Summary of the Graph Theory Exercises booklet

Here is the summary of the Graph Theory Exercises booklet:

  1. Basic concepts
    1. Graphs
    2. Bipartite graphs
    3. Neighborhoods and degrees of vertices
    4. Paths and circuits
    5. Union and intersection of graphs
    6. Planar graphs
    7. Subgraphs
    8. Cuts
    9. Paths and circuits in graphs
    10. Connected graphs
    11. Components
    12. Bridges
    13. Edge-biconnected graphs
    14. Articulations and biconnected graphs
    15. Forests and trees
    16. Minors of graphs
    17. Plane maps and their faces
    18. Random graphs
  2. Isomorphism
  3. Synthesis of graphs with given degrees
  4. Bicolorable graphs
  5. Stable sets
  6. Cliques
  7. Vertex covers
  8. Vertex colorings
  9. Matchings
  10. Matchings in bipartite graphs
  11. Matchings in arbitrary graphs
  12. Edge colorings
  13. Connectors and acyclic sets
  14. Shortests paths and circuits
  15. Flows
  16. Internally disjoint flows
  17. Hamiltonian circuits and paths
  18. Circuit covers (Eulerian cycles)
  19. Characterization of planarity

 


The material should be studied in the following order:

  1.  1a. Graphs
  2.  1b. Bipartite graphs
  3.  1c. Neighborhoods and degrees of vertices
  4.  2.  Isomorphism
  5.  3.  Synthesis of graphs with given degrees
  6.  1r. Random graphs
  7.  1d. Paths and circuits
  8.  1g. Subgraphs
  9.  1e. Union and intersection of graphs
  10.  1h. Cuts
  11.  1i. Paths and circuits in graphs
  12.  1j. Connected graphs
  13.  1p. Minors of graphs
  14.  1k. Components
  15.  4.  Bicolorable graphs
  16.  5.  Stable sets
  17.  6.  Cliques
  18.  7.  Vertex covers
  19.  8.  Vertex colorings
  20.  1l. Bridges
  21.  1o. Forests and trees
  22.  1m. Edge-biconnected graphs
  23.  1n. Articulations and biconnected graphs
  24.  1f. Planar graphs
  25.  1q. Plane maps and their faces
  26.  9.  Matchings
  27. 10.  Matchings in bipartite graphs
  28. 11.  Matchings in arbitrary graphs
  29. 12.  Edge colorings
  30. 17.  Hamiltonian circuits and paths
  31. 18.  Circuit covers (Eulerian cycles)
  32. 14.  Shortest paths and circuits
  33. 15.  Flows
  34. 16.  Internally disjoint flows
  35. 19. Characterization of planarity