
§1 GB FLIP INTRODUCTION 1

1. Introduction. This is GB FLIP, the module used by GraphBase programs to generate random num-
bers.

To use the routines in this file, first call the function gb init rand (seed). Subsequent uses of the macro
gb next rand () will then return pseudo-random integers between 0 and 231 − 1, inclusive.

GraphBase programs are designed to produce identical results on almost all existing computers and
operating systems. An improved version of the portable subtractive method recommended in Seminumerical
Algorithms, Section 3.6, is used to generate random numbers in the routines below. The period length of
the generated numbers is at least 255 − 1, and it is in fact plausibly conjectured to be 285 − 230 for all but
at most one choice of the seed value. The low-order bits of the generated numbers are just as random as the
high-order bits.

2. Changes might be needed when these routines are ported to different systems, because the programs
have been written to be most efficient on binary computers that use two’s complement notation. Almost all
modern computers are based on two’s complement arithmetic, but if you have a nonconformist machine you
might have to revise the code in sections that are listed under ‘system dependencies’ in the index.

A validation program is provided so that installers can tell if GB FLIP is working properly. To make the
test, simply run test_flip.
〈 test_flip.c 2 〉 ≡
#include <stdio.h>

#include "gb_flip.h" /∗ all users of GB FLIP should do this ∗/
int main ()
{ long j;

gb init rand (−314159 L);
if (gb next rand () 6= 119318998) {

fprintf (stderr , "Failure on the first try!\n");
return −1;

}
for (j = 1; j ≤ 133; j++) gb next rand ();
if (gb unif rand (#55555555L) 6= 748103812) {

fprintf (stderr , "Failure on the second try!\n");
return −2;

}
fprintf (stderr , "OK, the gb_flip routines seem to work!\n");
return 0;
}

3. The C code for GB FLIP doesn’t have a main routine; it’s just a bunch of subroutines to be incorporated
into programs at a higher level via the system loading routine. Here is the general outline of gb_flip.c:
〈Private declarations 4 〉
〈External declarations 5 〉
〈External functions 7 〉

2 THE SUBTRACTIVE METHOD GB FLIP §4

4. The subtractive method. If m is any even number and if the numbers a0, a1, . . . , a54 are not all
even, then the numbers generated by the recurrence

an = (an−55 − an−24) mod m

have a period length of at least 255 − 1, because the residues an mod 2 have a period of this length.
Furthermore, the numbers 24 and 55 in this recurrence are sufficiently large that deficiencies in randomness
due to the simplicity of the recurrence are negligible in most applications.

Here we take m = 231 so that we get the full set of nonnegative numbers on a 32-bit computer. The
recurrence is computed by maintaining an array of 55 values, A[1] . . . A[55]. We also set A[0] = −1 to act as
a sentinel.
〈Private declarations 4 〉 ≡

static long A[56] = {−1}; /∗ pseudo-random values ∗/
This code is used in section 3.

5. Every external variable should be declared twice in this CWEB file: once for GB FLIP itself (the “real”
declaration for storage allocation purposes), and once in gb_flip.h (for cross-references by GB FLIP users).

The pointer variable gb fptr should not be mentioned explicitly by user routines. It is made public only
for efficiency, so that the gb next rand macro can access the private A table.
〈External declarations 5 〉 ≡

long ∗gb fptr = A; /∗ the next A value to be exported ∗/
This code is used in section 3.

6. The numbers generated by gb next rand () seem to be satisfactory for most purposes, but they do
fail a stringent test called the “birthday spacings test,” devised by George Marsaglia. [See, for example,
Statistics and Probability Letters 8 (1990), 35–39.] One way to get numbers that pass the birthday test is
to discard half of the values, for example by changing ‘gb flip cycle ()’ to ‘(gb flip cycle (), gb flip cycle ())’ in
the definition of gb next rand (). Users who wish to make such a change should define their own substitute
macro.

Incidentally, we hope that optimizing compilers are smart enough to do the right thing with gb next rand .
#define gb next rand () (∗gb fptr ≥ 0 ? ∗gb fptr −− : gb flip cycle ())
〈 gb_flip.h 6 〉 ≡
#define gb next rand () (∗gb fptr ≥ 0 ? ∗gb fptr −− : gb flip cycle ())

extern long ∗gb fptr ; /∗ the next A value to be used ∗/
extern long gb flip cycle (); /∗ compute 55 more pseudo-random numbers ∗/

See also sections 11 and 13.

§7 GB FLIP THE SUBTRACTIVE METHOD 3

7. The user is not supposed to call gb flip cycle directly either. It is a routine invoked by the macro
gb next rand () when gb fptr points to the negative value in A[0].

The purpose of gb flip cycle is to do 55 more steps of the basic recurrence, at high speed, and to reset
gb fptr .

The nonnegative remainder of (x− y) mod 231 is computed here by doing a logical-and with the constant
#7fffffff. This technique doesn’t work on computers that do not perform two’s complement arithmetic.
An alternative for such machines is to add the value 230 twice to (x − y), when (x − y) turns out to be
negative. Careful calculations are essential because the GraphBase results must be identical on all computer
systems.

The sequence of random numbers returned by successive calls of gb next rand () isn’t really an, an+1, . . . ,
as defined by the basic recurrence above. Blocks of 55 consecutive values are essentially being “flipped” or
“reflected”—output in reverse order—because gb next rand () makes the value of gb fptr decrease instead of
increase. But such flips don’t make the results any less random.
#define mod diff (x, y) (((x)− (y)) & #7fffffff) /∗ difference modulo 231 ∗/
〈External functions 7 〉 ≡

long gb flip cycle ()
{ register long ∗ii , ∗jj ;

for (ii = &A[1], jj = &A[32]; jj ≤ &A[55]; ii ++, jj ++) ∗ii = mod diff (∗ii , ∗jj);
for (jj = &A[1]; ii ≤ &A[55]; ii ++, jj ++) ∗ii = mod diff (∗ii , ∗jj);
gb fptr = &A[54];
return A[55];

}
See also sections 8 and 12.

This code is used in section 3.

4 INITIALIZATION GB FLIP §8

8. Initialization. To get everything going, we use a scheme like that recommended in Seminumerical
Algorithms, but revised so that the least significant bits of the starting values depend on the entire seed, not
just on the seed’s least significant bits.

Notice that we jump around in the array by increments of 21, a number that is relatively prime to 55.
Repeated skipping by steps of 21 mod 55 keeps the values we’re computing spread out as far from each
other as possible in the array, since 21, 34, and 55 are consecutive Fibonacci numbers (see the discussion of
Fibonacci hashing in Section 6.4 of Sorting and Searching). Our initialization mechanism would be rather
poor if we didn’t do something like that to disperse the values (see Seminumerical Algorithms, exercise
3.2.2–2).
〈External functions 7 〉 +≡

void gb init rand (seed)
long seed ;

{ register long i;
register long prev = seed , next = 1;
seed = prev = mod diff (prev , 0); /∗ strip off the sign ∗/
A[55] = prev ;
for (i = 21; i; i = (i+ 21) % 55) {
A[i] = next ;
〈Compute a new next value, based on next , prev , and seed 9 〉;
prev = A[i];

}
〈Get the array values “warmed up” 10 〉;
}

9. Incidentally, if test_flip fails, the person debugging these routines will want to know some of the
intermediate numbers computed during initialization. The first nontrivial values calculated by gb init rand
are A[42] = 2147326568, A[8] = 1073977445, and A[29] = 536517481. Once you get those right, the rest
should be easy.

An early version of this routine simply said ‘seed � 1’ instead of making seed shift cyclically. This method
had an interesting flaw: When the original seed was a number of the form 4s+ 1, the first 54 elements A[1],
. . . , A[54] were set to exactly the same values as when seed was 4s+ 2. Therefore one out of every four seed
values was effectively being wasted.
〈Compute a new next value, based on next , prev , and seed 9 〉 ≡

next = mod diff (prev ,next);
if (seed & 1) seed = #40000000 + (seed � 1);
else seed �= 1; /∗ cyclic shift right 1 ∗/
next = mod diff (next , seed);

This code is used in section 8.

§10 GB FLIP INITIALIZATION 5

10. After the first 55 values have been computed as a function of seed , they aren’t random enough for us
to start using them right away. For example, we have set A[21] = 1 in order to ensure that at least one
starting value is an odd number. But once the sequence an gets going far enough from its roots, the initial
transients become imperceptible. Therefore we call gb flip cycle five times, effectively skipping past the first
275 elements of the sequence; this has the desired effect. It also initializes gb fptr .

Note: It is possible to express the least significant bit of the generated numbers as a linear combination
mod 2 of the 31 bits of seed and of the constant 1. For example, the first generated number turns out to be
odd if and only if

s24 + s23 + s22 + s21 + s19 + s18 + s15 + s14 + s13 + s11 + s10 + s8 + s7 + s6 + s2 + s1 + s0

is odd, when seed = (s31 . . . s1s0)2. We can represent this linear combination conveniently by the hexadecimal
number #01ecedc7; the 1 stands for s24 and the final 7 stands for s2 +s1 +s0. The first ten least-significant
bits turn out to be respectively #01ecedc7, #dbbdc362, #400e0b06, #0eb73780, #da0d66ae, #002b63bc,
#adb801ed, #8077bbbc, #803d9db5, and #401a0eda in this notation (using the sign bit to indicate cases
when 1 must be added to the sum).

We must admit that these ten 32-bit patterns do not look at all random; the number of b’s, d’s, and
0’s is unusually high. (Before the “warmup cycles,” the patterns are even more regular.) This phenomenon
eventually disappears, however, as the sequence proceeds; and it does not seem to imply any serious deficiency
in practice, even at the beginning of the sequence, once we’ve done the warmup exercises.
〈Get the array values “warmed up” 10 〉 ≡

(void) gb flip cycle ();
(void) gb flip cycle ();
(void) gb flip cycle ();
(void) gb flip cycle ();
(void) gb flip cycle ();

This code is used in section 8.

11. 〈 gb_flip.h 6 〉 +≡
extern void gb init rand ();

6 UNIFORM INTEGERS GB FLIP §12

12. Uniform integers. Here is a simple routine that produces a uniform integer between 0 and m− 1,
inclusive, when m is any positive integer less than 231. It avoids the bias toward small values that would
occur if we simply calculated gb next rand () % m. (The bias is insignificant when m is small, but it can be
serious when m is large. For example, if m ≈ 232/3, the simple remainder algorithm would give an answer
less than m/2 about 2/3 of the time.)

This routine consumes fewer than two random numbers, on the average, for any fixed m.
In the test_flip program (main), this routine should compute t = m, then it should reject the values

r = 2081307921, 1621414801, and 1469108743 before returning the answer 748103812.
#define two to the 31 ((unsigned long) #80000000)
〈External functions 7 〉 +≡

long gb unif rand (m)
long m;

{ register unsigned long t = two to the 31 − (two to the 31 % m);
register long r;
do {
r = gb next rand ();

} while (t ≤ (unsigned long) r);
return r % m;
}

13. 〈 gb_flip.h 6 〉 +≡
extern long gb unif rand ();

§14 GB FLIP INDEX 7

14. Index. Here is a list that shows where the identifiers of this program are defined and used.

A: 4.
fprintf : 2.
gb flip cycle : 6, 7, 10.
gb fptr : 5, 6, 7, 10.
gb init rand : 1, 2, 8, 9, 11.
gb next rand : 1, 2, 5, 6, 7, 12.
gb unif rand : 2, 12, 13.
i: 8.
ii : 7.
j: 2.
jj : 7.
m: 12.
main : 2, 12.
mod diff : 7, 8, 9.
next : 8, 9.
prev : 8, 9.
r: 12.
seed : 1, 8, 9, 10.
stderr : 2.
system dependencies: 7.
t: 12.
two to the 31 : 12.

8 NAMES OF THE SECTIONS GB FLIP

〈Compute a new next value, based on next , prev , and seed 9 〉 Used in section 8.

〈External declarations 5 〉 Used in section 3.

〈External functions 7, 8, 12 〉 Used in section 3.

〈Get the array values “warmed up” 10 〉 Used in section 8.

〈Private declarations 4 〉 Used in section 3.

〈 gb_flip.h 6, 11, 13 〉
〈 test_flip.c 2 〉

May 18, 1999 at 07:14

GB FLIP
Section Page

Introduction . 1 1
The subtractive method . 4 2
Initialization . 8 4
Uniform integers . 12 6
Index . 14 7

c© 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

