
Digital Object Identifier (DOI) 10.1007/s10107-003-0436-0

Math. Program., Ser. B 97: 3–26 (2003)

Susanne Albers

Online algorithms: a survey

Received: December 1, 2002 / Accepted: April 28, 2003
Published online: May 28, 2003 – © Springer-Verlag 2003

Abstract. During the last 15 years online algorithms have received considerable research interest. In this
survey we give an introduction to the competitive analysis of online algorithms and present important results.
We study interesting application areas and identify open problems.

1. Introduction

The traditional design and analysis of algorithms assumes that an algorithm, which gen-
erates output, has complete knowledge of the entire input. However, this assumption is
often unrealistic in practical applications. Many of the algorithmic problems that arise
in practice are online. In these problems the input is only partially available because
some relevant input data arrives in the future and is not accessible at present. An online
algorithm must generate output without knowledge of the entire input. Online problems
arise in many areas of computer science. We give some illustrating examples.

Resource management in operating systems: Paging is a classical online problem where
one has to maintain a two-level memory system consisting of a small fast memory and a
large slow memory. The goal is to keep actively referenced pages in fast memory without
knowing which pages will be requested in the future.

Data structures: Consider a data structure such as a linear linked list or a tree. We wish
to dynamically maintain this structure so that a sequence of accesses to elements can be
served at low cost. Future access patterns are unknown.

Scheduling: A sequence of jobs must be scheduled on a set of machines so as to optimize
a given objective function. Jobs arrive one by one and must be scheduled immediately
without knowledge of future jobs.

Networks: Many online problems in this area arise in the context of data transmission.
The problem can be, for instance, to dynamically maintain a set of open connections
between network nodes without knowing which connections are needed in the future.

The quality of online algorithms is usually evaluated using competitive analysis. The
idea of competitiveness is to compare the output generated by an online algorithm to
the output produced by an optimal offline algorithm. An optimal offline algorithm is an
omniscient algorithm that knows the entire input data in advance and can compute an

S. Albers: Institut für Informatik, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 79, 79110 Frei-
burg, Germany, e-mail: salbers@informatik.uni-freiburg.de

Mathematics Subject Classification (1991): 68W25, 68W40



4 S. Albers

optimal output. The better an online algorithm approximates the optimal solution, the
more competitive this algorithm is.

In the following we first present fundamental concepts used to study online algo-
rithms. Then we study various online problems and present important results. The spe-
cific problems we consider include paging, self-organizing data structures, the k-server
problem, metrical task systems, scheduling and load balancing as well as problems in
large networks. Finally we address refinements of competitive analysis and conclude
with some remarks.

2. Basic concepts

Formally, many online problems can be described as follows. An online algorithm A

is presented with a request sequence σ = σ(1), σ (2), . . . , σ (m). The requests σ(t),
1 ≤ t ≤ m, must be served in the order of occurrence. When serving request σ(t),
algorithm A does not know any request σ(t ′) with t ′ > t . Serving requests incurs cost
and the goal is to minimize the total cost paid on the entire request sequence. This setting
can also be regarded as a request-answer game: An adversary generates requests and an
online algorithm has to serve them one at a time.

To illustrate this formal model we re-consider the paging problem and start with a
precise definition.

The paging problem: Consider a two-level memory system that consists of a small
fast memory and a large slow memory. We assume that the fast memory can simulta-
neously store k memory pages and that the slow memory can hold potentially infinitely
many pages. Each request specifies a page in the memory system. A request is served if
the corresponding page is in fast memory. If a requested page is not in fast memory, a
page fault occurs. Then a page must be moved from fast memory to slow memory so that
the requested page can be loaded into the vacated location. A paging algorithm specifies
which page to evict on a fault. If the algorithm is online, then the decision which page to
evict must be made without knowledge of any future requests. The cost to be minimized
is the total number of page faults incurred on the request sequence.

Sleator and Tarjan [93] suggested evaluating the performance of an online algorithm
using competitive analysis. In a competitive analysis, an online algorithm A is compared
to an optimal offline algorithm. An optimal offline algorithm knows the entire request
sequence in advance and can serve it with minimum cost. Given a request sequence σ ,
let A(σ) denote the cost incurred by A and let OPT (σ) denote the cost incurred by an
optimal offline algorithm OPT. The algorithm A is called c-competitive if there exists
a constant a such that A(σ) ≤ c · COPT (σ ) + a for all request sequences σ . Here we
assume that A is a deterministic online algorithm. Note that competitive analysis is a
strong worst case performance measure in the sense that a competitive algorithm must
perform well on all inputs.

With respect to the paging problem, there are two well-known deterministic online
algorithms.

LRU (Least Recently Used): On a fault, evict the page in fast memory that was requested
least recently.

FIFO (First-In First-Out): Evict the page that has been in fast memory longest.



Online algorithms: a survey 5

Sleator and Tarjan [93] analyzed the performance of LRU and FIFO and showed
that on any request sequence the number of page faults incurred by these algorithms is
bounded by k times the number of faults made by OPT. They also showed that this is
optimal.

Theorem 1. [93] LRU and FIFO are k-competitive.

Theorem 2. [93] No deterministic online algorithm for the paging problem can achieve
a competitive ratio smaller than k.

An optimal offline algorithm for the paging problem was presented by Belady [25].
The algorithm is called MIN and works as follows.

MIN: On a fault, evict the page whose next request occurs furthest in the future.

Belady showed that on any sequence of requests, MIN achieves the minimum number
of page faults.

A natural question is: Can an online algorithm achieve a better competitive ratio if
it is allowed to use randomization?

The competitive ratio of a randomized online algorithm A is defined with respect
to an adversary. The adversary generates a request sequence σ and also has to serve
σ . When constructing σ , the adversary always knows the description of A. The crucial
question is: When generating requests, is the adversary allowed to see the outcome of
the random choices made by A on previous requests? Ben-David et al. [27] introduced
three kinds of adversaries.

Oblivious adversary: The oblivious adversary has to generate the entire request sequence
in advance before any requests are served by the online algorithm. The adversary is
charged the cost of the optimum offline algorithm for that sequence.

Adaptive online adversary: This adversary may observe the online algorithm and gen-
erate the next request based on the algorithm’s (randomized) answers to all previous
requests. The adversary must serve each request online, i.e. without knowing the random
choices made by the online algorithm on the present or any future request.

Adaptive offline adversary: This adversary also generates a request sequence adaptively.
However, it is charged the optimum offline cost for that sequence.

A randomized online algorithm A is called c-competitive against any oblivious adversary
if there is a constant a such for all request sequences σ generated by an oblivious adver-
sary, E[A(σ)] ≤ c · OPT (σ) + a. The expectation is taken over the random choices
made by A.

Given a randomized online algorithm A and an adaptive online (adaptive offline)
adversary ADV, let E[A(σ)] and E[ADV (σ)] denote the expected costs incurred by A

and ADV in serving a request sequence generated by ADV. A randomized online algo-
rithm A is called c-competitive against any adaptive online (adaptive offline) adversary
if there is a constant a such that for all adaptive online (adaptive offline) adversaries
ADV, E[A(σ)] ≤ c · E[ADV (σ)] + a, where the expectation is taken over the random
choices made by A.

Ben-David et al. [27] investigated the relative strength of the adversaries and showed
the following statements.



6 S. Albers

Theorem 3. [27] If there is a randomized online algorithm that is c-competitive against
any adaptive offline adversary, then there also exists a c-competitive deterministic online
algorithm.

Theorem 4. [27] If A is a c-competitive randomized algorithm against any adaptive
online adversary and if there is a d-competitive algorithm against any oblivious adver-
sary, then A is (c · d)-competitive against any adaptive offline adversary.

Theorem 3 implies that randomization does not help against the adaptive offline
adversary. An immediate consequence of the two theorems above is:

Corollary 1. If there exists a c-competitive randomized algorithm against any adaptive
online adversary, then there is a c2-competitive deterministic algorithm.

Against oblivious adversaries, randomized online paging algorithms can consider-
ably improve the ratio of k shown for deterministic paging. The following algorithm was
proposed by Fiat et al. [55].

Marking: The algorithm processes a request sequence in phases. At the beginning of
each phase, all pages in the memory system are unmarked. Whenever a page is requested,
it is marked. On a fault, a page is chosen uniformly at random from among the unmarked
pages in fast memory, and that page is evicted. A phase ends when all pages in fast mem-
ory are marked and a page fault occurs. Then, all marks are erased and a new phase is
started.

Fiat et al. [55] analyzed the performance of the Marking algorithm and showed that
it is 2Hk-competitive against any oblivious adversary, where Hk = ∑k

i=1 1/i is the k-th
Harmonic number. Note that Hk is roughly ln k.

Fiat et al. [55] also proved that no randomized online paging algorithm against any
oblivious adversary can be better than Hk-competitive. Thus the Marking algorithm
is optimal, up to a constant factor. More complicated paging algorithms achieving an
optimal competitive ratio of Hk were given in [81, 1].

3. Self-organizing data structures

The list update problem is one of the first online problems that were studied with respect
to competitiveness. The problem is to maintain a dictionary as an unsorted linear list.
Consider a set of items that is represented as a linear linked list. We receive a request
sequence σ , where each request is one of the following operations. (1) It can be an access
to an item in the list, (2) it can be an insertion of a new item into the list, or (3) it can
be a deletion of an item. To access an item, a list update algorithm starts at the front of
the list and searches linearly through the items until the desired item is found. To insert
a new item, the algorithm first scans the entire list to verify that the item is not already
present and then inserts the item at the end of the list. To delete an item, the algorithm
scans the list to search for the item and then deletes it.

In serving requests a list update algorithm incurs cost. If a request is an access or a
delete operation, then the incurred cost is i, where i is the position of the requested item
in the list. If the request is an insertion, then the cost is n + 1, where n is the number of



Online algorithms: a survey 7

items in the list before the insertion. While processing a request sequence, a list update
algorithm may rearrange the list. Immediately after an access or insertion, the requested
item may be moved at no extra cost to any position closer to the front of the list. These
exchanges are called free exchanges. Using free exchanges, the algorithm can lower the
cost on subsequent requests. At any time two adjacent items in the list may be exchanged
at a cost of 1. These exchanges are called paid exchanges. The goal is to serve the request
sequence so that the total cost is as small as possible.

With respect to the list update problem, we require that a c-competitive online algo-
rithm has a performance ratio of c for all size lists. More precisely, a deterministic online
algorithm for list update is called c-competitive if there is a constant a such that for all
size lists and all request sequences σ , A(σ) ≤ c · OPT (σ) + a.

Linear lists are one possibility for representing a set of items. Certainly, there are
other data structures such as balanced search trees or hash tables that, depending on the
given application, can maintain a set in a more efficient way. In general, linear lists are
useful when the set is small and consists of only a few dozen items. Recently, list update
techniques have been applied very successfully in the development of data compression
algorithms [8, 28, 34].

There are three well-known deterministic online algorithms for the list update prob-
lem.

Move-To-Front: Move the requested item to the front of the list.

Transpose: Exchange the requested item with the immediately preceding item in the
list.

Frequency-Count: Maintain a frequency count for each item in the list. Whenever an
item is requested, increase its count by 1. Maintain the list so that the items always occur
in nonincreasing order of frequency count.

The formulations of list update algorithms generally assume that a request sequence
consists of accesses only. It is obvious how to extend the algorithms so that they can
also handle insertions and deletions. On an insertion, the algorithm first appends the new
item at the end of the list and then executes the same steps as if the item was requested
for the first time. On a deletion, the algorithm first searches for the item and then just
removes it.

In the following, we discuss the algorithms Move-To-Front, Transpose and Fre-
quency-Count. We note that Move-To-Front and Transpose are memoryless strategies,
i.e. they do not need any extra memory to decide where a requested item should be
moved. Thus, from a practical point of view, they are more attractive than Frequency-
Count. Sleator and Tarjan [93] analyzed the competitive ratios of the three algorithms.

Theorem 5. [93] The Move-To-Front algorithm is 2-competitive.

Proposition 1. The algorithms Transpose and Frequency-Count are not c-competitive,
for any constant c.

Karp and Raghavan [72] developed a lower bound on the competitiveness that can
be achieved by deterministic online algorithms. This lower bound implies that Move-
To-Front has an optimal competitive ratio.



8 S. Albers

Theorem 6. [72] Let A be a deterministic online algorithm for the list update problem.
If A is c-competitive, then c ≥ 2.

Ambühl [10] showed that the offline variant of the list update problem is NP-hard. Thus,
in contrast to the paging problem, there is no efficient algorithm for computing an optimal
service schedule for a given input.

Next we address the problem of randomization in the list update problem. Against
adaptive adversaries, no randomized online algorithm for list update can be better than
2-competitive, see [27, 86]. Thus we concentrate on algorithms against oblivious adver-
saries. Many randomized algorithms for list update have been proposed [2, 9, 64, 86].
We present the two most important algorithms. Reingold et al. [86] gave a very simple
algorithm, called Bit.

Bit: Each item in the list maintains a bit that is complemented whenever the item is
accessed. If an access causes a bit to change to 1, then the requested item is moved
to the front of the list. Otherwise the list remains unchanged. The bits of the items are
initialized independently and uniformly at random.

Theorem 7. [86] The Bit algorithm is 1.75-competitive against any oblivious adversary.

Reingold et al. [86] generalized the Bit algorithm and proved an upper bound of√
3 ≈ 1.73 against oblivious adversaries. The best randomized algorithm currently

known is a combination of the Bit algorithm and a deterministic 2-competitive online
algorithm called Timestamp proposed in [2].

Timestamp (TS): Insert the requested item, say x, in front of the first item in the list
that precedes x and that has been requested at most once since the last request to x. If
there is no such item or if x has not been requested so far, then leave the position of x

unchanged.

As an example, consider a list of six items being in the order
L : x1 → x2 → x3 → x4 → x5 → x6. Suppose that algorithm TS has to serve the sec-
ond request to x5 in the request sequence σ = . . . x5, x2, x2, x3, x1, x1, x5. Items x3 and
x4 were requested at most once since the last request to x5, whereas x1 and x2 were
both requested twice. Thus, TS will insert x5 immediately in front of x3 in the list. A
combination of Bit and TS was proposed by [9].

Combination: With probability 4/5 the algorithm serves a request sequence using Bit,
and with probability 1/5 it serves a request sequence using TS.

Theorem 8. [9] The algorithm Combination is 1.6-competitive against any oblivious
adversary.

Ambühl et al. [11] presented a lower bound for randomized list update algorithms.

Theorem 9. [11] Let A be a randomized online algorithm for the list update problem.
If A is c-competitive against any oblivious adversary, then c ≥ 1.50084.

An interesting open problem is to determine tight bounds on the competitive ratio
that can be achieved by randomized online algorithms against oblivious adversaries.

Using techniques from learning theory, Blum et al. [30] recently gave a randomized
online algorithm that, for any ε > 0, is (1.6 + ε)-competitive and at the same time



Online algorithms: a survey 9

(1 + ε)-competitive against an offline algorithm that is restricted to serving a request
sequence with a static list.

Many of the concepts shown for self-organizing linear lists can be extended to binary
search trees. The most popular version of self-organizing binary search trees are the splay
trees presented by Sleator and Tarjan [94]. In a splay tree, after each access to an element
x in the tree, the node storing x is moved to the root of the tree using a special sequence
of rotations that depends on the structure of the access path. This reorganization of the
tree is called splaying.

Sleator and Tarjan [94] analyzed splay trees and proved a series of interesting results.
They showed that the amortized asymptotic time of access and update operations is as
good as the corresponding time of balanced trees. More formally, in an n-node splay
tree, the amortized time of each operation is O(log n).

Theorem 10. [94] Splay trees are O(log n)-competitive.

It was also shown [94] that on any sequence of accesses, a splay tree is as efficient as
the optimum static search tree.

Theorem 11. [94] Splay trees are O(1)-competitive against optimal static search trees.

Moreover, Sleator and Tarjan [94] presented a series of conjectures, some of which have
been resolved or partially resolved [45, 46, 95]. On the other hand, the famous splay tree
conjecture is still open: It is conjectured that on any sequence of accesses splay trees
are as efficient as any dynamic binary search tree. Blum et al. [30] showed that there is
an O(1)-competitive algorithm if the online algorithm is allowed to make free rotations
after each request.

4. The k-server problem

The k-server problem is one of the most fundamental problems in the theory of online
algorithms. In the k-server problem we are given a metric space S and k mobile servers
that reside on points in S. Each request specifies a point x ∈ S. To serve a request, one
of the k servers must be moved to the requested point unless a server is already present.
Moving a server from point x to point y incurs a cost equal to the distance between x

and y. The goal is to serve a sequence of requests so that the total distance traveled by
all servers is as small as possible.

The k-server problem contains paging as a special case. Consider a metric space in
which the distance between any two points in 1; each point in the metric space represents
a page in the memory system and the pages covered by servers are those that reside in
fast memory. The k-server problem also models more general caching problems, where
the cost of loading an item into fast memory depends on the size of the item. Such a
situation occurs, for instance, when font files are loaded into the cache of a printer. More
generally, the k-server problem can also be regarded as a vehicle routing problem.

The k-server problem was introduced in 1988 by Manasse et al. [80] who also showed
a lower bound for deterministic k-server algorithms.

Theorem 12. [80] Let A be a deterministic online k-server algorithm in an arbitrary
metric space. If A is c-competitive, then c ≥ k.



10 S. Albers

In their seminal paper Manasse et al. [80] also conjectured that there exists a deter-
ministic k-competitive online k-server algorithm. Seven years later Koutsoupias and
Papadimitriou [78] showed that there is a (2k − 1)-competitive algorithm and hence
achieved a breakthrough. Before, k-competitive algorithms were known for special met-
ric spaces (e.g. trees [39] and resistive spaces [47]) and special values of k (k = 2 and
k = n − 1, where n is the number of points in the metric space [80]). It is worthwhile to
note that the greedy algorithm, which always moves the closest server to the requested
point, is not competitive.

The algorithm analyzed by Koutsoupias and Papadimitriou is the Work Function
algorithm. Let X be a configuration of the servers. Given a request sequence σ =
σ(1), . . . , σ (t), the work function w(X) is the minimal cost of serving σ and ending in
configuration X. For any two points x and y in the metric space, let dist (x, y) be the
distance between x and y.

Work Function: Suppose that the algorithm has served σ = σ(1), . . . , σ (t − 1) and
that a new request r = σ(t) arrives. Let X be the current configuration of the servers and
let xi be the point where server si , 1 ≤ i ≤ k, is located. Serve the request by moving
the server si that minimizes w(Xi) + dist (xi, r), where Xi = X − {xi} + {r}.
Theorem 13. [78] The Work Function algorithm is (2k−1)-competitive in an arbitrary
metric space.

An interesting open problem is to show that the Work Function algorithm is indeed
k-competitive or to develop an other deterministic online k-server algorithm that achieves
a competitive ratio of k.

The performance of randomized online algorithms is not as well understood. In
particular no randomized algorithm is known that has a competitiveness smaller than
2k − 1 in arbitrary metric spaces. An elegant randomized strategy for moving servers
was proposed by Raghavan and Snir [85].

Harmonic: Suppose that there is a new request at point r and that server si , 1 ≤ i ≤ k,
is currently at point xi . Let di = dist (xi, r) be the distance between xi and r . Move
server si with probability pi = 1/(di

∑k
j=1

1
dj

) to the request.
Intuitively, the closer a server is to the request, the higher the probability that it

will be moved. Bartal and Grove [24] proved that the Harmonic algorithm achieves a
competitive ratio of c ≤ 5

4k · 2k − 2k against adaptive online adversaries. Against these
adversaries no randomized online algorithm can achieve a competitive ratio smaller than
k [85]. The competitiveness of Harmonic is not better than k(k + 1)/2, see [85]. The
algorithm has a competitive ratio of 3, for k = 3, and of k(k + 1)/2 in metric spaces
consisting of k + 1 points [40, 85]. Against lazy adversaries Harmonic achieves a com-
petitiveness of k(k + 1)/2 [22]. An adversary is lazy if, whenever one of its servers is
located on a point not covered by the online algorithm’s servers, it requests that point.
It was conjectured that lazy adversaries achieve the highest possible competitive ratio
against randomized memoryless online algorithms that only move one of their servers if
the requested point is not already covered by a server. However, Peserico [83] disproved
this conjecture.

For randomized algorithms against oblivious adversaries the best lower bound cur-
rently known is due to Bartal et al. [20].



Online algorithms: a survey 11

Theorem 14. [20] The competitive ratio of a randomized online algorithm in an arbi-
trary metric space is �(log k/ log2 log k) against oblivious adversaries.

The bound can be improved to �(log k) if the metric space consists of at least klogε k

points, for any ε > 0, [20]. It is conjectured that �(log k) is the true competitiveness
of randomized algorithms against oblivious adversaries. Bartal et al. [21] presented an
algorithm that has a competitive ratio of O(c6 log6 k) in metric spaces consisting of k+c

points. Seiden [90] gave an algorithm that achieves a competitive ratio polylogarithmic
in k for metric spaces that can be decomposed into a small number of widely separated
subspaces. The main open problem in the area of the k-server problem is to develop
randomized online algorithms that have a competitive ratio of c < k in an arbitrary
metric space.

5. Metrical task systems

Metrical task systems were introduced by Borodin et al. [33] and represent a frame-
work for modeling a large class of on-line problems. The definition of task systems is
motivated by the observation that in many computer systems there are several ways to
execute a given job.

A metrical task system is defined by a metric space (S, d) and an associated set
T of tasks. The space (S, d) consists of a set S of n states and a distance function
d : S × S −→ R

+
0 , where d(i, j) ≥ 0 denotes the cost of changing from state i to

state j . Since the space is metric, the function d is symmetric, satisfies the triangle
inequality and d(i, i) = 0, for all states i. The set T is the set of allowable tasks. A
task T ∈ T is a vector T = (T (1), T (2), . . . , T (n)), where T (i) ∈ R

+
0 ∪ {∞} denotes

the cost of processing the task while in state i. A request sequence is a sequence of
tasks σ = T 1, T 2, T 3, . . . , T m that must be served starting from some initial state
s(0). When receiving a new task, an algorithm may serve the task in the current state
or may change states at a cost. Thus the algorithm must determine a schedule of states
s(1), s(2), . . . , s(m), such that task T i is processed in state s(i). The cost of serving
a task sequence is the sum of all state transition costs and all task processing costs:∑m

i=1 d(s(i − 1), s(i)) + ∑m
i=1 T i(s(i)). The goal is to process a given task sequence

so that the cost is as small as possible.
Borodin et al. [33] settled the competitiveness of deterministic online algorithms.

Theorem 15. [33] There exists a deterministic online algorithm that is (2n − 1)-com-
petitive for any metrical task system with n states.

Theorem 16. [33] Any deterministic online algorithm for the metrical task systems
problem has a competitive ratio of at least 2n − 1, where n is the number of task system
states.

It is worthwhile to notice that the competitive factor of 2n − 1 for deterministic online
algorithms often does not provide meaningful bounds when special online problems are
investigated. Consider the list update problem. Here the given list can be in n! states.
Hence, we obtain a bound of (2n!−1) on the competitive factor of a deterministic online



12 S. Albers

algorithm for the list update problem. However, Move-To-Front achieves a competitive
factor of 2.

For randomized algorithms, the known bounds are tight up to a logarithmic factor.

Theorem 17. [57] There exists a randomized online algorithm that is O(log2 n/ log2

log n)-competitive against any oblivious adversary, for any metrical task system with n

states.

Theorem 18. [20] Any randomized online algorithm for the metrical task systems prob-
lem has a competitive ratio of at least �(log n/ log2 log n) against oblivous adversaries,
where n is the number of task system states.

Better bounds hold for uniform metrical task systems, where the cost d(i, j) of changing
states is equal to 1 for all i 
= j . Borodin et al. [33] gave a lower bound of Hn, where
Hn is the n-th Harmonic number. The best upper bound currently known was presented
by Irani and Seiden [67] and is equal to Hn + O(

√
log n).

6. Scheduling and load balancing

Scheduling is a classical and well-studied problem that still receives a lot of research
interest. The general situation in online scheduling is as follows. We are given a set of
m machines. A sequence of jobs σ = J1, J2, . . . , Jn arrives online. Each job Jk has
a processing pk time that may or may not be known in advance. Whenever a new job
arrives, it has to be scheduled immediately on one of the m machines. The goal is to
optimize a given objective function. There are many problem variants: Preemption of
jobs may or may not be allowed; we can study various machine types and various objec-
tive functions. A very large number of different problems have been investigated in the
literature and we can only discuss a few basic scenarios in this survey.

First we consider one of the most basic problems in online scheduling. Suppose that
we are given m identical machines. The jobs σ = J1, J2, . . . , Jn arrive one by one.
Whenever the scheduler is presented with a new job, its processing time is known in
advance. Preemption of jobs is not allowed. We wish to minimize the makespan, which
is the completion time of the last job that finishes in the schedule.

Graham [63] in 1966 proposed the elegant Greedy algorithm and analyzed its per-
formance.

Greedy: Assign a new job to the least loaded machine.

Theorem 19. [63] Greedy is (2 − 1
m

)-competitive.

Graham also showed that the competitive ratio of Greedy is not smaller than 2 − 1
m

.
In recent years, research has focused on finding algorithms that achieve a competitive
ratio asymptotically smaller than 2. In 1992, Bartal et al. [23] gave an algorithm that is
1.986-competitive. This bound was improved to 1.945, to 1.923 and finally to 1.9201,
which is the best upper bound known to date [69, 3, 60]. All the algorithms are deter-
ministic. The best lower bound currently known is due to Rudin [87]. He proved that
no deterministic online algorithm can be better 1.88-competitive. An interesting open
problem is to close the gap between the lower and the upper bounds.



Online algorithms: a survey 13

Since the publication of the paper by Bartal et al. [23], there has also been research
interest in developing randomized online algorithms for the above scheduling prob-
lem. Bartal et al. gave a randomized algorithm for 2 machines that achieves an optimal
competitive ratio of 4/3. Chen et al. [36] and Sgall [91] proved that no randomized
online algorithm can have a competitiveness smaller than 1/(1 − (1 − 1/m)m). This
expression tends to e/(e − 1) ≈ 1.58 as m → ∞. Seiden [88] presented a randomized
algorithm whose competitive ratio is smaller than the best known deterministic ratio for
m ∈ {3, . . . , 7}. The competitiveness is also smaller than the deterministic lower bound
for m = 3, 4, 5.

Recently, Albers [4] developed a randomized online algorithm that is 1.916-com-
petitive, for all m, and hence gave the first algorithm that performs better than known
deterministic algorithms for general m. She also showed that a performance guarantee of
1.916 cannot be proven for a deterministic online algorithm based on analysis techniques
that have been used in the literature so far. An interesting feature of the new randomized
algorithm, called Rand, is that at most two schedules have to be maintained at any time. In
contrast, the algorithms by Bartal et al. [23] and by Seiden [90] have to maintain t sched-
ules when t jobs have arrived. The Rand algorithm is a combination of two deterministic
algorithms A1 and A2. Initially, when starting the scheduling process, Rand chooses Ai ,
i ∈ {1, 2}, with probability 1

2 and then serves the entire job sequence using the chosen
algorithm. Algorithm A1 is a conservative strategy that tries to maintain schedules with
a low makespan. On the other hand, A2 is an aggressive strategy that aims at generating
schedules with a high makespan. A challenging open problem is to design randomized
online algorithms that beat the deterministic lower bound, for all m.

We next consider some variants of the basic scenario studied so far.
Identical machines, restricted assignment: We have a set of m identical machines, but
each job can only be assigned to one of a subset of admissible machines. Azar et al. [18]
showed that the Greedy algorithm, which always assigns a new job to the least loaded
machine among the admissible machines, achieves a competitiveness of �log2 m� + 1.
They also proved that no deterministic online algorithm can be better than �log2 m�-
competitive.

Related machines: Each machine i has a speed si , 1 ≤ i ≤ m. The processing time of job
Jk on machine i is equal to pk/si . Aspnes et al. [13] showed that the Greedy algorithm,
that always assigns a new job to a machine so that the load after the assignment is mini-
mized, is �(log m)-competitive. They also presented an algorithm that is 8-competitive.
The bound was improved to 5.828 in [30].

Unrelated machines: The processing time of job Jk on machine i is pk,i , 1 ≤ k ≤ n,
1 ≤ i ≤ m. Aspnes et al. [13] showed that Greedy is only m-competitive. However, they
also gave an algorithm that is O(log m)-competitive.

In online load balancing we have again a set of m machines and a sequence of
jobs σ = J1, J2, . . . , Jn that arrive online. Here, each job Jk has a weight w(k) and an
unknown duration. For any time t , let li (t) denote the load of machine i, 1 ≤ i ≤ m, at
time t , which is the sum of the weights of the jobs present on machine i at time t . The
goal is to minimize the maximum load that occurs during the processing of σ .

For the scenario with m identical machines, Azar and Epstein [16] showed that the
Greedy algorithm is (2 − 1

m
)-competitive. The load balancing problem becomes more



14 S. Albers

complicated with restricted assignments, i.e. each job can only be assigned to a subset
of admissible machines. Azar et al. [15] proved that Greedy achieves a competitive ratio
of m2/3(1+o(1)). They also proved that no online algorithm can be better than �(

√
m)-

competitive. In a subsequent paper, Azar et al. [17] gave a matching upper bound. The
algorithm works as follows.

Robin Hood: Let OPT be the optimum load achieved by the offline algorithm. Robin
Hood maintains an estimate L for OPT satisfying L ≤ OPT . At any time t , machine i

is called rich if li (t) ≥ √
mL; otherwise machine i is called poor. When a new job Jk

arrives, L is updated, i.e. L := max{L, w(k), 1
m

(w(k) + ∑m
i=1 li (t))}. If possible, Jk is

assigned to a poor machine. Otherwise it is assigned to the rich machine that became
rich most recently.

Theorem 20. [17] Robin Hood is O(
√

m)-competitive.

For related machines an upper bound of 20 and a lower bound of 3 − o(1) on the
competitive ratio are known [17]. Recently, Armon [12] settled the complexity for unre-
lated machines. They proved a lower bound of �(m/ log m) on the competitiveness of
any deterministic online algorithm, almost matching the trivial upper bound of O(m)

of the Greedy algorithm. We refer the reader to [14, 92] for excellent surveys on online
scheduling and load balancing.

7. Large networks

With the advent of the world-wide web, researchers have started investigating algorith-
mic problems that arise in large networks. Many of these problems are online and we
discuss some selected problems.

7.1. Generalized caching

We consider the caching of web documents. Caches can be maintained by web clients
or servers. Storing actively accessed documents in local caches can substantially reduce
user response times as well as the network congestion because requested documents do
not have to be transmitted repeatedly over the web. Web caching problems differ from
standard paging problems in that documents have varying sizes and incur varying costs
when downloaded into a local cache. The loading cost depends, for instance, on the size
of the documents and on the current congestion in the network.

In generalized caching we have again a two-level memory system consisting of a
fast and a slow memory. In the network setting, the fast memory is a local cache; the
slow memory is the memory of the remaining network, i.e. the universe of all documents
accessible in the network. We assume that the fast memory has a capacity of K . For any
document d, let size(d) be the size and cost(d) be the cost of d. The total size of the
pages in fast memory may never exceed K . If a requested document is not in cache,
the incurred cost is cost(d). The goal is to serve a sequence of requests so that the total
loading cost is as small as possible. Various cost models have been proposed in the
literature.



Online algorithms: a survey 15

1. The Bit Model [65]: For each document d , we have cost(d) = size(d). (The delay
in bringing the document into fast memory depends only upon its size.)

2. The Fault Model [65]: For each document d , we have cost(d) = 1 while the sizes
can be arbitrary.

3. The Cost Model: For each document d , we have size(d) = 1 while the costs can be
arbitrary.

4. The General Model: For each document d , both the cost and size can be arbitrary.

Note that generalized caching is a problem that arises in networks but the network
topology is not directly part of a problem instance. It is captured only implicitly in the
cost of downloading a document.

For the Bit and the Fault models, the LRU strategy is (k+1)-competitive [52], where
k is the ratio of K to the size of the smallest document ever requested. This bound holds
in a relaxed caching scenario where the requested document does not necessarily have
to be brought into fast memory, which is an option in web applications. The perfor-
mance ratio of k + 1 is optimal for deterministic algorithms. For the Bit and the Fault
Model, Irani presented randomized O(log2 k)-competitive online algorithms. Caching
in the Cost Model is also known as weighted caching, which is a special instance of the
k-server problem. Young [98] gave a K-competitive online algorithm for the General
Model.

Landlord: For each d in fast memory, the algorithm maintains a variable
credit(d) that takes values between 0 and cost(d). If a requested document d is al-
ready in fast memory, then credit(d) is reset to any value between its current value and
cost(d). If the requested page is not in fast memory, then the following two steps are
executed until there is enough room to load d . (1) For each document d ′ in fast memory,
decrease credit(d ′) by � · size(d ′), where � = mind ′∈F credit(d ′)/size(d ′) and F is
the set of documents in fast memory. (2) Evict any document d ′ from fast memory with
credit(d ′) = 0. When there is enough room, load d and set credit(d) to cost(d).

Theorem 21. [98] Landlord is K-competitive in the General Model.

The above bound is optimal. An interesting problem is to develop randomized online
algorithms for generalized caching. For the Bit and the Fault Model it would be nice
to design algorithms with improved competitive ratios. In the General Model we are
interested in o(K)-competitive randomized algorithms. This is a challenging problem
as it involves finding o(k)-competitive algorithms for the k-server problem.

7.2. Maintaining TCP connections

We study two algorithmic problems that arise in the context of maintaining open TCP
connections.

Cohen et al. [43] initiated the theoretical study of connection caching in the world-
wide web. Communication between clients and servers in the web is performed using
HTTP (Hyper Text Transfer Protocol), which in turn uses TCP (Transmission Control
Protocol) to transmit data. The current protocol HTTP/1.1 works with persistent con-
nections, i.e. once a TCP connection is established it may be kept open and used for



16 S. Albers

transmission until the connection is explicitly closed by one of the endpoints. Of course,
each network node can simultaneously maintain only a limited number of open TCP
connections. If a connection is closed, there is a mechanism by which one endpoint can
signal the close to the other endpoint [59].

Formally, in connection caching, we are given a network modeled as an undirected
graph G. The nodes of the graph represent the nodes in the network. The edges represent
the possible connections. Each node has a cache in which it can maintain information
on open connections. A connection c = (u, v) is open if information on c is stored in the
caches of both u and v. For a node v, let k(v) denote the number of open connections
that v can maintain simultaneously. Let k be the size of the largest cache in the network.
For a connection c = (u, v), let cost (c) be the establishment cost of c that is incurred
when c is opened. An algorithm for connection caching is presented with a request
sequence σ = σ(1), σ (2), . . . , σ (m), where each request σ(t) specifies a connection
ct = (ut , vt ), 1 ≤ t ≤ m. If the requested connection ct is already open, then the request
can be served at cost 0; otherwise the connection has to be opened at a cost of cost (ct ).
The goal is to serve the request sequence σ so that the total cost is as small as possible.

An important feature of this problem is that local cache configurations are not inde-
pendent of each other. When one endpoint of an open connection decides to close the
connection, then the other endpoint also cannot use that connection anymore.

Cohen et al. [43] investigated uniform connection caching where the connection
establishment cost is uniform for all the connections. They first showed that any
c-competitive algorithm for standard paging can be transformed into a 2c-competitive
algorithm for uniform connection caching. Each local node simply executes a paging
strategy ignoring notifications of connections that were closed by other nodes. Using
LRU or FIFO, we obtain 2k-competitive algorithms. Cohen et al. [44] also considered
deterministic Marking strategies, which work in the same way as their randomized coun-
terparts except that on a fault an arbitrary unmarked page may be evicted.

Theorem 22. [44] Deterministic Marking strategies can be implemented in uniform
connection caching such that a competitive ratio of k is achieved. For each request, at
most 1 bit of extra communication is exchanged between the two corresponding network
nodes.

Obviously, the above performance is optimal since the lower bound of k for determin-
istic standard paging carries over to uniform connection caching. Cohen et al. [44] also
investigated randomized Marking strategies and showed that they are 4Hk-competitive
against oblivious adversaries.

In [5] Albers investigated generalized connection caching where the connection
establishment cost can be different for the various connections. She showed that the
Landlord algorithm known for generalized caching can be adapted so that it achieves an
optimal competitiveness. The implementation is as follows.

Landlord: For each cached connection c, the algorithm maintains a credit value credit (c)

that takes values between 0 and cost (c). Whenever a connection is opened, credit (c)

is set to cost (c). If a requested connection (u, v) is not already open, then each node
w ∈ {u, v} that currently has k(w) open connections executes the following steps. Let
δ = minc open at w credit (c). Close a connection cw at w with credit (cw) = δ and
decrease the credit of all the other open connections at w by δ.



Online algorithms: a survey 17

Theorem 23. [5] Landlord is k-competitive for generalized connection caching.

Ideally, we implement Landlord in a distributed fashion such that, for each open
connection c = (u, v), both endpoints u and v keep their copies of credit (c). If one
endpoint, say u, reduces the credit by δ, then this change has to be communicated to v so
that v can update its credit (c) value accordingly. The amount of extra communication
for an open connection can be large if the repeated δ reductions are small. It is possible
to reduce the amount of extra communication at the expense of increasing slightly the
competitiveness of the algorithm. For any 0 < ε ≤ 1, Landlord can be modified so that
it is (1+ ε)k-competitive and uses at most � 1

ε
�−1 bits of extra communication for each

open connection [5]. Setting ε = 1, we obtain a 2k-competitive algorithm that does not
use any extra communication. For ε = 1/2, the resulting algorithm is 3

2k-competitive
and uses only one bit of extra communication.

Interestingly no extra communication is necessary if we are willing to use randomi-
zation. It is possible to implement the Harmonic algorithm for the k-server problem in
such a way that it does not need any extra communication between network nodes. The
implementation achieves a competitiveness of k against adaptive online adversaries [5].

Secondly in this section we study a dynamic TCP acknowledgement problem. Con-
sider an open TCP connection between two network nodes that wish to exchange data.
The data is partitioned into segments or packets that are sent across the connection.
A node receiving data must acknowledge the arrival of each incoming packet so that
the sending node is notified that the transmission was successful; lost packets must
be retransmitted. However, data packets do not have to be acknowledged individually.
Instead, most TCP implementations employ some delay mechanism that allows the TCP
to acknowledge multiple incoming packets with a single acknowledgement and, pos-
sibly, to piggyback the acknowledgement on an outgoing data segment. Reducing the
number of acknowledgements has several advantages, e.g. the overhead incurred at the
network nodes for sending and receiving acknowledgements is reduced and, more impor-
tantly, the network congestion is reduced. On the other hand, by reducing the number of
acknowledgements, one adds latency to a TCP connection, which is not desirable. The
goal is to balance the reduction in the number of acknowledgements with the increase
in latency.

Motivated by the fact that TCP supports dynamic acknowledgement mechanisms,
Dooly et al. [51] formulated the following problem. A network node receives a sequence
of n data packets. Let ai denote the arrival time of packet i, 1 ≤ i ≤ n. At time ai ,
the arrival times aj , j > i, are not known. We have to partition the sequence σ =
(a1, . . . , an) of packet arrival times into m subsequences σ1, . . . , σm, for some m ≥ 1,
such that each subsequence ends with an acknowledgement. We use σi to denote the set
of arrivals in the partition. Let ti be the time when the acknowledgement for σi is sent.
We require ti ≥ aj , for all aj ∈ σi . If data packets are not acknowledged immediately,
there are acknowledgement delays. Dooley et al. [51] considered the objective function
that minimizes the number of acknowledgements and the sum of the delays incurred
for all of the packets, i.e. we wish to minimize f = m + ∑m

i=1
∑

aj ∈σi
(ti − aj ). They

analyzed the following algorithm.

Greedy: Send an acknowledgement when the total delay of the unacknowledged packets
is equal to 1, i.e. equal to the cost of an acknowledgement.



18 S. Albers

Theorem 24. [51] The Greedy algorithm is 2-competitive and this is the best competitive
ratio a deterministic online algorithm can achieve.

Karlin et al. [70] studied randomized algorithms and proved the following result.

Theorem 25. [70] There exists a randomized online strategy that achieves a competi-
tiveness of e/(e − 1) ≈ 1.58 against oblivious adversaries.

Noga [82] and independently Seiden [89] showed that no randomized algorithm can do
better.

Dooly et al. [51] also studied the minimization of a second objective function f ′ =
m + ∑m

i=1 maxaj ∈σi
(ti − aj ) where one considers the sum of the maximum delays

incurred in subsequences σi in addition to the number of acknowledgements sent. They
showed that the best competitive ratio of a deterministic online algorithm is equal to 2.

In [6] Albers and Bals investigate a new family of objective functions that penalize
long acknowledgement delays of individual data packets more heavily. In applications
where a TCP connection is used for interactive data transfer, long delays are not desirable
as they are noticeable to a user. Hence [6] studies the objective function that minimizes
the number of acknowledgements and the maximum delay incurred for any of the data
packets. Given an input σ , consider a partitioning σ1, . . . , σm. Let di = maxaj ∈σi

(ti−aj )

be the maximum delay of any packet in σi , 1 ≤ i ≤ m. We wish to minimize the function
g = m + max1≤i≤m di . The following family of algorithms is defined for any positive
real z.

Linear-Delay(z): Initially, set d = z and send the first acknowledgement at time a1 +d.
In general, suppose that the i-th acknowledgement has just been sent and that j packets
have been processed so far. Set d = (i + 1)z and send the (i + 1)-st acknowledgement
at time aj+1 + d.

Theorem 26. [6] For any z with z ≥ 1/2, Linear-Delay(z) is c-competitive, where
c = max{1 + z, (1 + z)/(2 + z − π2/6)}. Setting z = π2/6 − 1 the resulting algorithm
achieves a competitive ratio of π2/6 ≈ 1.644.

It is well known that π2/6 = ∑∞
i=1 1/i2. This performance ratio cannot be improved.

Theorem 27. [6] No deterministic online algorithm can achieve a competitive ratio
smaller than π2/6.

Additionally, Albers and Bals [6] investigate a generalization of the objective function
g where delays are taken to the p-th power and hence are penalized even more heavily.
Again, they present tight upper and lower bounds on the best possible competitiveness of
deterministic algorithms. The best competitive ratio is an alternating sum of Riemann’s
zeta function. The ratio is decreasing in p and tends to 1.5 as p → ∞. An interesting
open problem is to develop randomized online algorithms for the objective functions g

and its generalization. Some initial lower bounds were given in [6].
Frederiksen and Larsen [61] studied a modified version of the TCP acknowledge-

ment problem, where it is required that there is some minimum delay between sending
two acknowledgements to reflect the physical properties of the network.



Online algorithms: a survey 19

7.3. Routers and switches

Routers and switches handle the data traffic in networks and ensure that data packets
sent over connections reach their correct destination. Typically, traffic is bursty, i.e. the
number of packets that reach a buffer or switch during a certain time interval exceeds
the number of packets that can be processed during that interval. This leads to packet
loss, which is not desirable as the corresponding packets have to be resent. To reduce
packet loss, routers and switches are equipped with buffers in which packets can be
stored temporarily until they are forwarded. We study two algorithmic problems related
to the maintenance of such buffers.

Bar-Noy et al. [19] and independently Koga [77] address the question how large
buffers should be in order to avoid packet loss. Consider n data streams that share a
common output channel at a router. The data is partitioned into packets of equal size. At
time t , N(t, i) packets of stream i arrive, 1 ≤ t ≤ m and 1 ≤ i ≤ n. Associated with
each data stream is a FIFO queue of potentially infinite capacity, in which the packets
of the stream can be stored. In each time step a scheduling algorithm in the router can
select one of the queues and send the packet at the head over the output channel. The
goal is to minimize the maximum queue length that ever occurs at any of the queues.

Bar-Noy et al. [19] and Koga [77] gave tight lower and upper bounds on the best
possible competitiveness.

Theorem 28. [19, 77] Any deterministic online algorithm has a competitive ratio of
�(log n).

Koga showed that the popular Round Robin algorithm is not better than n-competitive.
A natural greedy algorithm works as follows.

Longest Queue First: Always serve the longest queue, ties can be broken arbitrarily.

Theorem 29. [19, 77] Longest Queue First is O(log n)-competitive.

Thus the greedy algorithm achieves an optimal competitive ratio. The Longest Queue
First algorithm was proposed and analyzed by Koga. Bar-Noy et al. considered a slight
variant of that algorithm. Koga also showed that randomization does not help in this
problem; the competitiveness of any randomized strategy is still �(log n). Additionally,
Koga proposed a second objective function that aims at balancing the packet delays
among the n queues. Let the flow time of a data packet be the length of the time interval
when the packet resides in one of the queues. Koga suggested to sum up, for each queue,
the flow times of the packets. The goal is to minimize the maximum sum. Koga proved
that no deterministic online algorithm is better than �(log n)-competitive.An interesting
problem is to develop upper bounds for this second objective function.

The second problem we study considers scenarios where buffers or queues have
bounded capacity. In this case packet loss cannot be avoided and the goal is to transmit
the packets of highest value. Kesselman et al. [74] investigated the following problem in
the context of managing the output buffer of a router or switch. At time t , a set N(t) of
new data packets arrives. Each packet p has a value v(p), which is a positive real number.
There is a buffer in which the data packets can be stored temporarily. In each time step
t an algorithm can transmit one of the packets that are available in the buffer or in the



20 S. Albers

set N(t). The goal is to maximize the value of the transmitted packets. Kesselman et al.
investigate two types of buffers. In a FIFO buffer the packet transmission times must
be consistent with the arrival times. More precisely, if packet p is transmitted before
p′, then p must not have arrived later than p′. Moreover, the buffer can simultaneously
hold only B packets. An algorithm has to decide which packets to drop so as to obey
this buffer capacity. In a bounded-delay buffer each packet p has an associated slack
time sl(p). If the packet arrives at time t , then it must be transmitted or dropped by time
t + sl(p). There is no explicit bound on the buffer size and packets may be re-ordered.

First consider the FIFO model. Kesselman et al. [74] analyzed the following algo-
rithm.

Greedy: If there is a buffer overflow, discard the packets with the smallest values; ties
are broken arbitrarily.

Theorem 30. [74] Greedy achieves a competitive ratio of 2 − 1
B+1 . This ratio is tight

for that algorithm.

Kesselman et al. also showed that Greedy has a competitiveness of 2 − 2
α+1 , where α

is the ratio of the maximum to minimum packet value. Zhu [99] recently gave a lower
bound.

Theorem 31. [99] In the FIFO model no deterministic online algorithm can achieve a
competitive ratio smaller than

√
2.

A challenging problem is to close the gap between the lower and the upper bounds. For
the special case B = 2, Zhu showed tight bounds of (5 + √

13)/6 ≈ 1.434.
Next we examine the bounded-delay model. Again Kesselman et al. [74] proposed

a Greedy strategy.

Greedy: In each step, send the packet with the highest value.

Theorem 32. The Greedy algorithm achieves a competitive ratio of 2 and this is tight
for that algorithm.

If there are only two packet values (cheap and expensive), then Greedy has a com-
petitiveness of exactly 1 + 1/α, where α is the ratio of the expensive to the cheap value.
Zhu [99] gave a lower bound of 1.366. This bound even holds in a restricted model where
the slack time of each packet is equal to 2. For this special scenario, Zhu also showed
an upper bound of

√
2. Finally tight upper and lower bounds of (1 + √

5)/2 ≈ 1.618
are known for the case that the slack time of each packet is at most 2, see [74, 99]. The
major open problem is to determine tight bounds for the general bounded-delay model.

8. Refinements of competitive analysis

Competitive analysis is a strong worst-case performance measure. For some online prob-
lems, such as paging, the competitive ratios of online algorithms are much higher than
the corresponding performance ratios observed in practice. The reason is typically that
in a competitive analysis we have to consider arbitrary request sequences whereas in



Online algorithms: a survey 21

practice only restricted classes of inputs occur. Therefore, a line of research has ana-
lyzed online algorithms on restricted request sequences and proposed other measures
for evaluating online algorithms.

We consider the paging problem in more detail. As discussed in Section 2 the best
competitive ratio of deterministic online algorithms is equal to k, where k is the number
of pages in fast memory, and both LRU and FIFO achieve this competitiveness. From a
practical point of view this bound is not very meaningful as fast memories can often store
several hundreds or thousands of pages. In fact, the ratio of k is much higher than the
algorithms’ performance in practice. In an experimental study presented by Young [97],
LRU achieved competitive ratios between 1 and 2. Also, in practice, the performance of
LRU is much better than that of FIFO. This is not evident in the competitive analysis.

In the paging problem standard competitive analysis ignores the fact that request
sequences generated by real programs have a special structure, i.e. they exhibit locality
of reference: Whenever a page is requested, the next request is usually to a page that
comes from a very small set of associated pages. Borodin et al. [32] proposed access
graphs for modeling locality of reference. In an access graph, the nodes represent the
memory pages. Whenever a page p is requested, the next request can only be to a
page that is adjacent to p in the access graph. Formally, let G = (V , E) be an undi-
rected graph. V represents the set of memory pages and E is a set of edges. A request
sequence σ = σ(1), . . . , σ (m), is consistent with G if (σ (t), σ (t + 1)) ∈ E for all
t = 1, . . . , m − 1. We say that an online algorithm A is c-competitive on G if there
exists a constant a such that A(σ) ≤ c · OPT (σ) + a for all σ consistent with G. The
competitive ratio of A on G, denoted by R(A, G), is the infimum of all c such that A is
c-competitive on G. Let R(G) = minA R(A, G) be the best competitive ratio achievable
on G.

Borodin et al. [32] showed that LRU achieves the best possible competitive ratio on
access graphs that are trees. Trees represent the access graphs for many data structures.
Borodin et al. also analyzed R(LRU, G) on arbitrary graphs. In particular they showed
that there exist graphs for which the competitive ratio of FIFO is much higher than that
of LRU. Another important result, due to Chrobak and Noga [41], is that LRU is never
worse than FIFO on access graphs.

Theorem 33. [41] For any graph G, R(LRU, G) ≤ R(FIFO, G).

Borodin et al. [32] also presented an optimal online algorithm for any access graph.

FAR: The algorithm is a marking strategy. If there is a fault at a request to a page p,
then FAR evicts an unmarked page from fast memory that has the largest distance to a
marked page in the access graph.

Irani et al. [66] showed that this algorithm achieves the best possible competitive
ratio, up to a constant factor, for all access graphs.

Theorem 34. [66] For any graph G, R(FAR, G) = O(R(G)).

Fiat and Karlin [54] presented randomized online paging algorithms for access graphs
that achieve an optimal competitive ratio. A disadvantage of FAR and the randomized
algorithms by Fiat and Karlin [54] is that the access graph has to be known in advance.
Fiat and Mendel [57] presented deterministic and randomized online algorithms that do
not have to know the access graph but still achieve the best possible competitive ratios.



22 S. Albers

So far we have addressed undirected access graphs.An initial investigation of directed
access graph was presented by Irani et al. [66], who considered structured program
graphs. A fundamental open problem is to develop online paging algorithms for general
directed access graphs.

As an alternative to access graphs, Karlin et al. [71] modeled locality of reference
by assuming that request sequences are generated by a Markov chain. They analyzed
paging algorithm in terms of their fault rate which is the performance measure used in
practice. In particular, they developed an algorithm that achieves an optimal fault rate,
for any Markov chain. Torng [96] analyzed the total access time of paging algorithms.
He assumes that the service of a request to a page in fast memory costs 1, whereas a
fault incurs a penalty of p, p > 1. In his model a request sequence exhibits locality of
reference if the average length of a subsequence containing requests to m distinct pages
is much larger than m.

Recently, Albers et al. [7] proposed another framework for modeling locality of ref-
erence that goes back again to the working set concept by Denning [49, 50]. In practice,
during any phase of execution, a process references only a relatively small fraction of its
pages. The set of pages that a process is currently using is called the working set. Deter-
mining the working set size in a window of size n at any point in a request sequence,
one obtains, for variable n, a function whose general behavior is depicted in Figure 1.
The function is increasing and concave.

Inspired by this simple and natural model, [7] devises two ways of modeling local-
ity of reference. In both models, it is assumed that an application is characterized by a
concave function f ; the application generates request sequences that are consistent with
f . In the Max-Model a request sequence is consistent with f if the maximum number
of distinct pages referenced in a window of size n is at most f (n), for any n ∈ N. In the
Average-Model a request sequence is consistent with f if the average number of distinct
pages referenced in a window of size n is at most f (n), for any n ∈ N. Albers et al.
performed extensive experiments with traces from standard corpora, analyzing maxi-
mum/average working set sizes in windows of size n. In all of the cases, the functions
have an overall concave shape. The authors use again the page fault rate to evaluate the
quality of paging algorithms, and develop tight or nearly tight bounds on the fault rates
achieved by LRU, FIFO, deterministic Marking strategies and MIN. It shows that LRU
is an optimal online algorithm, whereas FIFO and Marking strategies are not optimal
in general. Finally [7] presents an experimental study comparing the page fault rates

Window Size

Program Size

Working Set
Size

Fig. 1. Working set size as a function of the window size



Online algorithms: a survey 23

proven in the analyses to the page fault rates observed in practice. The gap between the
theoretical and observed bounds is considerably smaller than the corresponding gap in
competitive analysis.

Further refinements of competitive analysis include extra resource analyses, see
e.g. [68, 93], statistical adversaries [37, 84], accomodating functions [35] and the max/max
ratio [26]. With respect to arbitrary online problems, Koutsoupias and Papadimitriou [79]
proposed the diffuse adversary model. An adversary must generate an input according
to a probability distribution D that belongs to a class � of possible distributions known
to the online algorithm. We wish to determine, for the given class � of distributions, the
performance ratio

R(�) = min
A

max
D∈�

ED[A(σ)]

ED[OPT (σ)]
.

Koutsoupias and Papadimitriou show that LRU is optimal against diffuse adversaries.
Secondly, Koutsoupias and Papadimitriou [79] introduced comparative analysis, which
compares the performance of online algorithms from given classes of algorithms.

9. Conclusions

In this paper we gave an introduction to competitive online algorithms and presented
a number of important results. An excellent text book on the subject was written by
Borodin and El-Yaniv [31]. The book [58] contains many survey articles on various
online problems. Of course, there are many application areas that we have not addressed
here. Bin packing is a classical problem that is still actively investigated, see e.g. [42,
48] and references therein. Online coloring and online matching are two classical online
problems related to graph theory. In these problems, the vertices of a graph arrive online
and must be colored resp. matched immediately. We refer the reader to [75, 76, 73] for
some basic literature. Recently, there has been research interest in competitive auctions,
see e.g. [53, 62], a fresh field that deserves further investigations. In summary there
is no doubt that online algorithms continue to be an interesting research area and that
competitive analysis will be a powerful tool to analyze their performance.

References

1. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theor.
Comput. Sci. 234, 203–218 (2000)

2. Albers, S.: Improved randomized on-line algorithms for the list update problem. SIAM J. Comput. 27,
670–681 (1998)

3. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29, 459–473 (1999)
4. Albers, S.: On randomized online scheduling. Proc. 34th ACM Symposium on Theory of Computing,

(2002) 134–143
5. Albers, S.: Generalized connection caching. Theory Comput. Syst. 35, 251–267 (2002)
6. Albers, S., Bals, H.: Dynamic TCP acknowledgement: Penalizing long delays. Proc. 14th ACM-SIAM

Symposium on Theory of Computing, 2003
7. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. Proc. 34th ACM Symposium

on Theory of Computing, (2002) 258–268
8. Albers, S., Mitzenmacher, M.: Average case analyses of list update algorithms, with applications to data

compression. Algorithmica 21, 312–329 (1998)



24 S. Albers

9. Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP algorithm for the list update
problem. Inf. Process. Lett. 56, 135–139 (1995)

10. Christoph Ambühl. Offline list update is NP-hard. Proc. 8th Annual European Symposium on Algorithms,
Springer LNCS 1879, (2001) 42–51

11. Ambühl, C., Gärtner, B., von Stengel, B.: Towards new lower bounds for the list update problem. Theor.
Comput. Sci. 268, 3–16 (2001)

12. Armon, A., Azar, Y., Epstein, L., Regev, O.: Temporary tasks assignment resolved. Proc. 13th Annual
Symposium on Discrete Algorithms, (2002) 116–124

13. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing with applications to machine
scheduling and virtual circuit routing. J. ACM 44, 486–504 (1997)

14. Azar, Y.: On-line load balancing. In: A. Fiat and G. Woeginger, Online Algorithms: The State of the Art,
Springer LNCS 1442, (1998) 178–195

15. Azar, Y., Broder, A., Karlin, A.: On-line load balancing. Theor. Comput. Sci. 130, 73–84 (1994)
16. Azar, Y., Epstein, L.: On-line load balancing of temporary tasks on identical machines Proc. 5th Israeli

Symposium on Foundations of Computer Science, (1997) 119–125
17. Azar, Y., Kalyanasundaram, B., Plotkin, S., Pruhs, K., Waarts, O.: Online load balancing of temporary

tasks. J. Algorithms 22, 93–110 (1997)
18. Azar,Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. J.Algorithms 18, 221–237 (1995)
19. Bar-Noy, A., Freund, A., Landa, S., Naor, J.(S.): Competitive on-line switching policies. Proc. 13th

ACM-SIAM Symposium on Discrete Algorithms, (2002) 525–534
20. Bartal, Y., Bollobás, B., Mendel, M.: A Ramsey-type theorem for metric spaces and its applications for

metrical task systems and related problems. Proc. 42nd IEEE Annual Symposium on Foundations of
Computer Science, (2001) 396–405

21. Bartal,Y., Blum,A., Burch, C., Tomkins,A.:A polylog(n)-competitive algorithm for metrical task systems.
Proc. 29th Annual ACM Symposium on Theory of Computing, (1997) 711–719

22. Bartal, Y., Chrobak, M., Noga, J., Raghavan, P.: More on random walks, electrical networks and the
Harmonic k-server algorithm. Inf. Process. Lett. 84, 271–276 (2002)

23. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. J. Comput.
Syst. Sci. 51, 359–366 (1995)

24. Bartal, Y., Grove, E.F.: The Harmonic online k-server algorithm is competitive. J. ACM 47, 1–15 (2000)
25. Belady, L.A.: A study of replacement algorithms for virtual storage computers. IBM Syst. J. 5, 78–101

(1966)
26. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11, 73–91

(1994)
27. Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power of randomization in

on-line algorithms. Algorithmica 11, 2–14 (1994)
28. Bentley, J.L., Sleator, D.S., Tarjan, R.E., Wei, V.K.: A locally adaptive data compression scheme. Com-

mun. of the ACM 29, 320–330 (1986)
29. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. J. Algorithms 35,

108–121 (2000)
30. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-optimality in lists and trees. Proc.

13th Annual ACM-SIAM Symposium on Discrete Algorithms, (2002) 1–8
31. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press,

1998
32. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. J. Com-

put. Syst. Sci. 50, 244–258 (1995)
33. Borodin, A., Linial, N., Saks, M.: An optimal online algorithm for metrical task systems. J. ACM 39,

745–763 (1992)
34. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. DEC SRC Research

Report 124, 1994
35. Boyar, J., Larsen, K.S., Nielsen, M.N.: The accommodating function: A generalization of the competitive

ratio. SIAM J. Comput. 31, 233–258 (2001)
36. Chen, B., van Vliet, A., Woeginger, G.J.: A lower bound for randomized on-line scheduling algorithms.

Inf. Process. Lett. 51, 219–222 (1994)
37. Chou,A., Cooperstock, J., ElYaniv, R., Klugerman, M., Leighton, T.: The statistical adversary allows opti-

mal money-making trading strategies. Proc. 6thAnnualACM-SIAM Symposium on DiscreteAlgorithms,
(1995) 467–476

38. Chrobak, M., Karloff, H., Paye, T.,Vishwanathan, S.: New results on the server problem. SIAM J. Discrete
Math. 4, 172–181 (1991)

39. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k servers on trees. SIAM J. Comput. 20,
144–148 (1991)



Online algorithms: a survey 25

40. Chrobak, M., Larmore, L.L.: Harmonic is 3-competitive for two servers. Theor. Comput. Sci. 98, 339–346
(1992)

41. Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23, 180–185 (1999)
42. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: A survey.

Approximation Algorithms for NP-Hard Problems, D. Hochbaum (editor), PWS Publishing, (1997), 46–
93

43. Cohen, E., Kaplan, H., Zwick, U.: Connection caching. Proc. of the 31st Annual ACM Symposium on
Theory of Computing, (1999) 612–621

44. Cohen, E., Kaplan, H., Zwick, U.: Connection caching under various models of communiation. Proc.
12th Annual ACM Symposium on Parallel Algorithms and Architectures, (2000) 54–63

45. Cole, R.: On the dynamic finger conjecture for splay trees. Part 2: The proof. SIAM J. Comput. 30, 44–85
(2000)

46. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic finger conjecture for splay trees. Part I:
Splay sorting log n-block sequences. SIAM J. Comput. 30, 1–43 (2000)

47. Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications
to on-line algorithms. J. ACM 40, 421–453 (1993)

48. Csirik, J., Woeginger, G.J.: On-line packing and covering problems. In: A. Fiat and G. Woeginger, Online
Algorithms: The State of the Art, Springer LNCS 1442, (1998) 147–177

49. Denning, P.J.: The working set model of program behavior. Commun. of the ACM 11, 323–333 (1968)
50. Denning, P.J.: Working sets past and present. IEEE Transactions on Softw. Eng. 6, 64–84 (1980)
51. Dooly, D.R., Goldman, S.A., Scott, S.D.: On-line analysis of the TCP acknowledgment delay problem.

J. ACM 48, 243–273 (2001)
52. Feldmann, A., Karlin, A., Irani, S., Phillips, S.: Private communication cited in [65]
53. Fiat, A., Goldberg, A., Hartline, J., Karlin, A.: Competitive generalized auctions. Proc. 34th ACM Sym-

posium on Theory of Computing, (2002) 72–81
54. Fiat, A., Karlin, A.: Randomized and multipointer paging with locality of reference. Proc. 27th Annual

ACM Symposium on Theory of Computing, (1995) 626–634
55. Fiat, A., Karp, R.M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. J.

Algorithms 12, 685–699 (1991)
56. Fiat, A., Mendel, M.: Truly online paging with locality of reference. Proc. 38th Annual Symposium on

Foundations of Computer Science, (1997) 326–335
57. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. Proc. 32nd

Annual ACM Symposium on Theory of Computing, (2000) 725–734
58. Fiat, A., Woeginger, G.: Online Algorithms: The State of the Art, Springer LNCS 1442, 1998
59. Fielding, R., Getty, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext transfer protocol – HTTP/1.1.

http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html
60. Fleischer, R., Wahl, M.: Online scheduling revisited. J. Scheduling 3, 343–353 (2000)
61. Frederiksen, J.S., Larsen, K.S.: Packet bundling. Proc. 8th Scandinavian Workshop on Algorithm Theory.

Springer LNCS 2368, (2002) 328–337
62. Goldberg,A.V., Hartline, J.D., Wright,A.: Competitive auctions and digital goods. Proc. 12thACM-SIAM

Symposium on Discrete Algorithms, (2001) 735–744
63. Graham, R.L.: Bounds for certain multiprocessor anomalies. Bell Syst. Technical J. 45, 1563–1581 (1966)
64. Irani, S.: Two results on the list update problem. Inf. Process. Lett. 38, 301–306 (1991)
65. Irani, S.: Page replacement with multi-size pages and applications to Web caching. Algorithmica 33,

384–409 (2002)
66. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with locality of reference.

SIAM J. Comput. 25, 477–497 (1996)
67. Irani, S., Seiden, D.S.: Randomized algorithms for metrical task systems. Theor. Comput. Sci. 194,

163–182 (1998)
68. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47, 617–643 (2000)
69. Karger, D.R., Phillips, S.J., Torng, E.: J. Algorithms 20, 400–430 (1996)
70. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic TCP acknowledgement and other stories about e/(e−1).

Proc. 31st ACM Symposium on Theory of Computing, (2001) 502–509
71. Karlin, A., Phillips S., und Raghavan, P.: Markov paging. SIAM J. Comput. 30, 906–922 (2000)
72. Karp, R., Raghavan, P.: From a personal communication cited in [86]
73. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for online bipartite matching. Proc. 22nd ACM

Symposium on Theory of Computing, (1990) 352–358
74. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko, M.: Buffer overflow

management in QoS switches. Proc. 33rd Annual ACM Symposium on Theory of Computing, (2001)
520–529

75. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line weighted bipartite matching. Proc. 18th International
Colloquium on Automata, Languages and Programming (ICALP), Springer LNCS 510, (1991) 728–738



26 S. Albers: Online algorithms: a survey

76. Kierstead, H.: Coloring graphs on-line. In: A. Fiat and G. Woeginger, Online Algorithms: The State of
the Art, Springer LNCS 1442, (1998) 281–305

77. Koga, H.: Balanced scheduling toward loss-free packet queuing and delay fairness. Proc. 12th Interna-
tional Symposium on Algorithms and Computation (ISAAC), Springer LNCS 2223, (2001) 61–73

78. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42, 971–983 (1995)
79. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Comput. 30, 300–317 (2000)
80. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for on-line problems. Proc. 20th

Annual ACM Symposium on Theory of Computing, (1988) 322–333
81. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algorithm. Algorithmica 6,

816–825 (1991)
82. J. Noga. Private communication, 2001
83. Peserico, E.: The lazy adversary conjecture fails. Proc. 14th Annual Symposium on Parallel Algorithms

and Architectures, (2002) 143–144
84. Raghavan, P.: A statistical adversary for on-line algorithms. On-Line Algorithms, DIMACS Series in

Discrete Mathematics and Theor. Comput. Sci. 79–83 (1991)
85. Raghavan, P., Snir, M.: Memory versus randomization in on-line algorithms. IBM J. Res. Dev. 38, 683–708

(1994)
86. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms for the list update prob-

lem. Algorithmica 11, 15–32 (1994)
87. Rudin III, J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis. The University of

Texas at Dallas, May 2001
88. Seiden, S.S.: Online randomized multiprocessor scheduling. Algorithmica 28, 173–216 (2000)
89. Seiden, S.S.:A guessing game and randomized online algorithms. Proc. 32ndACM Symposium on Theory

of Computing, (2000) 592–601
90. Seiden, S.S.: A general decomposition theorem for the k-server problem. Proc. 9th Annual Symposium

on Algorithms, Springer LNCS 2161, (2001) 86–97
91. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Inf. Process. Lett. 63, 51–55

(1997)
92. Sgall, J.: On-line scheduling. In: A. Fiat and G. Woeginger, Online Algorithms: The State of the Art,

Springer LNCS 1442, (1998) 196–231
93. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. of the ACM

28, 202–208 (1985)
94. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32, 652–686 (1985)
95. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica 5, 367–378 (1985)
96. Torng, E.: A unified analysis of paging and caching. Algorithmica 20, 175–200 (1998)
97. Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica 11, 525–541 (1994)
98. Young, N.E.: Online file caching. Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms,

(1998) 82–86
99. Zhu, A.: Analysis of queueing policies in QoS switches. Proc. 14th ACM-SIAM Symposium on Theory

of Computing, 2003


