertices in a graph and look at distribution. Power laws model scale invariance observed
in many natural phenomena, including physics, sociology, geography, and economics.
Direct result of self-organization. US Road network is approximately random network
with bell-shaped connectivity distribution; US airport network is scale-free with many
hubs. Think hub = airline hub.

WWW, Internet, food webs, social webs, pairwise interactions between proteins in
human body. Probability than an actor has k neighbors follows a power law-tail for large
k: p(k) ~ k^(-2.3). Web graph (in-degrees and out-degrees) obey a power law.
Probability that k documents point to a given web page ~ k^(-2.1).

Generative models. Reference: powerlaws.media.mit.edu. Traditionally, scientists
have modeled graphs using completed ordered graphs (a grid or crystal lattice) or
completely random graphs. Most real world networks seem fall in between the two
extremes. People meet friends via existing friends, so the networks have many local
connections and highly clustered. If person moves to a different city or joins a group,
they form long-range connections.

Such networks grow over time by the gradual addition of vertices and edges with
preferential connectivity. New web page likely to connect to well-established web pages.

Barabasi model: rich get richer. Start at time t = 1 with two vertices linked by d parallel
edges. At every time t >= 2, add a new vertex with d edges using preferential
attachment. Probability that new vertex will be connected to vertex i is ki / sum (kj),
where ki is the connectivity of vertex i (indegree for directed graphs). Add edges one at
a time, with subsequent edges doing preferential attachment using updated degrees.
(Has property that for general average outdegree d, can run d = 1 model for dn steps
and collapse vertices kd, kd - 1, ..., (k-1)d + 1 to make vertex k.) Fraction of vertices
with degree k converges to 2d(d+1)/(k(k+1)(k+2)) as n gets large. In other words, a
power law proportional with exponent 3, where d only influences constant. reference.
Variants lead to exponents between 2 and infinity. (Exercise: simulate and compute an
estimate.) As a result, hubs are formed.

Lovasz. Fixed preferential attachment graph. Fix n vertices with self-loops and m steps.
In step i, choose two random vertices independently with probabilityd proportional to
degree and connect them. Random graph model of Erdos and Renyi not model many
large networks that arise in practice.

Watts-Strogatz model. Watts-Strogatz model captures structural property. Watts
and Strogatz proposed a hybrid model that contained typical links of vertices near each
other (people know their geographic neighbors), plus some random long-range
connection links. n-by-n grid digraph (local contacts) with many random shortcuts
(long-range contacts). Leads to abundance of short paths.

Kleinberg model. No way for participants in Watts-Strogatz model to find short
paths in a decentralized But Milgram experiment also had striking algorithmic
component - individuals can find short paths! Kleinberg proposed making distribution of
shortcuts obey a power law, with probability proportional to the dth power of the
distance (in d dimensions). Each vertex has one long-range neighbor. Uniform over all
distance scales (same number of links at distances 1-10 as 10-100 or 100-1000. Greedy
algorithm (forward message along edge that brings it as close to target as possible in
terms of lattice distance) leads to log^2 N length paths. The only exponent that works
is d.

Simple random model is design principle for some decentralized peer-to-peer networks.

Cycle with random matching. Bollobas and Chung proved that a cycle (of even
length) plus a random matching has log n diameter with high probability, making it a
small world network.

Last modified on August 30, 2011.

Copyright © 2002–2012 Robert Sedgewick and Kevin Wayne. All rights reserved.

	chapter1
	2 Functions
	2.1 Static Methods
	2.2 Libraries and Clients
	2.3 Recursion
	2.4 Percolation
	3 Object Oriented Programming
	3.1 Data Types
	3.2 Creating Data Types
	3.3 Designing Data Types
	3.4 Case Study: N-Body Simulation
	4 Algorithms and Data Structures
	4.1 Analysis of Algorithms
	4.2 Sorting and Searching
	4.3 Stacks and Queues
	4.4 Symbol Tables
	4.5 Graphs

